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Abstract: The Mars Orbiter MAGnetometer (MOMAG) is a scientific instrument onboard the orbiter of China’s first mission for Mars —
Tianwen-1. Since November 13, 2021, it has been recording magnetic field data from the solar wind to the magnetic pile-up region
surrounding Mars. Here we present its in-flight performance and first science results, based on its first one and one-half months’ data.
Comparing these early MOMAG observations to the magnetic field data in the solar wind from NASA’s Mars Atmosphere and Volatile
EvolutioN (MAVEN) mission, we report that the MOMAG magnetic field data are at the same level in magnitude, and describe the same
magnetic structures with similar variations in three components. We recognize 158 clear bow shock (BS) crossings in these MOMAG data;
their locations match well statistically with the modeled average BS. We also identify and compare five pairs of datasets collected when
Tianwen-1’s orbiter and the MAVEN probe made simultaneous BS crossings. These BS crossings confirm the global shape of modeled BS,
as well as the south-north asymmetry of the Martian BS. Two cases presented in this paper suggest that the BS is probably more dynamic
at flank than near the nose. So far, MOMAG performs well, and provides accurate magnetic field vectors. MOMAG is continuously
scanning the magnetic field surrounding Mars. Data from MOMAG’s measurements complement data from MAVEN and will undoubt edly
advance our understanding of the plasma environment of Mars.
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 1.  Introduction
Tianwen-1 is the first mission of China to explore and study Mars

from  its  space  environment  to  the  surface  (Wan  WX  et  al.,  2020;

Zou YL et al.,  2021). It consists of an orbiter, a lander, and a rover

called Zhurong. The Mars Orbiter MAGnetometer (MOMAG) is one

of the scientific instruments onboard the orbiter (Liu K et al., 2020).

It investigates the magnetic field environment of Mars by measur-

ing  the  local  vector  magnetic  field,  and  therefore  provides  key

information for the understanding of the history and evolution of

Mars.

The magnetic field surrounding Mars has two sources. One is the

dynamic magnetic field resulting from the coupling between the

solar  wind  and  the  Martian  ionosphere;  the  other  is  the  static

crustal  magnetic  field  of  Mars  itself.  Since  Mars  has  no  global

intrinsic magnetic field, the solar wind carrying the interplanetary

magnetic  field  interacts  directly  with  the  Martian  ionosphere,

forming the “bow shock” (BS) and induced magnetosphere, which

consists of the magnetic pileup region (MPR) and the wake region
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(e.g., Bertucci  et  al.,  2004; Brain et  al.,  2006).  Between the BS and

the  MPR,  there  is  a  magnetosheath  separated  from  the  MPR  by

the  magnetic  pileup  boundary  (MPB)  (e.g., Mazelle  et  al.,  2004).

The  magnetic  field  in  these  regions  influenced  by  solar  wind  is

highly dynamic.

Escape  of  ions  in  the  Martian  atmosphere  is  one  of  the  core

science  issues  to  be  addressed  by  Tianwen-1,  and  is  closely

related  to  the  planet’s  magnetic  environment.  For  example,  the

southern  hemisphere’s  strong  static  crustal  magnetic  field  may

reach up to a high altitude and reconnect with the interplanetary

magnetic field, causing the escape of ions (Brain et al., 2015), just

like the behavior of Venus (Zhang TL et al., 2012). Besides, various

waves  in  the  ionosphere  may heat  particles,  causing ion outflow

(Ergun et al., 2006), and when these heated ions transport beyond

the MPB, they will  interact with the magnetic field carried by the

solar wind stream to further generate ion cyclotron waves, boost-

ing  the  escape  of  the  ions  (Russell  and  Blanco-Cano,  2007).  The

escape rate  during storm times  will  be  one to  two orders  higher

than during quiet times (Jakosky et al., 2015b).

During  November  and  December,  2021,  the  Tianwen-1  orbiter

was running on a highly inclined and highly eccentric orbit (peri-

apsis  of  about  1.08  Mars  radii  (RM),  apoapsis  of  about  4.17RM,  as

shown  in Figure  1.  During  that  period,  the  periapsis  was  right

above  the  northern  pole  of  Mars,  the  apoapsis  far  above  the

southern pole in the solar wind, and the orbital period was about

7.8  h,  with  about  50%–75%  of  its  time  in  the  solar  wind.  Thus,

MOMAG  mainly  measured  the  magnetic  field  from  solar  wind  to

the MPR on the dawn-dusk side. Later, the inclination angle of the

orbit will decrease, allowing the orbiter to detect the wake region

of  Mars.  These  data  will  help  us  understand  the  structure  and

evolution of the Martian magnetic field environment and provide

clues  for  ion  escape.  Since  the  Mars  Atmosphere  and  Volatile

Evolution  mission  (MAVEN, Jakosky  et  al.,  2015a),  which  also

carries  a  magnetometer  (MAG, Connerney  et  al.,  2015),  is  still

working, the successful operation of MOMAG will for the first time

allow study of  the Martian magnetic  field environment from two

observational points.

In this paper, we present and analyze data collected from Novem-

ber 15–December 31,  2021.  In Section 2,  we describe basic infor-
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Figure 1.   The orbits of Tianwen-1’s orbiter (solid lines) and MAVEN (dashed lines) during November 13–December 31, 2021. The modeled

Martian bow shock and MPB (Edberg et al., 2008) are indicated by thick and thin black lines, respectively. The different panels show the orbit from

different angle of view as indicated by the horizontal and vertical axes.
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mation about MOMAG and its current status, and present some of
its magnetic field data. Then in Section 3 we show the first results
of  MOMAG  regarding  the  Martian  BS  and  compare  them  to
MAVEN/MAG data. In the last section, we summarize the paper.

 2.  In-flight Calibration and Performance
The  MOMAG  contains  two  sensors  mounted  on  a  boom  3.19  m
long. The outer sensor is at the top of the boom; the inner sensor
is 0.9 m away (see Liu K et al., 2020 for details). Since the orbiter of
Tianwen-1 does not have magnetic cleanliness control, the boom
is  actually  not  long  enough  to  avoid  contamination  of  the
magnetic  field  from  the  structure  of  the  orbiter.  Thus,  how  to
remove  this  interference  from  the  magnetic  fields  measured  by
the two separated sensors becomes pivotal.

The procedure for mitigating the orbiter’s distortion of the ambient
magnetic field generally includes two steps,  similar  to the proce-
dure  applied  to  data  from  the  magnetometer  of  the  Venus  Ex
press (Zhang TL et al.,  2008; Pope et al.,  2011).  The first step is to
remove  the  magnetic  interference  due  to  the  operations  of  the
instruments. Such interferences behave as jumps in the magnetic
field. If a real discontinuity in the solar wind passes the spacecraft,
the amplitudes of the jump at the two sensors should be the same.
However, since the two sensors are at different distances from the
instrument, an artificial jump will show different amplitudes at the
two sensors, and therefore can be distinguished from real jumps.
For these artificial jumps, we remove them by the method of Pope
et  al.  (2011).  The  second  step  is  to  remove  the  static  magnetic
field of  the  orbiter  and correct  the  offset  of  the  fluxgate  magne-
tometer.  This  step  is  based  mainly  on  the  property  of  Alfvénic
waves — that the magnetic field rotates almost in a plane without
change  of  magnitude  (Wang  GQ  and  Pan  ZH,  2021).  We  process
the MOMAG raw data through these steps to scientific use level 2
(level  C  in  China’s  convention).  We  iterate  the  procedure  and
reach the first ver sion of the level 2 data, which can be found at
the  Planet  Exploration  Program  Scientific  Data  Release  System
(http://202.106.152.98:8081/marsdata/).  The  data  used  in  this
paper and in our forthcoming papers will also be put on the official
website  of  the  MOMAG  team  at  the  University  of  Science  and
Technology  of  China  (USTC, http://space.ustc.edu.cn/dreams/
tw1_momag/).  A complete description of  the in-flight calibration
procedure as well as a demonstration of the reliability of the cali-
brated data is given in the separate paper by Zou ZX et al. (2023).

Figure  2a shows  the  magnetic  field  in  the  Mars-centered  Solar
Orbital  (MSO)  system  measured  by  MOMAG  during  01:00–09:00
UT on 2021 December 30. The orbiter was unning in the magne-
tosheath  before  02:55  UT;  at  around  03:01:25  UT  the  orbiter
crossed the BS, where the amplitude of the magnetic field discon-
tinuity  was  more  than  10  nT  (Figure  2h).  After  about  four  hours
the orbiter again crossed the BS, where this time the amplitude of
the  magnetic  field  discontinuity  was  about  16  nT  (Figure  2i).
Around 08:20 UT, the orbiter even crossed the MPB. The BS during
the second crossing was obviously stronger than that during the
first  crossing.  The  reason  is  that  the  BS  was  compressed  during
the second crossing, which can be seen from Figure 2d–g: the two
BS  crossings  were  on  the  south,  the  first  crossing  outside  and
further away from the modeled averaged BS (Edberg et al.,  2008)

than the second BS crossing.

If  we  look  into  the  details  of  the  first  BS  crossing  as  shown  in

Figure 2h, it can be seen that the orbiter crossed beyond the BS at

around  02:56:30  UT  and  crossed  back  in  again  at  02:57:30  UT

before finally entering the solar wind. The magnetic field changes

during these preceding crossings suggest that the BS was slightly

stronger than the BS at 03:01:25 UT. This could also be explained

as the compression of the BS.  During these crossings,  the orbiter

was moving away from Mars as indicated by the color-coded orbit

in Figure 2d. The locations of the preceding crossings were closer

to Mars than that of the final crossing at 03:01:25 UT.

The  magnetic  fields  in  the  solar  wind  stayed  at  around  9–10  nT,

and  fluctuated  much  less  than  those  in  the  magnetosheath.

Figure  2b displays  the  power  spectral  density  of  the  magnetic

field,  generated  by  using  a  10-min  window  and  1-min  running

step. It can be seen that the solar wind was indeed quiet except at

very low frequency, whereas in the magnetosheath the magnetic

fluctuation  was  enhanced.  Behind  the  bow  shock  appear  weak

magnetic  waves  right  below  the  proton  gyro-frequency.  In  the

solar wind, a small structure can be found between 05:15 and 06:

35 UT.  Though the total  magnetic field is  only slightly enhanced,

the most notable change occurred for By , which decreased twice

from about 4 nT to zero.

For comparison, Figure 3 shows the MAVEN measurements of the

magnetic field and solar wind during 04:00–07:00 UT on the same

day.  MAVEN  had  a  quite  different  orbit,  its  orbital  period  shorter

than  4  hours  (Figure  3c–g).  Within  one  hour,  it  crossed  the  BS

twice,  but  the  positions  of  its  crossings  were  both  closer  to  the

shock nose than those of Tianwen-1. Since the two crossings stay

close to  the  same  modeled  BS,  suggesting  the  solar  wind  condi-

tions during the two crossings were almost  the same,  the ampli-

tudes of their magnetic field discontinuities were similar. We show

the detailed BS crossings in Figures 3h and i. No multiple BS cross-

ings happened at MAVEN, probably suggesting different behavior

of the BS at different locations.

Though the solar wind region that MAVEN detected was far away

from  that  detected  by  Tianwen-1,  a  similar  structure  could  be

found between 05:20 and 05:55 UT (Figure 3a), which corresponds

to  the  first  dip  recorded  in  MOMAG.  During  that  time,  the  solar

wind  speed  was  about  310  km·s−1 and  the  number  density  of

protons was about 7 cm−3 (see the blue and red lines in Figure 3c).

Different from MOMAG data, the magnetic field at MAVEN fluctu-

ated  considerably,  notably  at  the  proton  gyro  frequency  (Figure

3b). This might be because MAVEN was closer to Mars than Tian-

wen-1  when  they  flew  in  the  solar  wind;  particles  escaping  at  a

closer  distance  from  the  Martian  atmosphere  might  more  easily

interact  with  the  solar  wind  and  interplanetary  magnetic  field  to

generate  such  fluctuations.  However,  according  to  the  statistical

study  of  MAVEN  data  (Ruhunusiri  et  al.,  2017),  such  a  pattern

seems not to be evident and needs further validation.

 3.  Bow Shock Crossings
Bow  shock  is  one  of  the  notable  features  in  the  Martian  space

environment. Its shape may reflect upstream solar wind conditions
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Figure 2.   The magnetic field measured by MOMAG during 01:00–09:00 UT on December 30, 2021. Panel (a) shows the three components of the

magnetic field in MSO coordinates with the total magnitude overplotted. Two purple arrows mark the crossings of the bow shock. Panel (b)

shows the power spectral density of the magnetic field fluctuations. The green line indicates the proton’s gyro frequency. Panel (c) shows the

height of the Tianwen-1 orbiter, and Panels (d)–(g) display its orbit in the MSO coordinates during the period of interest, in which the two circled

dots mark the positions of the bow shock crossings. Note that Panel (d ) is in the aberrated MSO coordinates with the modeled BS and MPB

indicated by black lines. Panels (h) and (i) show the two BS crossings, respectively, in detail.
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Figure 3.   The magnetic field and solar wind plasma measured by MAVEN during the same period as Figure 2. In Panel (c) the solar wind speed

and number density of ions are presented with the blue and red lines, respectively. The arrangements of other panels are the same as those in

Figure 2.
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and  solar  EUV  intensity,  and  interaction  processes  between  the
solar  wind  and  the  Martian  atmosphere  (Mazelle  et  al.,  2004;
Ramstad et al.,  2017; Hall et al.,  2019). Thus, studying the Martian
BS  is  our  first  choice  to  showcase  the  scientific  potential  of
MOMAG data. In those data, collected from November 15–Decem-
ber 31, 2021, we recognize 158 BS crossings by manually checking
the  magnetic  field  strength  variation  and  the  fluctuation  level
(which  is  measured  by  the  standard  deviation  of  the  magnetic
field  within  each  one  minute  interval).  In  principle,  there  should
be more crossings, but Tianwen-1 crossed mostly the flank of the
BS  where  the  characteristic  of  a  shock  may  be  too  weak  to  be
recognized.  In  MAVEN/MAG  data  collected  during  the  same
period, we recognize 454 BS crossings.

Figure 4a shows all  of  the BS crossings in aberrated MSO coordi-
nates  (MSO  coordinates  are  rotated  by  4° about  the z-axis  to
reduce  the  effect  of  the  Mars  orbital  motion  on  the  solar  wind
flow direction).  Since  the  spatial  coverage of  the  crossings  is  not
wide enough to produce a plausible best-fit BS model, instead we
compare these crossings data with the previously  established BS
model (Edberg et al., 2008). The data points in Figure 4 a suggest
that the crossings statistically match the model fairly well.

Martian  BS  position  and  global  shape  were  derived  from  many

single crossings. Now we can check this previous work, based on

joint  magnetic  field  observations  from  Tianwen-1/MOMAG  and

MAVEN/MAG. By assuming that the BS remains unchanged within

2 minutes, we use five instances of BS crossings of Tianwen-1 and

MAVEN that occurred within 2 minutes of each other to examine

the BS global shape. We choose 2 minutes because the upstream

solar wind conditions that determine the BS position and shape, i.

e., the fast-mode Mach number and dynamic pressure, are usually

stable within this time-scale as revealed by the following analysis.

Figure 5a shows the characteristic speeds in the solar wind, calcu-
lated for every minute from November 15 to December 31, 2021,
from  MAVEN/SWIA  (Halekas  et  al.,  2017)  measurements  of  the

solar  wind  velocity,  ion  density,  and  temperature  and  MAVEN/
MAG  measurements  of  the  magnetic  field.  The  Alfvén  speed, vA,
ranges  from  almost  zero  to  more  than  100  km·s−1 with  mode  at
around  30  km·s−1.  Since  Alfvén  waves  propagate  along  the
magnetic  field,  if  we take into account the direction of  magnetic
field, which mostly concentrates around 86° with respect to the x-
axis in MSO (as indicated by the black line in Figure 5a), the Alfvén
speed  along  the x-axis  approaches  zero.  The  sound  speed, vcs,  is
overall  larger  than  the  Alfvén  speed,  and  is  rarely  smaller  than
30 km·s−1. The fast-mode magnetoacoustic speed along the x-axis,
vf,x, with mode of roughly 60 km·s−1, is overall larger than both the
Alfvén speed and the sound speed.

Since  the  solar  wind  propagates  along  the x-axis,  and vf,x is  the
fastest  among  these  characteristic  speeds,  the  fast-mode  Mach
number  in x-axis, Mf,x,  is  calculated.  The  black  line  in Figure  5b
shows the median value of Mf,x within one-minute intervals during
the period of interest. We can read from the line that the dynamic
range of Mf,x is about 7, i.e., from about 2 to 9 with mode at about
6.2. We further examine the inhomogeneity of Mf,x by calculating
the difference between the maximum and minimum values of Mf,x

at various time scales,  varying from one minute to 29 minutes as
shown  by  the  color-coded  thin  lines  in Figure  5b.  Each  line
presents the distribution of the difference (or range) of the Mf,x in
the  given  time  scale.  We  can  see  that  these  distributions  extend
toward  large  values  with  increasing  time  scales,  suggesting  the
enhancement  of  the  inhomogeneity  in  terms  of Mf,x.  Then  we
determine the middle value of Mf,x for each distribution, the value
at which the distribution is  divided equally,  and define the inho-
mogeneity as the ratio of the middle value to the dynamic range
of Mf,x. The dependence of the inhomogeneity on the time scale is
plotted in Figure 5c. If we assume that an inhomogeneity of 0.1 is
an  acceptable  level  for  a  stale  solar  wind,  we  may  conclude  that
the  time  scale  of  stable  solar  wind,  in  terms  of Mf,x is  about  2
minutes.

A similar analysis is applied to the solar wind dynamic pressure, pd,
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as shown in Figure 5d and e.  The dynamic pressure also shows a

single-peak distribution ranging from about 0.01 nPa to nearly 2.5

nPa  with  mode  around  0.3  nPa.  The  inhomogeneity  of pd also

increases  as  the  time  scale  increases.  By  setting  the  dynamic

range of pd to be 2, we find that the inhomogeneity is less than 0.1

even  at  the  time  scale  of  30  minutes.  This  suggests  that Mf,x is

much more dynamic than pd in the upstream of the Martian BS.

Based on the above analysis, we search for pairs of BS-crossing by

Tianwen-1 and MAVEN that occur within 2 minutes of each other;

a total of five pairs are found. We plot the paired results in Figure

4b. A first impression is that the global shape of the BS is slightly

more  flattened  than  the  model.  But  this  just  reflects  the  south-

north  asymmetry  of  the  Martian  BS  (e.g., Edberg  et  al.,  2008;

Dubinin et  al.,  2008);  the Tianwen-1 orbiter  crossed the southern

flank of the BS, while MAVEN crossed the BS at low latitude on the

northern hemisphere.

Figures  6–10 show  the  5  pairs  of  the  BS  crossings.  Around  05:05

UT  on  November  19,  when  the  Tianwen-1  orbiter  was  far  above

the  southern  pole  of  Mars  and  MAVEN  was  close  to  the  BS  nose

(see Figure 6), both spacecraft crossed the BS from the solar wind

into  the  magnetosheath.  The  magnetic  fields  in  the  solar  wind,

measured  before  they  entered  the  magnetosheath,  look  quite

similar.  Between  04:56  and  05:00  UT,  we  can  see  large  variation

patterns in the three components of the magnetic fields without a

significant  change  in  the  total  magnitude,  which  are  probably

features of an Alfvén wave. This featured structure arrived later at
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the  Tianwen-1  orbiter  by  about  16  s  than  at  MAVEN,  which  was
roughly  the time spent  by the solar  wind travelling from MAVEN
to Tianwen-1.

The  magnetic  fields  measured  by  the  two  spacecraft  after  they
crossed  the  BS  show  different  patterns.  From  the  first  panel  of
Figure 6,  it  appears that the Tianwen-1 orbiter crossed the BS six
times within 7 minutes, finally returning back to the solar wind at
05:11:10  UT,  and,  at  about  05:17:20  UT,  starting  to  cross  the  BS
again.  Unlike  Tianwen-1,  MAVEN  stayed  in  the  magnetosheath
after the crossing except for turning back once at around 05:07:30
UT. This case is similar to the case shown in Figures 2h and 3h, in
which  the  Tianwen-1  orbiter  crossed  the  BS  three  times  in  7
minutes but MAVEN had only one clear crossing. These phenom-
ena  suggest  that  the  Martian  BS  is  very  dynamic  at  a  time  scale
even less than one minute, and that the BS flank is more dynamic
than the nose during this time period. Such multiple-crossings in
minutes deserve further  study,  especially  for  events  in  which the
Tianwen-1  orbiter  crosses  the  BS  while  MAVEN  remains  in  the

solar wind monitoring the upstream condition.

The second pair  of  the BS crossings is  found around 13:19 UT on
December 11 as shown in Figure 7. Both spacecraft were crossing
the  BS  from  the  magnetosheath  to  the  solar  wind.  We  can  see  a
sharp jump at 13:18:15 UT in the MOMAG data, and a sharp jump
at  13:19:58  UT  in  the  MAVEN/MAG  data.  In  both,  we  also  note  a
large dip in the total magnetic field strength. It is hard to determine
if  these  two  features  are  correlated.  The  third  pair  occurred  at
around  07:14  UT  on  December  12  with  one  probe  crossing  from
the  solar  wind  into  the  magnetosheath  and  the  other  from
magnetosheath into solar  wind (Figure 8).  The fourth pair  was at
around 19:43 UT on December 16; in this instance, both spacecraft
travelled from the magnetosheath into the solar  wind (Figure 9).
The  last  pair  is  found  around  02:45  UT  on  December  17.  Again,
both  spacecraft  travelled  from  the  magnetosheath  into  the  solar
wind  (Figure  10).  Looking  at  the  total  strengths  of  the  magnetic
fields in the magnetosheath for all the BS crossing pairs, we note
that they are more or less similar no matter how large the distance
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between the two spacecraft, suggesting large-scale consistency of
the global magnetic structure surrounding Mars.

 4.  Summary
We have presented in-flight performance of, and first results from,

the  Tianwen-1/MOMAG,  focusing  on  data  relevant  to  the  most

notable structure — the Martian BS. Based on the first one and a

half months’ data, we identified 158 clear BS crossings, and report

that  their  locations are statistically  consistent with the BS model.

Simultaneous  BS  crossings  by  Tianwen-1  and  MAVEN  appear  to

verify the south-north asymmetry of the Martian BS. The first pair

of simultaneous BS crossings,  along with the BS crossing case on

December  30,  suggest  that  the  BS  is  probably  more  dynamic  at

flank than near  the nose.  By comparing Tianwen-1 MOMAG with

MAVEN observations, we also found similar structures propagating

with  the  solar  wind  from  MAVEN  to  the  Tianwen-1  orbiter.  We

conclude that MOMAG’s performance is excellent, providing accu-

rate  measurements  of  magnetic  field  vectors.  MOMAG  has

scanned the magnetic field in the MPR, magnetosheath, and solar

wind near the dawn-dusk side. These measurements supplement

MAVEN data  and  promise  to  increase  significantly  our  under-

standing of the plasma environment surrounding Mars.
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Figure 10.   The simultaneous bow shock crossing around 02:44 UT on December 17, 2021.
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