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Abstract Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH)
waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration.
In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences
of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence
for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency
interactions produced the ECH sidebands with discrete frequency sweeping structures exactly
corresponding to the chorus rising tones. The newly generated weak sidebands did not satisfy the original
electrostatic wave dispersion relation. After the generation of chorus and normal ECH waves by hot
electron instabilities, the nonlinear wave-wave interactions could additionally redistribute energy among
the resonant waves, potentially affecting to some extent the magnetospheric electron dynamics.

Plain Language Summary Whistler-mode chorus and electron cyclotron harmonic emissions
are two distinct magnetospheric waves responsible for auroral electron precipitation and radiation belt
electron acceleration. How these magnetospheric waves are generated has remained an outstanding
question. They were usually explained as a result of linear and nonlinear wave-particle interactions
in early studies. By analyzing the high-resolution data of Van Allen Probes, we present here the first
evidence for nonlinear coupling between chorus and electron cyclotron harmonic emissions. Such
nonlinear wave-wave interactions could transfer energy among the resonant waves and affect the
magnetospheric electron dynamics. This new finding will be of high interest to the communities of space
plasma physics and magnetospheric physics.

1. Introduction

Whistler-mode chorus and electron cyclotron harmonic (ECH) waves are frequently observed outside the
plasmapause in the magnetosphere (Helliwell, 1967; Horne et al., 1981; Kennel & Petschek, 1966; Meredith
et al., 2009; Ni et al., 2011). Chorus is a right-hand polarized electromagnetic emission below the equatorial
electron gyrofrequency fce and often appears as a series of discrete elements (e.g., risers, fallers, hooks, and
oscillating tones) or a structureless hiss-like band in the high-resolution frequency-time spectrogram (Burtis
& Helliwell, 1976; Gao et al., 2017; Santolík, Gurnett, Pickett, et al., 2003; Tsurutani & Smith, 1974). In contrast,
ECH is an electrostatic emission observed as a series of harmonic bands centered around (n+1∕2)fce (Fredricks
& Scarf, 1973; Gurnett et al., 1979; Kennel et al., 1970). Both chorus and ECH waves contribute to diffuse or pul-
sating auroral electron (∼keV) precipitation (Horne et al., 2003; Lyons, 1974; Nishimura et al., 2010; Su et al.,
2009, 2010; Thorne et al., 2010). Auroral electron precipitation can affect the ionospheric conductivity and
the global magnetospheric convection pattern (Kan & Akasofu, 1989). Chorus waves are also able to accel-
erate radiation belt relativistic (∼MeV) electrons (Horne & Thorne, 1998; Mourenas et al., 2012; Shprits et al.,
2006; Su et al., 2014; Summers et al., 1998; Thorne et al., 2013), which pose a significant hazard to spaceborne
systems. It is clearly important to understand the generation processes of both chorus and ECH waves.
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Figure 1. Space environment overview on 16 November 2014: (a) geomagnetic activity indices AE and SYM-H; (b) wave
electric power spectral densities PE; (c) wave magnetic power spectral densities PB; and (d) electron differential fluxes j.
In Figures 1b and 1c, the dotted lines represent 0.1fce, 0.5fce, fce, 2fce, and 3fce, respectively. In Figures 1b–1d, the
vertical dashed lines mark the plasmapause locations.

Chorus and ECH waves are each thought to be excited by the loss cone instability or the temperature
anisotropy instability associated with substorm-injected hot electrons (Ashour-Abdalla & Kennel, 1978; Horne
et al., 2003; Li et al., 2009; Tsurutani & Smith, 1977). Linear instability theory has successfully explained the
frequency distribution of chorus and ECH waves (Burtis & Helliwell, 1975; Horne & Thorne, 2000; Su et al.,
2014). To account for the finer structures of chorus, such as the frequency sweeping of chorus elements and
the gap between upper and lower chorus bands around 0.5 fce, various nonlinear theories have been pro-
posed (Fu et al., 2015; Nunn et al., 1997; Omura et al., 2008; Omura & Nunn, 2011). However, the chorus and
ECH instabilities are widely treated as two independent wave-particle interaction processes, although their
free energies are actually provided by roughly the same electron population near the magnetic equator. In
this letter, by analyzing Van Allen Probes data (Mauk et al., 2013), we present the first evidence for nonlinear
coupling between chorus and ECH waves in the magnetosphere.

2. Data and Methods

The twin-satellite Van Allen Probes mission was launched on 30 August 2012, with the primary objective
of understanding the fundamental physics of the Van Allen radiation belts (Mauk et al., 2013). The Electric
and Magnetic Field Instrument Suite and Integrated Science (Kletzing et al., 2013) suite on this mission pro-
vides the wave power spectral densities in survey mode, the continuous-burst mode waveforms, and the
background magnetic fields. Each waveform data block consists of the electromagnetic components in the
nominal science payload coordinate system (with W axis along the spin axis of the satellite and U and V axes
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Figure 2. High-resolution power distributions and propagation and polarization characteristics of magnetospheric waves: (a and b) electromagnetic power
spectral densities PB and PE, (c) wave normal angles 𝜃, (d) magnetic ellipticities EB, and (e) signs SB of Poynting fluxes parallel to background magnetic filed. The
dotted lines represent 0.1fce, 0.5fce, fce, 2fce, and 3fce.

in the spin plane) and covers a time interval of approximately 6 s with a 35-kHz sampling rate. To obtain the
high-resolution wave spectral matrices, we apply a 1,024-point fast Fourier transform on these waveforms.
From the cross-power spectra between electric and magnetic components, we calculate the wave Poynting
fluxes (Santolík et al., 2010). Using the singular value decomposition technique (Santolík, Parrot, & Lefeuvre,
2003) on the spectral matrices, we estimate the wave normal angles and then determine the magnetic polar-
izations in the planes perpendicular to the wave vectors. Because of the short length of the axial electric field
antenna and the strong antenna sheath impedance (Hartley et al., 2016, 2017), the electric components along
the spin axis are experimentally underestimated by even up to 1 order of magnitude in the plasmatrough,
and the wave electric polarization information is reliable only in the spin plane. To isolate the signals of dif-
ferent waves, we filter the waveforms in the frequency domain. We adopt the TS04 package (Tsyganenko &
Sitnov, 2005) to model the ratios between electron gyrofrequencies at the equator and at the probe and then
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Figure 3. High-resolution waveforms and polarization characteristics of magnetospheric waves in the nominal science
payload coordinate system: (a) original magnetic waveforms BU, V, W; (b–f ) original and filtered electric waveforms
EU, V, W; (g and h) electric polarizations of chorus, normal ECH, and newly generated sidebands in the spin plane during
the time period marked by the shadow. In Figure 3h, the electric components of upper and lower sidebands have been
multiplied by 3 and 2, respectively.

normalize the wave frequencies to the equatorial electron gyrofrequencies. The Helium, Oxygen, Proton, and
Electron Mass Spectrometer (Funsten et al., 2013) and the Magnetic Electron Ion Spectrometer (Blake et al.,
2013) of the Energetic Particle, Composition, and Thermal Plasma Suite (Spence et al., 2013) can measure the
electron fluxes at energies 1.5 eV–3.8 MeV.

3. Observations

The geospace environment on 16 November 2014 is shown in Figure 1. There were a moderate storm (SYM–H
minimum of -51 nT) and some strong substorms (AE maximum of 1,200 nT). Before 09:50 UT and after 16:45 UT,
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Figure 4. Correlation between chorus and ECH sidebands: (a) wave electric power spectral densities PE with black lines for resonant wave frequencies f c, f e, and
f s±; (b–d) wave amplitudes ΔE of chorus (black) and ECH sidebands (blue for upper sideband and red for lower sideband) at three harmonics, with their
correlation coefficients listed at the upper right corners.

Probe B was located in the plasmasphere and observed plasmaspheric hiss in the frequency range of
0.1–1.0 kHz. In the remained time period, corresponding to the enhancement of hot electron fluxes outside
the plasmapause, Probe B detected intense chorus (< fce) and ECH (> fce) waves. The chorus emission exhib-
ited a clear gap of wave power minimum around 0.5fce. For the ECH emission, its first three harmonic bands
were quite clear, with power peaking around the magnetic equator (12:30–13:10 UT).

Figures 2 and 3 display the high-resolution properties of magnetospheric waves around 12:39:30 UT. In the
frequency-time spectrograms, the electrostatic and electromagnetic waves were obviously separated by fce.
The electromagnetic chorus waves propagated quasi-parallel to the background magnetic fields with the
right-hand circular magnetic polarizations in the planes perpendicular to the wave vectors. The chorus power
was distributed primarily in the lower band (< 0.5fce) comprising successive and intense rising tones (PB ∼
10−3nT2 ⋅ Hz−1 and PE ∼ 10−1mV2 ⋅ m−2 ⋅ Hz−1). The electrostatic ECH emissions were composed of normal
structureless harmonic bands around (n+1∕2)fce and unusual fishbone-like sidebands with clear rising/falling
tones. In contrast to the magnetic signals with sinusoidal waveforms, the original electric signals exhibited
nonsinusoidal superpositions of several frequency components. In the spin plane, the filtered electric fields of
the normal ECH and its sidebands at the first harmonic were linearly polarized along the approximately same
direction, essentially different from the elliptical polarization of the filtered chorus electric fields. At higher
harmonics, the weak electric signals were highly polluted with noise, and their polarization information was
not sufficiently clear.

Figure 4 shows the wave electric power spectrogram and the amplitudes of the lower band chorus and the
ECH sidebands. The chorus peak amplitudes were about 0.01 Vm−1, 10–100 times larger than those of the
ECH sidebands. There was an obvious one-to-one correlation between the discrete structures of the chorus
and the ECH sidebands. At the first harmonic, the correlation coefficients between the ECH sidebands and
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Figure 5. Dispersion relations for chorus (𝜃 = 0∘) and ECH (𝜃 = 90∘), with
shadows denoting the resonant waves. The wave frequency f and the wave
number k are normalized to the electron gyrofrequency fce and the
gyroradius 𝜌e of the cold (Te = 1 eV) electrons. According to Van Allen
Probes observations, the ratio of electron plasma frequency fpe to electron
gryofrequency fce is set to be fpe∕fce = 7.

the lower band chorus reach 0.87. At the other two harmonics, prob-
ably because of the noise pollution of the weak ECH sideband signals,
the obtained correlation coefficients decrease slightly to 0.71–0.76. These
observations strongly imply the action of nonlinear coupling between
chorus and ECH waves (e.g., Davidson, 1972; Sagdeev & Galeev, 1969).

The three-wave resonance conditions can be expressed as (e.g., Davidson,
1972; Sagdeev & Galeev, 1969)

f s± = f e ± f c, (1)

ks± = ke ± kc, (2)

where f and k represent the wave frequencies and wave vectors and their
superscripts c, e, s+, and s−denote chorus, ECH, and upper and lower side-
bands, respectively. In Figure 4a, we examine the resonance condition for
wave frequencies at the first harmonic where the intense sideband signals
are conducive to the identification of the frequency-sweeping structures.
At every time point, f e is specified as the power-weighted center frequency
for the normal structureless ECH band, and f c is determined as the peak
power frequency for the lower band chorus. The obtained frequencies
f s± = f e ± f c are found to well characterize the frequency profiles of
the ECH sidebands. Unfortunately, the single point observations do not
allow the calculation of wave vectors. In Figure 5, we plot the linear dis-
persion relations for the parallel-propagating chorus (Stix, 1992) and the
perpendicular-propagating ECH waves (Davidson, 1972). Such dispersion

relations are generally consistent with those obtained from the HOTRAY code for a hot plasma (Horne, 1989;
Horne & Thorne, 2000). Clearly, the wave numbers of ECH are about 2–3 orders of magnitude lager than those
of chorus. The degenerated resonance condition for wave vectors ks± = ke±kc ≈ ke appears to be supported
by the wave electric polarization characteristics (Figure 3h) since the electrostatic wave vectors are always
parallel to the electric perturbations. For the linear electrostatic waves with frequencies f s±, the normalized
wave numbers k𝜌e range from 0.4 to 12. The newly obtained waves with frequencies f s± but nearly constant
wave numbers k𝜌e = 1.6 do not obey the original dispersion relation. As suggested by Hasegawa (1975), the
nonlinear wave-wave interactions do not necessarily produce waves following the linear dispersion relation.

4. Discussion

Nonlinear wave-wave interaction (Craik & Adam, 1978; Franklin et al., 1975; Hruska, 1975) is a common phe-
nomenon in the nonlinear media (e.g., radio-frequency electrical circuits, nonlinear optics, fluid mechanics,
and plasma physics). Early studies had proposed the nonlinear wave-wave interaction process to explain the
solar Type III radio bursts (Bardwell & Goldman, 1976; Lin et al., 1986) and the sidebands of ionospheric VLF
transmitters (Park, 1981; Trakhtengerts & Hayakawa, 1993). Recently, there has been a resurgence of interest
in the nonlinear wave-wave interactions within the magnetosphere. Three-wave resonances are invoked to
explain the multibanded or highly oblique whistler waves (Agapitov et al., 2018; Fu et al., 2017; Gao et al.,
2016; Teng et al., 2018; Vasko et al., 2018) and the magnetosonic harmonic falling/rising frequency waves (Liu
et al., 2018). Here we present the first evidence for the nonlinear coupling between chorus and ECH waves
and highlight the energy redistribution among the resonant waves. Initially, loss cone instability and tem-
perature anisotropy instability of hot electrons provide the source energy of chorus and normal ECH waves.
Under the condition of conservation of energy, the subsequent wave power variations ΔP should obey the
Manley-Rowe relations (Manley & Rowe, 1956):

−ΔPs+∕f s+ = ΔPe∕f e = ΔPc∕f c (3)

during the sum-frequency interaction and

−ΔPs-∕f s- = ΔPe∕f e = −ΔPc∕f c (4)
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during the difference-frequency interaction. Substituting (1) into (3) and (4), we can easily verify the conser-
vation of energy ΔPs± + ΔPe + ΔPc = 0. From (3) and (4), we find the net changes in the chorus and ECH
wave power are given, respectively, by

ΔPc = f c(ΔPs-∕f s- − ΔPs+∕f s+), (5)

ΔPe = −f e(ΔPs+∕f s+ + ΔPs-∕f s-). (6)

Under the condition of ΔPs- = ΔPs+ > 0 (Figure 4), equations (5) and (6) imply a net energy transfer from the
normal ECH bands to the discrete structures of the ECH sidebands and the lower band chorus. Even slightly
enhanced chorus waves are favorable for auroral electron precipitation and radiation belt electron accelera-
tion. According to the Doppler-shifted Nth-order resonance condition, the electron resonant parallel velocity
can be expressed as (e.g., Horne & Thorne, 2000)

v∥ =
2𝜋(f − Nfce)

k∥
. (7)

Note that both normal ECH and its sidebands probably have a small parallel wave number k∥ (Ashour-Abdalla
& Kennel, 1978). Compared to the normal ECH, the ECH sidebands have frequencies closer to the electron
gyrofrequency harmonics and likely interact with electrons at lower energies. However, because the trans-
ferred energy among the resonant waves appears to be only a small proportion of the initial energy of chorus
and normal ECH waves from the hot electron instabilities (Figure 4), these additional effects of the nonlinear
wave-wave interactions on the magnetospheric electrons may be limited.

5. Summary

Chorus and ECH and are two important magnetospheric wave modes (e.g., Artemyev et al., 2013; Kasahara
et al., 2018; Ni et al., 2017; Reeves et al., 2013; Thorne et al., 2013, 2010). Different from the normal structure-
less ECH bands, upper and lower sidebands of ECH consisting of discrete frequency-sweeping structures were
observed to occur near the magnetic equator. These discrete structures of ECH sidebands exhibited a clear
one-to-one correlation with the rising tones of lower band chorus. Quantitatively, the correlation coefficients
between the electric amplitudes of lower band chorus and ECH sidebands were 0.71–0.87. For the first time,
these observations demonstrate nonlinear coupling between chorus and ECH waves in the magnetosphere.
The sum-frequency and difference-frequency interactions produced the upper and lower sidebands of ECH,
respectively. These newly generated weak sidebands did not satisfy the original dispersion relation for elec-
trostatic waves. After the generation of chorus and normal ECH waves by the loss cone instability and the
temperature anisotropy instability associated with substorm-injected hot electrons, the nonlinear wave-wave
interactions could additionally redistribute energy among the resonant waves, thereby potentially affecting
to some extent the magnetospheric electron dynamics.
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