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Abstract

Deflection of coronal mass ejections (CMEs) in the interplanetary space, especially in the ecliptic plane, serves as an
important factor deciding whether CMEs arrive at the Earth. Observational studies have shown evidence for
deflection, whose detailed dynamic processes, however, remain obscure. Here we developed a 2.5D ideal
magnetohydrodynamic simulation to study the propagation of CMEs traveling with different speeds in the
heliospheric equatorial plane. The simulation confirms the existence of the CME deflection in the interplanetary
space, which is related to the difference between the CME speed (vr) and the solar wind speed (vsw): a CME will
propagate radially as vr is close to vsw but eastward or westward when vr is larger or smaller than vsw; the greater
the difference is, the larger the deflection angle will be. This result supports the model for CME deflection in
the interplanetary space (DIPS) proposed by Wang et al., predicting that an isolated CME can be deflected due to the
pileup of solar wind plasma ahead of or behind the CME. Furthermore, the deflection angles, which are derived by
inputting vr and vsw from the simulation into the DIPS model, are found to be consistent with those in the simulation.
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1. Introduction

The arrival of coronal mass ejections (CMEs) at the Earth plays
an important role for the geospace environment, since CMEs carry
a huge amount of mass, magnetic flux, and energy, and are
capable of producing geomagnetic storms (Gosling et al. 1990;
Srivastava & Venkatakrishnan 2004) and other hazardous space
weather phenomena. It was once thought that CMEs, originating
from solar source regions facing the Earth, would propagate along
the Sun–Earth line (Howard et al. 1982) and then hit the Earth.
However, only 65%–80% of these types of CMEs were found to
finally arrive at the Earth (Wang et al. 2002; Yermolaev &
Yermolaev 2006, and references therein). On the contrary, the
Earth-encountered limb CMEs also exist (Webb et al. 2000;
Zhang et al. 2003; Cid et al. 2012; Wang et al. 2014, 2016). The
CME deflection in the corona and interplanetary space serves as a
promising reason for those arrival variations.

One cause of the CME deflections is the CME–CME
interaction (Lugaz et al. 2012, 2017; Shen et al. 2012, 2017),
associated with a deflection angle of 10° or even larger. A single
CME is also believed to be possibly deflected by background
solar wind and magnetic field. In the corona where the magnetic
field is dominant, the CME deflection caused by the asymmetric
distribution of the background magnetic field has been widely
studied (e.g., Cremades & Bothmer 2004; Lugaz et al. 2011;
Wang et al. 2011; Zuccarello et al. 2012; DeForest et al. 2013;
Kay et al. 2013; Zhou & Feng 2013; Möstl et al. 2015; Capannolo
et al. 2017). For example, Gui et al. (2011) and Shen et al. (2011)
found that a CME could be deflected due to the gradient of the
corona magnetic energy density by more than 20°. However,
whether or not an isolated CME can be deflected in the
interplanetary space, where the solar wind becomes dominant
and the magnetic fields decrease with distance, is still under

debate. Several studies have reported the cases of CMEs
experiencing such deflection by combining coronagraph and
in situ observations (Wang et al. 2006, 2014; Lugaz 2010; Wang
et al. 2016). To describe how a CME is deflected in the
interplantary space and ecliptic plane, Wang et al. (2004, 2014)
proposed a model for CME deflection in the interplanetary space
(DIPS), predicting that a CME traveling faster or slower than the
ambient solar wind will be deflected toward the east or west due
to the pileup of solar wind plasma ahead of or behind the CME.
Based on this model, two CME events with anomalous
geoeffectiveness were studied. First is a slow CME on 2008
September 13, originating from the east limb of the solar disk. It
was found to be deflected by more than 20° toward the west in the
interplanetary space, enhancing the probability of the CME
encountering the Earth (Wang et al. 2014). Second is the
unexpected and largest geomagnetic storm in solar cycle 24,
referred to as the 2015 St. Patrick’s Day event, caused by a CME
that was initially west-oriented and then deflected toward the
Earth, increasing its geoeffectiveness (Wang et al. 2016).
Furthermore, Zhuang et al. (2017) developed an automated
CME arrival forecasting system with the DIPS model incorpo-
rated, and found that the success rate of the CME arrival
predictions is about 82% with deflection considered, which is
19% higher than that without deflection. These results indicate the
importance of CME deflections in space weather research.
The understanding of the CME propagation has been largely

improved by the development of magnetohydrodynamic
(MHD) simulation techniques (e.g., Vandas et al. 1996;
Riley et al. 2003; Manchester et al. 2004a; Wu et al. 2007; Xiong
et al. 2007; Shiota et al. 2010; Lugaz et al. 2011; Zuccarello et al.
2012; Shen et al. 2013, 2014; Zhou & Feng 2013; Shiota &
Kataoka 2016; Zhou & Feng 2017). Among these studies, some
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focused on the CME deflection near the Sun or in the
heliospheric meridional plane. For example, Zhou & Feng
(2017) used a three-dimensional (3D) MHD simulation to show
that CMEs tend to be deflected toward the heliospheric current
sheet (HCS) in the latitudinal direction near the Sun and then
propagate almost parallel to the HCS in the interplanetary space.
As for the CME deflection in the ecliptic plane, Vandas et al.
(1996) found that a CME could be deflected to the side where it
meets the external interplanetary magnetic field polarity that is
opposite to the field of itself. This deflection is probably due to
the reconnection between the magnetic field lines of the CME
and background. Shiota & Kataoka (2016) simulated the
interplanetary propagation of multiple CMEs and found that
one was strongly deflected by the inhomogeneity of the
background solar wind, and this inhomogeneity was caused by
the preceding eruption. Recently, Török et al. (2018) developed a
Sun-to-Earth MHD simulation to study the 2000 July 14 “Bastille
Day” eruption and the found that the corresponding CME
experienced no significant deflection of the trajectory in the
longitudinal direction. They suggested that this phenomenon may
be because (1) a fast CME should be less susceptible to deflection
than a slow one, or (2) there existed a suppression of a significant
pileup of flux by continuous reconnection between the CME and
the interplanetary magnetic field. Although these studies have
exposed the (non)deflection of CMEs to some extent, there is still
a lack of knowledge about how a single CME is deflected only
by the background solar wind. Besides, could the potential
deflection of a slow or fast CME be similar to that suggested by
the DIPS model? Our work will focus on these questions.

In this work, we study the CME propagation by developing a
2.5D ideal MHD simulation of the flux rope/solar wind system
in the heliospheric equatorial plane. The simulation is based on
the following two considerations. First, CMEs are believed to
have a flux rope topology (Chen et al. 1997; Dere et al. 1999;
Forbes 2000; Chen & Krall 2003; Vourlidas et al. 2013), and
the model of flux rope driven CME was successfully used in
some simulation studies (e.g., Manchester et al. 2004a, 2004b;
Chané et al. 2006; Shiota et al. 2010). Second, a 2.5D MHD
simulation instead of a 3D one is simple and effective when we
only consider the deflection of CMEs in the equatorial plane.
The organization of this paper is as follows. We give a brief
description about the MHD equations in Section 2. The
simulation method and the corresponding results are introduced
in Section 3. In Section 4, we compare our simulated results
with the predictions estimated by the DIPS model. We provide
our conclusions and discussions in Section 5.

2. MHD Equations in the Heliospheric Equatorial Plane

We take spherical coordinate (r, θ, f) and consider 2.5D
( 0=
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) problems in the heliospheric equatorial plane (θ=π/
2). The 2.5D ideal MHD equations are given as follows:
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where ρ, v, T, and B represent density, flow velocity,
temperature, and magnetic field, respectively. R is the gas
constant, μ0 is the magnetic permeability of free space, G is
the gravitational constant, Ms is the mass of the Sun, and γ is
the polytropic index that is set to be 1.05, aimed at adding an
extraneous heating of the solar corona and necessary for
supersonic solar wind solutions.
We perform our simulation in the frame that corotates with

the Sun. The flow velocity in this frame (u) can be written as
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where Ω=2.865×10−6 radian s−1 serves as the self-rotation
speed of the Sun. Note that vf of the solar wind is very small of
a few km s−1, compared to vr and vθ. To derive a better
precision of the flow speed in the f direction, u is replaced by v
in the simulation. The corresponding MHD equations are then
modified by adding the terms of (−Ω∂U/∂f) on the left sides
of Equations (1)–(4), where U=(ρ, vr, vθ, vf, ψ, Bθ, T) and ψ

is the magnetic flux function. B can be expressed by
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Finally, we arrive at the equations in the r and f directions as:
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We take the density of ρ0=2.505×10−13 kg m−3, the
temperature of T0=1×106 K, and the solar radius of
Rs=6.965×108 m as the basic units. Other numerical units
are derived as follows:
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3. Simulation Method and Results of the Flux Rope System

The above MHD equations are solved by the multistep
implicit scheme (Hu 1989). Here we give a brief description
about this scheme in the Appendix. We set the computational
domain as 1�r�305, 0�f�π, discretized into 215×92
grid points. The grid spacing along the radial direction is set to
be uniform, 0.625 in between r=10 and 30, 3 in between
r=140 and 305, and increases according to a geometric series
of a common ratio 1.0689 in between r=1 and 10 and 1.0207
in between r=30 and 140. A uniform mesh is adopted in the
f direction. ρ, vr, vθ, vf, Bθ, and T at f=0° share the same
values as those at f=180°, but the values of ψ on the left and
right sides of the domain are opposite. The simulation is
processed by the following sequences: (1) a solar wind
background with a fully open magnetic field is constructed;
(2) a flux rope is introduced; (3) the eruption of flux rope is
triggered by the catastrophe of the system; (4) the speed of the
rope is adjusted during its propagation. In this work, the CME
structure is characterized only by the flux rope, though
DeForest et al. (2013) used the term “CME” including not
only the flux rope, but also the surrounding sheath material and
any other solar wind or coronal material entrained en route.

3.1. Construction of the Solar Wind Background

Previous works have studied the flux rope system in the solar
wind background with partly open magnetic field in the
heliospheric meridional plane (Hu et al. 2003; Sun & Hu 2005;
Chen et al. 2007). Shifting to the equatorial plane, a fully open
magnetic field for studying the propagation of the flux rope can
be obtained by modifying the related ψ to open up all the
closed magnetic field lines. At the base, the density and

temperature are set to be 1 and 1.5, respectively. The
distribution of ψ(t, 1, f) is equal to ψt sin(f)/2, where ψt≡
π (215 Rs)

2BrE=2.325×1014 Wb=6.643ψ0, and BrE=
3.3×10−9 T indicating the initial magnetic field strength at
the distance of 1 au. At the top, we apply the linear
extropolation to all the quantities. Figure 1 shows the magnetic
structure of the steady solar wind solution in the frame
corotating with the Sun. The solid white lines depict the
magnetic field lines and the arrows indicate the related field
directions. Spiral magnetic field structure in the interplanetary
space can be seen. The field lines going upward from and
downward to the solar surface form the fully open field. The
density and flow velocity magnitude of the solar wind plasma,
shown in false color, are found to be larger and smaller in the
region embedded with the magnetic field with opposite
directions (clearly seen at lower distance), respectively.

3.2. Eruption of the Flux Rope Driven CME

After constructing the solar wind background, a flux rope is
then introduced into the system with given (Φp, Φz, M) of the
rope, where Φp is the poloidal magnetic flux per unit radian, Φz

is axial magnetic flux, andM is the mass per unit radian. We set
(Φp, Φz, M)=(0.5, 0.3, 0.5). One can refer to Hu et al. (2003)
to find the method of introducing a flux rope. The rope is
attached to the solar surface and centered at f=90° initially,
as shown in Figure 2. The region of the flux rope is determined
by ψ�ψt /2=3.322ψ0. The magnetic field on the left and
right sides of the rope shares the same upward and downward
directions with the background magnetic field. The mass inside
the flux rope is distributed in the rope lower part due to the
gravity, and the rope forms an oval-shape, which is different
from the circular shape with overlying arcade on the rope top as
shown in Hu et al. (2003).
In this work, the eruption of the flux rope is triggered by the

catastrophe. The catastrophe of the flux rope system has been
widely studied (e.g., Hu 2001; Hu et al. 2003; Sun & Hu 2005;
Zhang et al. 2017; Zhuang et al. 2018), giving that the increase
in Φp and Φz or the decrease in M of the rope can lead to the
catastrophe and the sudden release of the rope. We increase Φp

to 0.9 for triggering the catastrophe. During the rope propaga-
tion, Φp, Φz and M are maintained as constants and magnetic
reconnection is prohibited. These adjustments make sense for
our study because we focus on the characteristics of the rope
propagation. In reality, the rope may experience an erosion
process (e.g., Dasso et al. 2006; Ruffenach et al. 2012, 2015;
Wang et al. 2018) through the magnetic reconnection with the
ambient solar wind (Gosling 2012), causing the erosion of the
magnetic flux. Figure 3 shows the propagation of the flux rope in
the interplanetary space in the laboratory frame. We use t=0 to
indicate the condition when the flux rope just starts to erupt. We
can see that the eruption results in (1) an envelope composed of
interplanetary magnetic field draping around the rope and (2) a
large sheath ahead of the rope indicated by the region with larger
velocity magnitude. This rope propagates at a speed close to the
ambient solar wind speed. We find that the rope experiences no
significant deflection during its propagation. However, the front
part and the tail part of the rope are found to be stretched to the
east and west, respectively, which may be caused by the
interaction with the background.
Figure 4(a) plots the variations of the longitudes of the front,

the axis (defined by the maximum ψ inside the rope), and the
mass center of the flux rope along the front radial distance.
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Note that here the front is defined by the uppermost closed field
line of the rope along the Sun-axis line so as to avoid the
stretched rope region, making the symbols of the front and axis
overlapped with each other. The mass center (rc, fc) is
calculated by
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Here (ri, fi) shows the position of a grid inside the rope in the
laboratory frame, dri=(ri+1−ri−1)/2, and df=0.035 radian,

which is the grid spacing in the f direction. We focus on the
results when the rope is within 1 au, referring to the CME Earth
arrival. This figure shows that the rope holds a nearly radial
propagation in the interplanetary space though it is deflected to
the west slightly at first. Due to the simulation grid spacing in the
f direction, the axis in reality may not be solely located at the
grid border. Thus, there exists an uncertainty of �2° in locating
the corresponding longitude, causing the variation of the green
diamonds. Figure 4(b) gives the profiles of the traveling speeds
of the rope front, axis and mass center in the radial direction,
accompanied with the radial flow speed of the solar wind
medium 10Rs ahead of the rope. We can see that the flux rope is
impulsively accelerated at first beneath 20Rs. After that, the red

Figure 1. Magnetic structure of the steady solar wind solution in a frame corotating with the Sun. Solid white lines depict the magnetic field lines and the arrows
indicate the related field directions, and the plasma density and velocity magnitude of the solar wind medium are shown in false color. The density and speed are
saturated at values indicated by the color bars.
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Figure 2. Magnetic structure of the flux rope system in a frame corotating with the Sun. Open solid white lines depict the magnetic field lines of the background and
the arrows indicate the related directions. The flux rope is shown by the closed lines. The plasma density is shown in false color.

Figure 3. Eruption of the flux rope CME in the laboratory frame. The black open and closed lines indicate the magnetic field lines of the solar wind background and
the flux rope, respectively. The velocity magnitude is shown in false color.
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profile shows that the front of the rope is propagating at an
approximate constant speed of about 500 km s−1, which is very
close to the solar wind speed beyond 100 Rs, and the green and
blue profiles show the continuous but smooth acceleration of the
rope axis and mass center. The difference between the front
speed and the axis (mass center) speed indicates the expansion of
the rope in the radial direction.

3.3. Deflection of the Flux Rope with Different Traveling
Speeds

The eruption driven by the catastrophe without extra
acceleration methods (e.g., magnetic reconnection) will make
the radial speed of the flux rope close to that of the solar wind
medium in a short time. The small speed difference may lead to
the rope radial propagation, as suggested by the DIPS model
too. However, in reality, a flux rope can travel with a speed
significantly different from that of the solar wind for a long
time, like the “Bastille Day” event (e.g., Andrews 2001; Smith
et al. 2001) or the “Halloween” event (e.g., Wang et al. 2005).
Therefore, to simulate the flux rope that can hold a significant
speed difference, we adjust the flux rope speed after the rope
eruption at each calculation step as follows: (1) setting the
maximum flow speed inside the rope in the radial direction (vm)
to be a constant vm0; (2) multiplying the radial flow speed at
other grids in the rope by a common ratio of vm0/vm. Based on
this adjustment, the flux rope will propagate at a nearly
constant speed. Note that here we apply an “artificial viscosity”
method to ψ during the simulation to maintain the stable
calculation. We studied the cases with vm0=300, 500, 800,
1000, and 1500 km s−1, respectively. Figures 5(a)–(c) and
Figures 5(e)–(g) show the propagation of the flux rope in the
laboratory frame under the conditions of vm0=300 and
1500 km s−1, respectively. It is found that the flux rope that
travels slower or faster than the solar wind medium will be
deflected to the west or east in the interplanetary space.

Figures 5(c) and (g) plot the background magnetic field lines
with denser contour curves, and each curve is defined by a
specific value of ψ, while ψ is divided into different values with
uniform spacing. A region with denser contour curves indicates
the pile up of the magnetic field lines in that region, and thus
the stronger field strength (recalling Equation (6)). We can see
that the magnetic field is stronger behind and to the right of,
and ahead of and to the left of the rope, respectively, pushing
the rope to the west and east. Figures 5(d) and (h) give the same
schematic pictures of slow and fast CME propagation in the
interplanetary medium in Wang et al. (2004), in which the
“push” or “block” effect on the CME is consistent with our
simulation. Besides, we find that the flux rope is flattened
during the propagation, which seems to be caused by the
squeezing of the magnetic field on the rope’s right side in
Figure 5(c) and on both sides of the rope in Figure 5(g),
respectively. Several studies have shown that the cross section
of a flux rope could deviate from a circular shape (e.g.,
Manchester et al. 2004b; Riley & Crooker 2004; Chané et al.
2006; Savani et al. 2011; Isavnin 2016), or even form a
convex-outward “pancake” shape.
Figure 6 plots the variations of the longitudes of the rope

front, axis, and mass center versus the front distance with
different vm0, and the longitudinal variations in Figure 4(a) are
also shown for comparison. There are several points to
understand in the figure. First, the profiles of the case of
vm0=500 km s−1 (brown) shows the radial propagation of the
rope, which is similar to that of the case without adjusting the
rope radial speed (black). Second, the deflection angle could
reach 10° or even larger. Third, the larger vm0 is, indicating the
faster propagation of the rope, the greater the deflection angle
will be. Fourth, the profiles of the mass center are similar to
those of the axis, but the deflection angles are found to be
slightly larger. Fifth, the initial eastward deflection of the rope
with vm0=300 km s−1 may be due to the smaller solar wind
speed near the Sun.

4. Comparison with the DIPS Model

The above simulation supports the picture given by the DIPS
model. In order to test the reliability of the DIPS model used in
space weather forecasting, we compare our simulated results
with the model predictions. The DIPS model requires the CME
radial speed (vr) and the solar wind speed (vsw). The
corresponding expression is

t
v v

v
t, 16rsw

sw
f =

-
W( ) ( )

where !f(t) is the time-dependent deflection angle. For the usual
usage of the DIPS model, vr is derived by coronagraph images and
vsw can be obtained by some empirical or MHD methods (e.g.,
Odstrcil & Pizzo 1999; Shen et al. 2007, 2018; Nakamizo et al.
2009). We then use the traveling speeds of the front, axis, and
mass center of the flux rope to represent vr, respectively, and use
the radial flow speed 10Rs ahead of the rope to represent vsw. The
background solar wind is selected such that it is not far away from
the rope structure and also not close to the rope to be disturbed
significantly, and the reliability of this selection is discussed in
Section 5. The deflection angle is derived by the integration of
Equation (16). Figure 7 plots the temporal variations of the
longitudes predicted by the DIPS model with solid lines, and those

Figure 4. (a) The variations of the longitudes of the flux rope front (red), axis
(green), and mass center (blue) along the front radial distance in the laboratory
frame. The data points are plotted every 4 hr. (b) Profiles of the traveling speed
of the flux rope front (red), axis (green), and mass center (blue), as well as the
solar wind flow speed 10 Rs ahead of the rope (black) in the radial direction.
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in the simulations with diamonds. In Figure 7(a), illustrating the
results without adjusting the rope speed, the prediction with rope
front speed (red) inputted shows a nearly radial propagation of
the rope after 20 hr, which is consistent with the simulation, though
the DIPS model gives an eastward deflection of about 10° of the
rope front at first. As for the axis (green) and mass center (blue),
the related smaller rope speeds, which correspond to the rope radial
expansion (as shown in Figure 4(b)), lead to the improper
predictions of the significantly westward deflection. The DIPS
model predictions with vm0=500 km s−1 in Figure 7(b) are

similar to those in Figure 7(a). In Figures 7(c)–(e) with vm0=800,
1000 and 1500 km s−1, respectively, the predicted profiles behave
in a similar fashion to each other and to the simulated data points.
The results with the speeds of the axis and mass center inputted are
closest to the related simulated data points, but those with the front
speeds inputted result in larger deflection angles of few degrees. In
Figure 7(f), the predictions are consistent with the simulated
results, and among the profiles the red one is closest to the
corresponding diamonds. Moreover, as shown in Figures 5(c) and
(d), the “push” effect is behind the slow rope, and thus we estimate
the deflection angle of this slowest rope by inputting the traveling
speed of the rope tail and the radial flow speed of the solar wind
10Rs behind the tail into the DIPS model (orange). Here the rope
tail is the lowermost field line of the rope along the Sun-axis line,
and the value of 10Rs causes the related data points to start at
20 hr. The orange profile is found to be almost the same as the red
one. Overall, the prediction of the DIPS model can have good
consistency with the simulations. Furthermore, based on Figure 7,
we think that the input of the rope front speed, which is easy to
obtained through observations, into the DIPS model can lead to
reliable CME trajectory predictions, except for those traveling at a
speed similar to the ambient solar wind.

5. Conclusions and Discussions

In this work, we numerically study the deflection of CMEs in
the heliospheric equatorial plane. Our simulations demonstrate
the deflection of a CME with flux rope structure in the
interplanetary space, and confirm that the deflection is related
to the speed difference between the rope and the solar wind
medium. We find that a CME, which travels slower or faster
than the solar wind medium, will be deflected to the west or
east; the greater the difference between the CME speed and the
solar wind speed is, the larger the deflection angle will be. This
phenomenon may be interpreted as follows: (1) a slow CME
can make the interplanetary magnetic field corotating with the
Sun pile up behind and to the east of itself, while a fast CME
leads to the pileup ahead and to the west of itself; (2) the

Figure 5. Westward and eastward deflection of the flux rope in the laboratory frame with vm0=300 and vm0=1500 km s−1 in panels (a)–(c) and (d)–(f),
respectively. Panels (c) and (g) plot the background magnetic field lines with denser contour curves. The closed lines plot the flux rope structure, and the open lines
show the background magnetic field. The false color shows the flow velocity magnitude. Panels (d) and (h) give the same schematic pictures of slow and fast CME
propagation in the interplanetary medium in Wang et al. (2004; reprints and with permissions).

Figure 6. Variations of the longitudes of the rope front, axis, and mass center
along the rope front distance from 10 to 215 Rs in the laboratory frame with
vm0=300 km s−1 (green), 500 km s−1 (brown), 800 km s−1 (blue), 1000 km s−1

(orange), and 1500 km s−1 (red), accompanied with the case without adjusting
rope speed (black). The arrows indicate the west/east directions.
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magnetic field in the piled-up region will become stronger;
(3) the piled magnetic field then drives the corresponding
deflection; and (4) the speed difference is related to the piled
magnetic field strength. We compare the rope deflection angles
in our simulations with those predicted by the DIPS model, and
find that the predictions can have good consistency with the

simulated results, suggesting the effectiveness of the DIPS
model used in space weather forecasting. Our simulations,
though very ideal compared to a 3D one, can provide a
stepstone toward studying CME deflection theoretically.
In the simulations, the CME is propagating at a nearly

constant speed by the speed adjustment. However, in reality, a

Figure 7. Variations of the longitudes of the flux rope in the simulation and estimated by the DIPS model. The solid lines show the results of the DIPS model and the
diamonds show the simulated results. The red, green, blue, and orange colors indicate the results of the rope front, axis, mass center, and tail, respectively. The
simulated data points in Figures (a)–(e) and (f) are plotted every 4 and 10 hr, respectively.
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CME will be decelerated or accelerated in the interplanetary
space due to the drag force provided by the solar wind (e.g.,
Borgazzi et al. 2009; Subramanian et al. 2012), making the
speed of a CME approach the solar wind speed. Thus, the real
deflection angle may be smaller than that provided by our
simulations. In the future, we will try some methods closer to
reality to obtain a more appropriate propagation of a CME.
Furthermore, we take a uniform γ for the whole domain, and
this γ is quite high in the heliosphere (compared to γ=5/3 in
the model of Usmanov et al. 2000), which makes the solar
wind speed always increase over 0.1 au (see Figure 4).
However, it is still worthwhile since we are focusing on the
relationship between the deflection and the speed differences.
The simulations with a more realistic solar wind model
including acceleration and heating processes will be developed
in the future.

Before ending this paper, we would like to discuss the
reliability of the DIPS model by inputting different solar wind
backgrounds. Figure 8 shows the same cases as in Figure 7.
The dashed–dotted, dotted, solid, and dashed profiles show
the deflection angles by inputting the same rope front speed
and the solar wind speed in front of the ropes of 2, 5, 10,
and 20 Rs into the DIPS model, respectively. Different inputs
of the solar wind speeds lead to more or less different
predictions. In Figures 8(a) and (b), though the dashed
profiles are closest to the simulated data point, there is no
significant difference among the four types of profiles, except
the eastward deflection at first. In Figures 8(c) to (f),
considering the difference between the predicted and
simulated data points and the tends of the profiles, the usage
of the speed of the solar wind 10 Rs ahead of the rope is
the best compromise in our simulation. Overall, when using
the DIPS model, one should be cautious about selecting the
appropriate background solar wind.

This work was supported the grants from NSFC (41774178,
41574165, 41274173, and 41804161), and the fundamental
research funds for the central universities. We also acknowledge
funds from Key Laboratory of Space Weather, National Center
for Space Weather, China Meteorological Administration.

Appendix

Here we describe the multistep implicit scheme based on the
2.5D problems in the heliospheric equatorial plane, and one can
also refer to Hu (1989) for the original introduction. The set of
MHD Equations (7)–(14) in Section 2 can be written as
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where U=(ρ, vr, vθ, vf, ψ, Bθ, T). The expression of the vector
W can be derived in a straightforward way and is omitted for
conciseness. This scheme is implemented in three steps. In the
following, a superscript n as well as subscripts i and j denote
the points (t n, ri, fj) in the time-space mesh. Starting the first
step of the split-implicit treatment in the r-direction,

Equation (17) reads
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Here the subscripts of i and j are expressly implied for all
quantities on the right side of Equation (19). By using a central
difference approximation for all the derivatives with respect to
r at t n+1, we reach the difference expression of Equation (18)
as
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I is the unit matrix, and
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For the second step, by using the split-implicit treatment in the
f-direction, we have
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Figure 8. Profiles of the DIPS model predictions by inputting the flux rope front speeds, the same as those in Figure 7, and the solar wind speed in front of the rope at
2 (dashed–dotted), 5 (dotted), 10 (solid), and 20 (dashed) Rs. The diamonds are the simulated data points.
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Similarly, the subscripts of i and j are expressly implied on the
right side, and !fj and !fj±1/2 share similar notations as those
shown in Equation (25). The difference expression of
Equation (26) is
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Finally, for the third step, an arithmetic average between Un

and U n 2+¯ is taken to get Un+1 for the new time step, i.e.,
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