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[1] We develop a new simple method for inferring the orientation of a magnetic flux
rope, which is assumed to be a time-independent cylindrically symmetric structure via the
direct single-point analysis of magnetic field structure. The model tests demonstrate that,
for the cylindrical flux rope regardless of whether it is force-free or not, the method can
consistently yield the axis orientation of the flux rope with higher accuracy and stability than
the minimum variance analysis of the magnetic field and the Grad-Shafranov reconstruction
technique. Moreover, the radial distance to the axis center and the current density can also
be estimated consistently. Application to two actual flux transfer events observed by the
four satellites of the Cluster mission demonstrates that the method is more appropriate to be
used for the inner part of flux rope, which might be closer to the cylindrical structure,
showing good agreement with the results obtained from the optimal Grad-Shafranov
reconstruction and the least squares technique of Faraday’s law, but fails to produce such
agreement for the outer satellite that grazes the flux rope. Therefore, the method must be
used with caution.

Citation: Rong, Z. J., W. X. Wan, C. Shen, T. L. Zhang, A. T. Y. Lui, Y. Wang, M. W. Dunlop, Y. C. Zhang, and
Q.-G. Zong (2013), Method for inferring the axis orientation of cylindrical magnetic flux rope based on single-point
measurement, J. Geophys. Res., 118, doi:10.1029/2012JA018079.

1. Introduction

[2] A magnetic flux rope is a structure with magnetic field
lines (MFLs) wrapping and rotating around a central axis to
form a helical magnetic structure [e.g., Hones, 1977; Hones
et al., 1982; Hughes and Sibeck, 1987]. It is generally consid-
ered as a product of magnetic reconnection in the eruptive en-
ergy processes, e.g., magnetospheric substorm [e.g., Schindler,
1974; Moldwin, and Hughes, 1993; Nagai et al., 1994; Lee,

1995; Lin et al., 2008; Gekelman et al., 2012]. It is observed
ubiquitously in space plasma environment, e.g., in Earth’s
(magnetized planet) magnetotail [e.g., Slavin et al., 2003; Zong
et al., 1997, 2004; Zhang et al., 2007], and in the Venus
(unmagnetized planet) induced magnetotail [Zhang et al.,
2012], in the cusp region [e.g., Zong et al., 2003], in magneto-
pause as flux transfer events (FTEs) [e.g., Russell and Elphic,
1979a; Lockwood and Hapgood, 1998; Slavin et al., 2009],
in solar wind as magnetic cloud [e.g., Burlaga, 1988; Lepping
et al., 1990], even in the ionosphere of unmagnetized planet
[e.g., Russell and Elphic, 1979b; Vignes et al., 2004;Wei et al.,
2010].
[3] Accurate estimation of the axis orientation of a flux

rope is vital in studies of its origin and evolution, as well
as in exploring the dynamics of magnetic reconnection.
However, this issue is still not well resolved.
[4] Currently, the most widely used single-point method to

infer the axis orientation of a flux rope is the minimum variance
analysis of magnetic field (BMVA) [Sonnerup and Cahill,
1968], which was originally developed to analyze the orienta-
tion of plasma discontinuity with the yielded three orthogonal
eigen directions, i.e., L (maximum variance direction) , M
(intermediate variance direction), and N (minimum variance
direction). However, actual application demonstrates that,
depending critically on the spacecraft (S/C) path and the
magnetic field structure, any of the three eigen directions of
BMVA is fairly close to the actual axis orientation [e.g.,
Moldwin and Hughes, 1991; Xiao et al., 2004; Pu et al.,
2004]. To avoid the uncertainties of BMVA, the method us-
ing the current density instead of magnetic field to perform
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minimum variance analysis (MVA) is suggested to be a better
choice [Xiao et al., 2004; Pu et al., 2004]. Some researchers
argued that performing MVA on the unit magnetic vector
(bMVA), i.e., b̂ B= Bj jð Þ, can yieldmore reasonable results than
that of BMVA [e.g., Lepping et al., 1990; Gulisano et al.,
2007].
[5] Besides minimum variance analysis, fitting methods

[e.g., Burlaga, 1988; Burlaga et al., 1990; Lepping et al.,
1990; Wang et al., 2002, 2003; Slavin et al., 2003; Zhang
et al., 2008] also have been used for the orientation analysis
based on the force-free field models. However, one cannot
assure that the detected structure of a flux rope always fits
well with the force-free model.
[6] Some methods based on the physical laws are also pre-

sented. For example, the Grad-Shafranov (GS) reconstruc-
tion method developed recently [Hau and Sonnerup, 1999;
Hu and Sonnerup, 2002] can yield the axis orientation of flux
rope and recover the optimal map of field distribution in the
cross-section by solving the GS equation. However, a trial
and error scheme is needed to search for the axis orientation,

for which the total transverse pressure pþ B2
z

2m0

� �
versus mag-

netic potential function A displays minimum scatter. The mul-
tispacecraft GS technique [Sonnerup et al., 2004; Hasegawa
et al., 2005] may yield a better resolution than the single-
spacecraft GS technique. The resulting optimal map, how-
ever, no longer obeys the GS equation precisely. According
to the GS reconstruction techniques, Li et al. [2009] also have
introduced a flux rope orientation inferring techniques with
the residue defined by field invariants for a specified flux rope
model. Sonnerup and Hasegawa [2005] presented a least
squares technique for the determination of axis orientation
based on the Faraday’s law, r�E=� @ B/@ t= 0, which,
under the assumption of time-independent flux rope with a
2-dimensional structure, requires the intrinsic axial electric
field, Ez, to be constant in space and time.
[7] Based on the multipoint measurements of Cluster

tetrahedron, some multipoint analysis methods are presented
[e.g., Shi et al., 2005; Zhou et al., 2006; Shen et al., 2007],
where the derived higher order physical quantities, e.g., the
direction of magnetic field gradient [Zhou et al., 2006], the
characteristic directions of magnetic field spatial variation
[Shi et al., 2005; Shen et al., 2007], etc., are the key para-
meters to infer the orientations of flux rope. The validity of
those methods requires the size of the Cluster constellation
to be much smaller than the typical size of flux rope; other-
wise, the assumption of linear variation would result in com-
parable errors.
[8] Although the currently known single-point methods

can afford a possible way to infer the axis orientation, the
method that is based on the direct analysis of MFLs’

geometric structure to infer the orientation is still unavail-
able. Meanwhile, in contrast to the multipoint analysis of
the Cluster mission, most current satellite missions do not
have the unique multisatellite configuration like Cluster
and thus rely on single-point method for flux rope analysis.
For this reason, it is useful to improve the single-point
method based on the direct analysis of field geometric struc-
ture, which is the main goal of this research.
[9] In the following, based on the assumption of cylindri-

cal symmetry, the theory of the method is presented first.
Then, to demonstrate the accuracy and practicability of the
new method, model tests and application to true cases are
carried out to compare with some known methods. The
yielded results demonstrate that our method is reasonable
and applicable, but should be used with caution.

2. Approach

2.1. Method Assumptions

[10] Considering the loop-like magnetic structure of the
flux rope, it is convenient to adopt the cylindrical coordinates
r̂; ŵ; ẑf g for orientation analysis, where r̂ , ŵ , and ẑ are re-
ferred to as the unit vector of radial, azimuth, and axis direc-
tion, respectively. As shown in Figure 1, one well-known
model is the model of cylindrical force-free field ((r�B)�
B= 0). However, the actual detected flux rope is generally
variable and complicated, e.g., some may have two-dimen-
sional closed loop field structure, while others may have a
flux rope embedding in the outer closed loop field [Zong
et al., 2004], and it may not be force-free field [e.g., Slavin
et al., 2003; Lui et al., 2007]. Thus, to simplify the study
and relax the confinement of force-free field, some reason-
able assumptions need to be made as stated below:

1. The magnetic field lines of a flux rope rotate about a
common axis forming a spiral structure. The axis is in a
fixed direction during the passage of S/C.

2. The spacecraft trajectory across the flux ropes is straight,
so that the unit direction of relative velocity v̂ (̂v ¼ V=V)
to flux rope is constant, and the spatial position along the
trajectory can be computed by integrating V(t).

3. The magnetic structure is stable and unchanged during
the passage of S/C; the flux rope is an ideal cylindrical
symmetry, the magnetic field strength, B, is independent

of the coordinate ’ and z, i.e., @
@t ;

@
@’ ;

@
@z

� �
B ¼ 0:

[11] The known data are the single-point measurement of
magnetic field vector and the relative velocity of S/C to flux
rope. Hence, the key issue is how to use these known data to
infer the axis orientation of flux rope.

2.2. Method

[12] The helical MFLs of flux rope have their intrinsic hand-
edness of helicity. As shown in Figure 2, the handedness of
MFLs is of right-hand if the current density is parallel to the
axis field, which points out of the page (Figure 2a), while it
is of left-hand if the current density is antiparallel (Figure 2b).
The unit direction of magnetic field, b̂ ( b̂ ¼ B=B) and the unit
direction of relative velocity, v̂ ( v̂ ¼ V=V) comprise two com-
ponents, i.e., the parallel components bk, vk and perpendicular
components b⊥, v⊥, being parallel and perpendicular to the

Figure 1. The interior structure of flux rope (adapted with
permission from Russell and Elphic [1979b]).
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axis orientation, respectively. As sketched in Figure 2 in the
projection of cross-section, no matter what the helical handed-
ness is, b⊥ would be parallel or antiparallel to v⊥ at the inner-
most of the flux rope (O ’ point), so that the product of v⊥ � b⊥/
v⊥b⊥ would reach the extreme at the innermost. One question
is naturally raised: does the product of v̂�b̂ also reach the ex-
treme at the innermost along the path? If it indeed does, the in-
nermost location can be identified by checking v̂�b̂ timing se-
ries, and the axis orientation should lie in the plane constituted
by v̂ and b̂, which is then the unit magnetic vector in the inner-
most location. Thus, along the path of S/C, it is worth checking
the variation of v̂�b̂, which is expressed as

v̂�b̂ ¼ vk� bk þ v⊥� b⊥ ¼ vkbcosθ þ v⊥bsinθcosf; (1)

where, θ is the angle between the axis orientation and the lo-
cal magnetic vector, f is the angle between v⊥ and b⊥, b is
the unit scalar of b̂ (b = 1). Particularly, for the ideal closed
loop field structure (θ= 90�), bk= 0, the term v̂�b̂ ¼ v⊥cosf
will reach the extreme at the innermost location. However,
generally, θ and f vary simultaneously along the S/C path,
that is, θ and f are functions of the distance to the innermost
position, L, along the path in the cross-section (see Figure 2).
[13] We should recall that, because v̂ has been assumed to be

constant, the parallel component vk and perpendicular compo-
nent v⊥ are supposed to be constant accordingly. Taking the
partial derivative of L at both sides of equation (1) and consid-
ering b=1, we can get

@

@L
v̂ � b̂ ¼ �n==sinθ

@θ
@r

@r

@L
þ n⊥cosθ

@θ
@r

@r

@L
cosf

� n⊥sinθsinf
@f
@r

@r

@L
: ð2Þ

[14] At the innermost location, the radial direction r̂ is
perpendicular to v⊥ (see Figure 2), i.e., ( @r@L ) ~ 0; mean-
while, f is 0� or 180� there. Therefore, all the three terms
on the right side of equation (2) equal to zero, which

means v̂�b̂ would reach the extreme in the innermost loca-
tion along the path.
[15] Therefore, by checking the plot of v̂�b̂ along the path,

the time when S/C is in the innermost location can be identi-
fied. The corresponding b̂ at that time is indicated as b̂in. Be-
cause b̂in⊥ and v̂⊥ are toward the same direction at that time,
so, the axis orientation should lie in the plane that formed by
the v̂ and b̂in, i.e., the actual axis orientation n̂, the magnetic
field direction at the innermost b̂in, and the direction of rela-
tive velocity v̂ are coplanar, as sketched in Figure 3. There-
fore, one direction perpendicular to the axis orientation can

be determined by ê1 ¼ v̂�b̂ in

v̂�b̂ inj j , and we may define it as one

minor orientation.
[16] As shown in Figure 3, we may construct an orthogo-

nal coordinate system ê1; v̂; ; n̂0f g, where n̂0 ¼ ê1 � v̂ . In

Figure 2. Sketched diagram to show the helical handedness of flux rope and the variation of field direc-
tion along the path of S/C on the cross-section. (a) The right-handed structure. (b) The left-handed struc-
ture. The red arrow is the projection of S/C path, while the black arrow is the perpendicular direction of
unit magnetic field vector to the axis orientation.

Figure 3. The geometric relationship between n̂0, n̂, b̂in, v̂,
ê2, and ê1 at the innermost location along the path (red line).
Note, all the unit vectors are coplanar (end of arrows are
connected with dashed lines) except for ê1. n̂0, v̂, and ê1 con-
stitute an orthogonal system satisfying n̂0 ¼ ê1 � v̂, while n̂,
ê2 and ê1 also constitute an orthogonal system satisfying with
n̂ ¼ ê1 � ê2. The angle between n̂0 and n̂ is defined as Ψ.
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such coordinates, the actual axis orientation n̂ and the other
minor orientation ê2 can be expressed as

ê2 ¼ �n̂0sinΨþ v̂cosΨ
n̂ ¼ n̂0cosΨþ v̂sinΨ

n̂ ¼ ê1 � ê2
;

8<
: (3)

where, Ψ is the angle between n̂0 and n̂. Obviously, if Ψ is
known, then n̂ and ê2 can be derived from equation (3).
To achieve this task, we would reexamine the sketched dia-
gram in Figure 2.
[17] From Figure 2, along a given path, at time of ti, the

position of S/C is at P point. While at the time of tin, S/C
is in the innermost location (O ’ point) with the distance to
the axis center (O point) being r0 defined as the impact dis-
tance. The relative spatial vector pointing from P to O ′ is
⇀PO′ ¼ VΔti , where Δti = tin� ti. It should be noted that, if
the impact distance at time of ti can be evaluated as r0i, then
the evaluated impact distance should keep constant along the
path for the ideal cylindrical symmetry type. In view of this,
we may construct a residue equation as

s2 ¼ 1

M

XM
i¼1

r0i � r0h ið Þ2; (4)

where M is the number of data points, and r0h i ¼ 1

M

XM
i¼1

r0i:

[18] From Figure 2, the impact distance can be calculated by

r0i ¼ Li=tanfi (5)

at time ti. Where fi is the angle between
⇀PO′ and ⇀OO′, and Li

is the distance of P to O′ in the cross-section, which can be
expressed as

Li ¼ ⇀PO′
⊥

�� �� ¼ ⇀PO′ � ⇀PO′�n̂� �
n̂

�� ��: (6)

[19] For the case of Figure 2a, at time ti, supposing a flux
rope with a circular symmetry, fi equals the angle between
bi⊥ and v⊥, and can be derived as

cosfi ¼
bi⊥�v⊥
bi⊥j j v⊥j j ¼

b̂i�v̂ � b̂i�n̂
� �

v̂�n̂ð Þ
b̂i � b̂i�n̂

� �
n̂

�� �� v̂ � v̂�n̂ð Þn̂j j ;

fi ¼ cos�1 b̂ i�v̂ � v̂�n̂ð Þ b̂i�n̂
� �

b̂i � b̂ i�n̂
� �

n̂
�� �� v̂ � v̂�n̂ð Þn̂j j

" #
:

(7)

[20] For the case of Figure 2b, we can similarly get

cos p� fið Þ ¼ bi⊥�v⊥
bi⊥j j v⊥j j ;

fi ¼ p� cos�1 b̂i�v̂ � v̂�n̂ð Þ b̂ i�n̂
� �

b̂ i � b̂ i�n̂
� �

n̂
�� �� v̂ � v̂�n̂ð Þn̂j j

" #
:

(8)

[21] Combining equations (6)–(8), equation (5) can be ex-
panded as

r0i ¼ Δti V� V�n̂ð Þn̂j j tan cos�1 b̂i�v̂ � v̂�n̂ð Þ b̂ i�n̂
� �

b̂ i � b̂ i�n̂
� �

n̂
�� �� v̂ � v̂�n̂ð Þn̂j j

" #( )�1
������

������:
(9)

[22] Because the axis orientation n̂ is a function of Ψ (see
equation (3)), so s2 is also a function of Ψ. Thus, the axis
orientation n̂ can be calculated numerically by making s2

reach the minimum s2m . One should note that, at the time
of tin, i.e., when S/C is just at the innermost location, the nu-
merator and denominator of equation (5) are zero. Equation
(5) becomes indeterminate. So the data at time of tin should
be skipped when computing equation (4).
[23] Through the numerical calculation, two directions of

axis orientation are obtained. They are antiparallel to each
other. In view of this, we would like to choose the direction
which basically points along the b̂in as the axis orientation,
and we may define it as

N̂ ¼ sig b̂ in�n̂
� �

n̂: (10)

[24] Therefore, ê2 can be further yielded accordingly as
ê2 ¼ N̂ � ê1. It should note that, here, the meaning of N̂ is
different from that of N as referred in the MVA method
(see section 1).
[25] Now that the axis orientation is inferred, the parallel

component and azimuthal or perpendicular component of
field can be obtained as

Bz ¼ B�N̂� �
N̂;B’ ¼ B� B�N̂� �

N̂: (11)

[26] With equations (5)–(6), the local distance of S/C to
the axis center can be derived as

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2i þ r0h i2

q
: (12)

[27] Furthermore, considering r�B=m0j, @/@z=0, @/@ ’=
0, the parallel and perpendicular or azimuthal current density
can be derived as

j== ¼ m�1
0 r�1 @ rB’

� �
@r

; j⊥ ¼ �m�1
0

@Bz

@r
: (13)

[28] From equation (12), @r� ri+1� ri. Therefore, by
combining equations (11) and (12), the current density can
be numerically calculated via equation (13).

2.3. Summary of Method

[29] Accordingly to the above analysis, the steps of the
new method to infer the orientations of flux rope can be
summarized as follows:

1. Checking the time series of v̂�b̂ to find the time tin when
v̂�b̂ reaches the extreme, and the corresponding unit mag-
netic vector b̂in. Therefore, one direction perpendicular to
the axis orientation can be determined by ê1 ¼ v̂�b̂ in

v̂�b̂ inj j.
2. Constructing an orthogonal coordinates ê1; v̂; n̂0f gwhere

n̂0 ¼ ê1 � v̂. In such coordinates, the actual axis orienta-
tion n̂ and the other perpendicular orientation ê2 can be
expressed as n̂ ¼ n̂0cosΨþ v̂sinΨ and ê2 ¼ �n̂0sinΨþ
v̂cosΨ , where Ψ is the angle between n̂0 and n̂
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3. Constructing a residue equation as s2 Ψð Þ ¼
1

M

XM
i¼1

r0i � r0h ið Þ2 (see equations (4)–(9), where M is

the number of data points, r0i is the inferred impact distance

(the closest distance of the path to the axis center), and

r0h i ¼ 1
M

XM
i¼1

r0i

4. Numerical adjustment of Ψ making residue function
s2(Ψ) minimum to find the final axis orientation, N̂ ,
which basically points along b̂in, and also find the radial
distance to the axis center, ri, from equation (12).

3. Model Test

[30] To check the accuracy and validity of the method,
two classic cylindrically symmetric models of flux rope have
been tested along three different paths as shown in Figure 4.
For path 1, the location of S/C is linearly varied from (x = 0,
y= –2, z= 0) RE to (x = 0, y = 2, z = –2) RE. For path 2, it is
linearly varied from (x= 1, y= 2, z= 0) RE to (x= 1, y= –2,
z= –2) RE. While, for path 3, it varies from (x = 2, y= –2,
z= 0) RE to (x= 2, y = 2, z= 0) RE. Thus, the unit direction
of relative velocity for the path 1, path 2, and path 3 are
v̂1 0; 0:8944;�0:4472ð Þ , v̂2 0;�0:8944;�0:4472ð Þ , and
v̂3 0; 1; 0ð Þ, respectively. The Y-component of relative veloc-
ity, Vy, for all the three paths are assumed to be constant as
0.2 RE /s. Therefore, the time interval for the three paths is
20 s, and the relative velocity of S/C for path 1, path 2,
and path 3 are V1 =V2 = 0.2239 RE/s, V3 = 0.2 RE/s, respec-
tively. The recorded data resolution is 1 s.
[31] The two tested classic models are:

1. Lundquist-Lepping (L-L) Model [Lundquist, 1950]

[32] This model is one specific solution of force-free field
r�B= aB with the assumption of cylindrical symmetry,
which can be expressed as

Bz ¼ B0J0 arð Þ;B’ ¼ B0J1 arð Þ: (14)

[33] For the test, we arbitrarily adopt B0 = 2 nT, a ¼ R�1
E :

2. Elphic and Russell (E-R) Model [Elphic and Russell,
1983; Russell, 1990]

[34] This non-force-free model was constructed with an
intense core field inside

Bz ¼ B rð Þcos a rð Þð Þ
B’ ¼ B rð Þsin a rð Þð Þ

B rð Þ ¼ B0exp �r2=b2ð Þ
a rð Þ ¼ p=2 1� exp �r2=a2ð Þð Þ

:

8>><
>>: (15)

[35] For the test, a =RE, b=RE, B0 = 10 nT are arbitrarily
adopted.
[36] As a comparison, the technique of BMVA [Sonnerup

and Cahill, 1968], bMVA [e.g., Lepping et al., 1990;Gulisano
et al., 2007], and GS reconstruction [Hu and Sonnerup, 2002]
are also used (see section 1). For the GS reconstruction, the axis
orientation is the direction, for which the total transverse pres-
sure Pt versus magnetic potential function A displays minimum

scatter. Here Pt ¼ pþ B2
z

2m0

� �
, p is plasma pressure and B2

z
2m0

is

the axis component of magnetic pressure. Because the plasma
data are unavailable from both flux rope magnetic field models,

we can take Pt ¼ B2
z

2m0

� �
for the GS reconstruction of the L-L

model because the plasma pressure force is ignorable for
force-free field, but it cannot be done similarly for the non-
force-free E-Rmodel. For the E-Rmodel, based on the equilib-
rium equation r p= j�B=� {rB2

2m0
} + {[(B � r)B]/m0}, and

noticing that the gradient direction is radial, one can obtain

the plasma pressure as p ¼ �B2

2m0

� �
� R B2

’

rm0

� �
dr. Because the

explicit integral expression could not be found, the plasma
pressure needs to be numerically calculated for the GS recon-
struction application. The results yielded from these methods
for both models are arranged in Table 1. Evidently from Ta-
ble 1, being independent of S/C path in both models, our
method can consistently yield the correct axis orientation as
the model demanded. In contrast, being strongly dependent
on the S/C path, the axis orientations yielded by the technique
of BMVA, bMVA, and the GS reconstruction are unstable.
Particularly, either of the eigen directions L, M, and N
yielded by BMVA or bMVA is fairly close to the actual axis
orientation.
[37] Apart from the analysis of axis orientation, the impact

distance of the path at a given time can be found from equation
(9). Figure 5 shows the time series of inferred impact distance
of the three paths for both models. It is clear that the inferred
impact distance for a given path always keeps constant show-
ing good agreement with the known crossing conditions. One
should note that due to the singularity at the time of 10 s when
S/C are just in the innermost location, the data at that time have
been skipped, leading to a gap of impact distance found at that
time. Because the impact distance can be estimated accurately,
accordingly, the local radial distance and current density have

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

z=0

z=0

path 3

z=0

z=−2 R
E

path 2 

path 1

z=0

x(RE)

z=−2 R
E

y(
R

E
)

Figure 4. Three different S/C paths relative to the cylindri-
cal flux rope (red dashed lines) are shown on the projected
cross-section. Black circle is the projection of MFLs. RE is
the unit of Earth radius.
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been actually evaluated correctly via equations (12) and (13)
(not shown here) .
[38] It should be reminded that because the magnetic field

at the innermost location (y = 0) for the three paths is just
recorded, the direction of ê1 and n̂ can be found accurately.
If the data point at the innermost is not recorded (due to the data
resolution), then a minor deviation of tin would be read from
v̂�b̂ time series, and a deviation of ê1 would be obtained accord-
ingly. To minimize such deviation, we suggest using the

magnetic field data of higher-resolution if available or adopting
interpolation technique to yield the data of higher resolution.

4. Applications

[39] The core assumption of the new method is the cylin-
drical symmetry, which may be reasonable for interplanetary
flux rope but may not be an evident aspect of flux rope em-
bedding in current sheet, e.g., flux rope in magnetotail current

Table 1. Comparison of Axis Orientations Yielded From BMVA, GS Reconnection and Our Method

Method/ Model Path BMVA bMVA GS Reconstructiona Our Method

L-L 1 L (–1, 0, 0) L (1, 0, 0) ( –0.0872, 0, 0.9962) (0,0,1)
M (0, 0, 1) M (0, 0, 1)
N (0, 1, 0) N (0, –1, 0)

2 L (–1, 0, 0) L (–1, 0, 0) (–0.3420, 0, 0.9397) (0,0,1)
M (0, 0.2740,0.9617 ) M (0, 0.0767,0.9971 )
N (0, 0.9617, –0.2740) N (0,0.9971, –0.0767)

3 L (–1, 0, 0) L (–1, 0, 0) (–0.6428, 0, 0.7660) (0,0,1)
M (0, 0.5682, 0.8229) M (0,0.3376,0.9413)
N (0, 0.8229, –0.5682) N (0,0.9413,–0.3376)

E-R 1 L (0, 0, 1) L (1, 0, 0) (0.1548, 0.1624, 0.9745) (0,0,1)
M (1,0, 0) M (0, 0, 1)
N (0,–1, 0) N (0,–1, 0)

2 L (0, 0.8408, 0.5414) L (–1, 0, 0) (–0.1337, –0.4043, 0.9048) (0,0,1)
M (1, 0, 0) M (0, 0.5761, 0.8174)
N (0, 0.5414, –0.8408) N (0,0.8174,–0.5761)

3 L (0, 0.9996, 0.0281) L (0, –0.0972, 0.9953) (–0.0925, –0.1093, 0.9897) (0,0,1)
M (1, 0, 0) M (0, –0.9953, –0.0972)
N (0,0.0281, –0.9996) N (0, –0.0972, 0.9953)

aThe GS reconstruction is adopted as that described by Hu and Sonnerup [2002]. See text for the detail.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

Im
pa

ct
 d

is
ta

nc
e

Time (s)

L−L model

a

−1

−0.6

−0.2

0.2

0.6

1

path1

path2

path3

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

Im
pa

ct
 d

is
ta

nc
e

Time (s)

E−R model

b

−1

−0.6

−0.2

0.2

0.6

1

path1

path2

path3

Figure 5. The time series of calculated impact distance (left Y-axis, red symbols) and v̂�b̂ (right Y-axis,
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sheet or FTEs in magnetopause [Kivelson and Khurana,
1995]. The flux rope embedding in current sheet could be
“pinched off” by the external lobe field, and may be plausibly
described by an elliptical-like structure [e.g., Moldwin and
Hughes, 1991; Kivelson and Khurana, 1995]. Due to the in-
teraction with surrounding plasma, some studies demonstrate
that the magnetic structure of flux ropes or magnetic clouds
are of highly noncircular cross-sections [e.g., Mulligan and
Russell, 2001; Riley et al., 2004; Owens and Cargill, 2004;
Owens et al., 2006; Ugai, 2010]. Thus, the general structure
of actual flux rope is believed to be noncylindrical symmetry,
and it is unclear whether our method can be applied to the real
case. To check this issue, in this section, we will apply the
new method to an event of two successive FTEs, which were
detected by the four satellites of the Cluster mission during
the period of 07:00–07:10 UT on 8 March 2003. This event
has been investigated previously with techniques of the opti-
mal GS reconstruction [Sonnerup et al., 2004; Hasegawa et
al., 2006] and the least squares of Faraday’s law [Sonnerup
and Hasegawa, 2005].

[40] During this interval, the Cluster is approximately lo-
cated at [7.1, 2.5, 7.4] RE in GSE coordinates with spacecraft
separation about 5000 km. Figure 6 gives the overview of
the magnetic field [Balogh et al., 2001] and plasma flow data
[Reme et al., 2001] recorded by Cluster. The recorded inter-
vals for FTE1 and FTE2 are marked roughly by the vertical
black lines.
[41] The application requires the velocity of S/C relative

to flux rope to be known and the validity of the assumption
of quasi-stationary structure (@/@t= 0). Therefore, one has to
do the DeHoffmann-Teller (HT) analysis [Khrabrov and
Sonnerup, 1998]. Because the assumption of quasi-station-
ary can be checked by the HT analysis, the velocity vector
VHT of HT frame could be seen as the velocity of the flux
rope. The quality of HT frame can be indicated by the corre-
lation coefficient, c, between �VHT�B and � v�B (v is
the bulk plasma velocity), an acceptable quality of HT frame
empirically requires c ≥ 0.9. For this event with C1 HIA data
[Reme et al., 2001], Sonnerup and Hasegawa [2005]
showed that the HT analysis gives VHT1= (–226.6, 116.8,
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149.6) km/s for FTE1 (07:02:37 ~ 07:03:46, c = 0.9924) and
VHT2= (–211.4, 109.6, 151.2) km/s for FTE2 (07:07:22 ~
07:08:27, c= 0.9805) in GSE with high quality. Comparing
with VHT, the velocity of S/C in GSE is ignorable (~1 km/s),
thus the relative velocity of S/C to FTEs can be well seen as
V = –VHT. In contrast, from Figure 6, the lower plasma veloc-
ity, stronger magnetic field, and the less pulse-enhanced mag-
netic field variation of C3 suggest that C3 locates at the side of
magnetosphere and grazes FTEs. As a result, the inferred –
VHT of C3 measurement, being expectable to be much less
than that of C1 (Figure 6f), cannot be seen as the velocity of
the FTEs. The HIA data of C4 is unavailable during that inter-
val. For this reason, we may assume that the three Cluster S/C
are crossing the FTE with the same relative velocity, –VHT, as
that derived with only C1 data.

4.1. Determining the Innermost Location

[42] Accordingly to the procedures as summarized in sec-
tion 2.3, taking the measurement of C1 as an example, we
will check the time series of v̂�b̂ first for the FTE1. For the
test of the above flux rope cylindrical models, the time series
of v̂�b̂ only has one extremum, which corresponds to the in-
nermost location. However, for the crossings of true flux

rope, the yielded time series of v̂�b̂ may have multiple ex-
treme points, besides the one corresponding to the inner-
most. Evidently, as shown in Figure 7a, three extrema of
v̂�b̂ time series are present at the times A, B, and C, respec-
tively. Thus, one has to check the three extrema one-by-one
to find, which one corresponds to the innermost location. To
make the time series of v̂�b̂ more smooth, the technique of
spline interpolation is adopted (time resolution 0.2 s, thin
green line), so that b̂in could be estimated more accurately.
[43] To determine which extreme point corresponds to the

innermost location, one has to read the corresponding b̂in and
ê1 first from the interpolated data (0.2 s), and then take them
back to the original 4 s data set to find the corresponding axis
orientation. By the check of the projected b̂ on the cross-sec-
tion of the corresponding inferred axis orientation, the cor-
rected extreme point can be judged. The inferred results for
the three extremes are listed in Table 2, wherein the adopted
4 s data interval of FTE 1, with a length of 36 s, is centered at
each extreme point. Based on the inferred axis orientations
with our new method for the three extreme points, the projec-
tion of measured unit magnetic vector, b̂, on the cross-section
of the inferred axis orientations is correspondingly plotted on
Figure 8. From Figure 8 and Table 2, it is clear that the axis
orientation yielded from extreme B-point is reasonable,
which evidently shows the loop-like structure on the cross-
section with smallest residue error among the three points.
Thus, we argue that the time of B-point is likely the moment
when S/C is at the innermost location.
[44] From alternative perspective, the direction of field bi-

polar variation is along the direction of ê1, which is expected
to be consistent with the local magnetopause normal direc-
tion. With the MVA analysis of C1 magnetic field during
06:53:11–06:55:49, the local magnetopause normal given
by Sonnerup and Hasegawa [2005] is (0.6444, 0.2446,
0.7245) in GSE. The angles between the normal vector and
the inferred ê1 for the three extreme points A, B, and C, are
20.0�, 8.6�, and 32.1�, respectively, which implies the B-
point is more plausible to be the time when S/C are in the in-
nermost location.
[45] One should note that the time of B-point is around the

time of peak field strength (Figure 7a). Therefore, for flux
ropes, the extreme points of v̂�b̂ time series should be
checked preferentially around the time of B-peak.

4.2. Results of Inferred Axis Orientations

[46] With the same procedures as done for C1, the axis
orientations inferred from the other satellites measurements
are obtained accordingly for both FTEs. The yielded results
are listed in Table 3. However, with the C3 measurement
for both FTEs, the procedures failed to yield the reasonable
axis orientation for both FTEs, so the yielded results of C3
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Figure 7. The time series of v̂�b̂ (left Y-axis, black line)
and magnetic field strength (right Y-axis, red line) as mea-
sured by (a) C1 and (b) C3 for FTE1. For Figure 7a, the
more smooth time series of v̂�b̂ is also shown (thin green
line) with the technique of spline interpolation (0.2 s).

Table 2. The Inferred Axis Orientations, N̂, for the Three Extreme Points in GSE Coordinates

tin
a Intervalb b̂ in

c ê1
c N̂ c s2m (km2)

A: 07:03:07.0 07:02:49–07:03:25 (–0.4061, –0.3637, 0.8383) (0.6394, 0.5423, 0.5450) (0.0989, –0.7610, 0.6412) 1.1281 � 107
B: 07:03:14.0 07:02:56–07:03:32 (–0.5775, –0.6249, 0.5254) (0.5906, 0.1246, 0.7973) (–0.4296, –0.7878, 0.4413) 5.0788 � 105
C: 07:03:19.4 07:03:01–07:03:37 (–0.7979, –0.5497, 0.2474) (0.4401, –0.2507, 0.8623) (–0.7285, –0.6611, 0.1796) 8.9532 � 105

aThe time of the extreme points of v̂�b̂ time series.
bThe adopted interval is centered at the time of tin with length being 36 s.
cN̂ is the inferred axis orientations (see equation (10)). Vector components are given in GSE coordinates.
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are not listed in Table 3. Because the v̂�b̂ time series of C3 is
more flat (e.g., see Figure 7b for FTE1), and the impulse en-
hanced field strength is less than that of C1, C2, and C4 (see
Figure 6d), we infer that C3 may graze both FTEs, and mak-
ing the “outer” measurements, which is consistent with the
following magnetic vector projection on the cross-section
of inferred axis orientation (see Figure 9). As a comparison,
the results yielded by the optimal GS reconstruction and the
technique of Faraday’s law, as quoted from Sonnerup and
Hasegawa [2005], are also listed in Table 3. It is clear from
Table 3, with our method for both FTEs, that the yielded axis
orientations from the measurements of C1, C2, and C4 are
basically the same as that yielded from optimal GS recon-
struction and the technique of Faraday’s law. Meanwhile,
for measurements from each S/C, the yielded residue error
of the impact distance, sm, is evidently less than the average
impact distance, which means the assumption of cylindrical
symmetry is valid and acceptable for the crossings of C1,
C2, and C4.

4.3. Implications of Results

[47] Figure 9 shows the projection of unit magnetic vector,
b̂, measured by the four S/C in the path, on the cross-section
of each inferred axis orientation. Obviously, the loop-like
field structure on the cross-section can be reasonably found

via our single-point method for the measurements of C1,
C2, and C4, which demonstrates that our method is basically
reasonable and applicable. In contrast, our method fails for
the measurements of C3, which is just grazing the FTEs.
Therefore, at least for this case, it seems that the cylindrical
symmetry is still an acceptable assumption for the inner field
structure of flux rope (detected by C1, C2, and C4) as being
less affected by the external field.
[48] It should be cautioned that for both FTEs, although

the detected magnetic vector in the path can be well approx-
imated by the cylindrical symmetric structure seen along the
yielded axis orientation, one still cannot ensure that the
whole structure of flux rope has a cylindrical symmetry.
Two related aspects should be noted. First, because the
shape of Cluster tetrahedron can be assumed to be unvaried
during the transient FTE crossings, the yielded directions of
ê1 for all the S/C should be the same if the FTEs are of ideal
cylindrical symmetry. In contrast to FTE1, the yielded direc-
tions of ê1 from the three S/C for FTE2 are almost the same
(see Table 3), which implies that the structure of FTE2 is
closer to the cylindrical symmetry. Consistently, the yielded
axis orientations from the three S/C for FTE2 are more sim-
ilar than that of FTE1. Our results for FTE2 are also in good
agreement with the ones that are derived from the optimal
GS reconstruction and the technique of Faraday’s law.
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Figure 8. The projection of measured unit magnetic vector, b̂, on the cross-section of the inferred axis
orientation for the three corresponding extreme points A (left), B (middle), and C (right) shown in
Figure 7a.

Table 3. Comparison of Results From Different S/C With the New Method in GSE Coordinates

FTE1

S/C tin
a Intervalb ê1

c N̂c <r0>
(km)

sm
(km)

C1 07:03:14.0 07:02:56~07:03:32 (0.5906, 0.1246, 0.7973) (–0.4296, –0.7878, 0.4413) 1987 713
C2 07:02:56.6 07:02:38–07:03:14 (0.5673, 0.0475, 0.8222) (–0.6685, –0.5566, 0.4934) 665 587
C4 07:02:56.0 07:02:38–07:03:14 (0.6331, 0.3340, 0.6983) (–0.5441, –0.4496, 0.7084) 1914 1018

Multi-GSd - 07:02:37 ~ 07:03:46 (0.6186, 0.2439, 0.7467) (–0.4732, –0.6430, 0.6021) - -
Faraday law, C1d - 07:02:37 ~ 07:03:46 (0.6238, 0.2793,0.7299) (–0.4568, –0.6051, 0.6521) - -

FTE2
C1 07:07:51.2 07:07:33 ~ 07:08:09 (0.6453, 0.2477, 0.7227) (–0.3427, –0.7516, 0.5636) 1644 794
C2 07:07:32.6 07:07:14 ~ 07:07:50 (0.6459, 0.2513, 0.7209) (–0.2587, –0.8164,0.5164) 1941 906
C4 07:07:32.4 07:07:14 ~ 07:07:50 (0.6551, 0.3187, 0.6850) (–0.3298, –0.6951, 0.6388) 1692 1129

Multi-GSd - 07:07:22 ~ 07:08:27 (0.6488, 0.2695, 0.7117)d (–0.3296, –0.7434, 0.5820) - -
Faraday law, C1d - 07:07:22 ~ 07:08:27 (0.6404, 0.2237, 0.7348)d (–0.3698, –0.7212, 0.5857) - -

aThe time when S/C located in the innermost of FTEs.
bThe adopted interval is centered at the time of tin with length being 36 s.
cThe inferred axis orientations (see equation (10)). Vector components are given in GSE coordinates.
dThe results of both FTEs are quoted from Sonnerup and Hasegawa [2005], wherein ê1 ¼ N̂�V

N̂�Vj j, and V=–VHT.
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Second, not all the yielded axis orientations from the three S/
C are strictly reasonable. Taking Figure 9b for FTE1 as an
example, the spatial variation of C2’s magnetic vector indi-
cates that the axis is above (in the direction of ê1) the C2’s
path, whereas the variation of C1’s magnetic vector indi-
cates C1’s path is basically crossing the axis that is below
the C2’s path. The main reason might be that the structure
of FTE1 is not the ideal cylindrical symmetry. Therefore,
considering the complicated structure of actual flux rope,
the more accurate axis orientation should be self-consistently
yielded by the multipoint observation if the multipoint mea-
surements are available, and our method needs further update
for the multipoint measurements.

5. Summary and Discussion

[49] In this study, we present a new method to infer the
axis orientation of cylindrical flux rope based on single-
point analysis of magnetic field structure. The tests of two
classic cylindrical models demonstrate that our method
can consistently yield the axis orientation for any crossing
path comparable to the techniques of BMVA, bMVA, and

GS reconstruction. In addition, the method has the ability to
evaluate the local radial distance and the current density (see
equations (12)–(13)). The application to an event of two suc-
cessive FTEs demonstrates that the method is more appropri-
ate to be used for the inner part of the flux rope, which might
be closer to the cylindrical structure, but fails for the measure-
ment of the outer part/boundary field, as any other present
method. For further applications, several points should be
noted as follows:

1. Checking of v̂�b̂ time series is necessary. Generally, data
series obeys the order: external field-boundary/outer
field-inner field for entering into flux rope, and the re-
verse order for exiting from the flux rope. Because the
external field is generally uniform, the time series of
v̂�b̂ should be valley-like or peak-like (e.g., Figure 7).
Thus, by the check of v̂�b̂ time series, one could first
judge whether a detected magnetic structure belongs to
the flux rope category before the analysis. On the other
hand, if the multipoint measurements are available, for
the S/C crossing the inner part of flux rope, the yielded
v̂�b̂ time series is changing more significantly than that
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of S/C grazing flux rope (see Figure 7b). Thus, with com-
parison of multipoint measurements, the check of v̂�b̂
could also help to evaluate the distance of S/C to the axis
center roughly.

2. As we have shown in the applied study, for the actual
flux rope crossing, the time series of v̂�b̂ may have mul-
tiple extreme points. Therefore, one should be careful to
determine, which extreme point corresponds to the inner-
most location. The best way is to check these extreme
points one-by-one as we do for the C1 measurements of
FTE1. For flux ropes, the extreme points of v̂�b̂ around
the time of B-peak should be checked preferentially.
Moreover, for a flux rope embedded in a current sheet,
if the normal of current sheet is available, one may get
the quick judgment of the reliability of an extremum
point by comparing the direction of v̂ � b̂in to the
normal.

3. It should be reminded that our method tries to find an
axis orientation of flux rope, along which the detected
magnetic vector in the path can be well constructed by
a cylindrical symmetry structure. However, the actual
structure of flux rope is complicated and generally be-
lieved to have noncylindrical symmetry, thus it should
be applied with caution. The studied cases demonstrate
that, for the actual applications, the assumption of cylin-
drical symmetry might be acceptable for the inner field of
observed flux ropes, but violated for the outer/boundary
field.

4. With the minimum residue error sm, a dimensionless pa-
rameter |sm|/hr0i is constructed as an indicator for the
quality of cylindrical symmetry assumption. The smaller
the parameter, the better is the assumption of cylindrical
symmetry.

5. Due to interaction with surrounding plasma, the field
structure near boundaries of flux ropes may deviate from
the cylindrical structure evidently. Using our method, the
boundaries of flux ropes can be also evaluated. Because
the impact distance r0i can be derived from equation
(5), if the studied interval including boundaries, a sys-
tematic trend near the boundary is to be expected in r0i
when plotted versus time. In the same way, if the flux
rope is significantly noncircular, a systematic trend is
also to be expected in r0i versus time inside the flux rope
region. Then plotting r0i versus time looks to be impor-
tant to control both the locations of the boundaries and
the circularity of the analyzed event. If r0i versus time
shows a significant trend near a boundary, the time inter-
val can be accordingly reduced, then s2 minimized
again, then r0i versus time checked again. In the reverse
way, the time interval can be increased up to the detec-
tion of a trend near the boundaries. Therefore, with a
very limited number of iterations, the flux rope region
can be determined from our method. Then, the deduced
boundaries can be compared to traditional ways of deter-
mining them.

6. When S/C is nearly passing orthogonally to the flux rope,
e.g., along Y-axis with impact distance, x (see path 3 in
Figure 3), if b⊥ has an almost linear dependence with
the radial distance, r, in the path, then we would have

v̂�b̂ ¼ vyb⊥
x

r
, which almost keeps constant. Therefore,

it would be not so easy to find tin by checking the rather

flat time series v̂�b̂. Therefore, our method would fail for
such special case. Nonetheless, such case is special, and
so unlikely to occur.

7. Wemay generalize the axis orientation in equations (4)–(9)
as a function of two independent variable angles, i.e.,
n̂ θ1; θ2ð Þ . Considering the neighboring measurements,
the impact distance at time ti can also be evaluated from

equation (5) as r0i ¼ Liþ1 � Li
tanfiþ1 � tanfi

� V⊥Δt
Δfi

where,

Δt is the neighboring interval, Δf is the angle between

the neighboring b⊥. Therefore, a residue equation as a
function of θ1, θ2 can be constructed accordingly. Then,
through numerical adjustment of n̂ θ1; θ2ð Þ making res-
idue function s2(θ1,θ2) minimum, the final axis orienta-
tion can be found. Although the v̂�b̂ extremum can be
avoided to be read from the much flat series, much
more calculation would be involved in the generaliza-
tion. The generalization needs to be detailed more in
future studies.

8. It should be noted that when the S/C is crossing a flux
rope of strictly elliptical cross-section along its semi-ma-
jor or semi-minor axis directions, our method still has the
ability to yield a consistent axis orientation. Given a
strictly elliptical flux rope whose cross-section satisfying
x2

a2
þ y2

b2
= 1, S/C is crossing the flux rope with trajectory

projected in x-y plane being along the x-direction. The
detected perpendicular magnetic vector b̂i⊥ at time ti con-

tains bix and biy components. If we take X= x, Y=
a

b
y,

the elliptic flux rope can be transformed to be a cylin-

drical type, and biX= bix, biY=
a

b
biy. The term tanfi in

equation (5), thus, becomes tanfi=
biy
bix

=
b

a

biy
bix

=
b

a
tanΦi,

and the impact distance can be derived as r0i=
a

b

Li
tanΦi

Because the term
Li

tanΦi
is actually the impact distance

for the transformed cylindrical type, the obtained time series
of impact distance r0i for the elliptical flue rope should keep
constant, which guarantees the validity of our method.

9. Finally, the assessment of the method accuracy needs fur-
ther analysis before applying it broadly to observations,
although the application to an event of both FTEs demon-
strates that our method is reasonable and applicable.
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