
1.  Introduction
Spacecraft charging is the charging of spacecraft surfaces or components relative to the surrounding space 
plasma. This can lead to discharges and even catastrophic anomalies (Choi et al., 2011; Ganushkina et al., 2021; 
Lanzerotti et al., 1998; Loto'aniu et al., 2015; Reagan et al., 1983; Rosen, 1976). When and to what potential the 
spacecraft is charged are two important questions in space weather.

In general, spacecraft charging can be classified into surface and internal charging (Czepiela et al., 2000; Reagan 
et al., 1983). There have been numerous reports of serious spacecraft anomalies related to the surface charging 
(Choi et al., 2011; Ganushkina et al., 2021; Koons et al., 1999; Matéo-Vélez et al., 2018). The surface charg-
ing is a result of the imbalance between currents exiting and entering the surface (Berry Garrett, 1981; Lai & 
Tautz, 2006b). In the environmental plasma of thermal equilibrium, compared to ions, electrons have much larger 
velocities and are easier to attach to the surface (Lai, 2003; Lai & Della-Rose, 2001; Reagan et al., 1983). In 
the inner magnetosphere, the enhancements of electrons with energies above keV have been found to cause the 
high negative surface charging (Lai & Tautz, 2006a; Mullen et al., 1986; Olsen, 1983; Sarno-Smith et al., 2016; 
Thomsen et al., 2013). These electrons are primarily injected by substorms into the region from midnight to dawn-
side (DeForest & McIlwain, 1971; Forsyth et al., 2016; Ganushkina et al., 2021; Meredith et al., 2004; Moore 
et al., 1981; Thomsen et al., 2007). When solar photons with sufficiently high energies strike the surface materi-
als, photoelectrons are emitted from the surface (Grard et al., 1983). In the eclipse region where the sunlight has 
been blocked by the Earth, spacecraft are more likely to be charged to extremely high negative potentials (Berry 
Garrett,  1981; Matéo-Vélez et  al.,  2018; Mullen et  al.,  1981; Sarno-Smith et  al.,  2016). Given the cascading 
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causal relationships of substorms, energetic electrons, and negative surface charging described above, a natural 
question arises as to whether it is possible to develop an empirical relation between the non-eclipse surface charg-
ing potential and the substorm activity strength.

In this study, we concentrate on the surface charging of a Chinese navigation satellite in the geosynchronous 
orbit. We show that the surface charging potentials inferred from the measurements of ion differential fluxes by 
the Low Energy Ion Spectrometer (LEIS) (Shan et al., 2023a, 2023b) have a substorm-dependent negative limit 
in the non-eclipse region.

2.  Inference of Surface Charging Potentials
Onboard the satellite, the LEIS instrument can measure the ion fluxes in the energy range of 0.05–25 keV/q 
over a large field of view of 360° azimuthal angles and 90° elevation angles (Shan et al., 2023a, 2023b). The 
elevation angles of incident ions are determined by the deflector voltages, and the incident ions of different 
azimuthal  angles are counted at 16 channels (numbered from Ch00 to Ch15). These data have a time resolution 
Δt of 20 s and a relative energy resolution 𝐴𝐴

Δ𝐸𝐸k

𝐸𝐸k

 of 8.5%.

Figures  1a–1d show examples of ion differential fluxes recorded by Ch05, Ch01, Ch09, and Ch13 of LEIS 
from 15:00 UT to 21:00 UT on 14 October 2021. Ch01, Ch05, Ch09, and Ch13 are evenly distributed over the 
azimuthal angle range of 0°–360°. Because of the obstruction of view by other spacecraft components, these ion 
spectrograms exhibited periodic gaps (Shan et al., 2023a). Clearly, the obstruction effect was weakest for Ch05. 
The extreme enhancement of ion fluxes in a narrow range of energy bins appears like a bright yellow line, which 
is an indicator of negative surface charging (DeForest, 1972; Sarno-Smith et al., 2016; Thomsen et al., 2013). 
The low-energy ions are accelerated by the negative potentials when crossing the spacecraft sheath and then the 
recorded high-energy ion fluxes exhibit an enhancement (Thomsen et al., 2007, 2013). Near the detector, the 
spacecraft surface may be charged differentially relative to the detector. The differential charging could cause 
the focusing of ion fluxes and the formation of feathered structures above the ion charging lines, particularly for 
Ch13 (Berry Garrett, 1981; DeForest, 1972). Given that the background ions are mainly protons, the charging 
potential absolute |Us| approximately equals the energy Ek of the bright line divided by the unit charge e. |Us| 
reached ∼3,900 V near the midnight around 16:19 UT and fell to ∼400 V in the post-midnight region after 17:00 
UT. As illustrated in the previous studies (Ferguson et al., 2015; Grard et al., 1983; Matéo-Vélez et al., 2018), 
the geosynchronous spacecraft experiences the solar eclipses around the midnight near the equinoxes. In this 
event, the solar eclipse may be the primary cause of extreme negative surface charging around 16:19 UT, and the 
substorm injection may be responsible for the rest charging.

We have developed an algorithm to automatically recognize the extreme charging events (|Us| > 100 V). This 
algorithm involves the ion count rate ni, the normalized energy gradient 𝐴𝐴 𝐶𝐶𝑖𝑖 of ni

𝐶𝐶𝑖𝑖 =
𝐶𝐶𝑖𝑖

max(𝐶𝐶𝑗𝑗, 𝑗𝑗 = 1, 2, 3,⋯ )
,� (1)

𝐶𝐶𝑖𝑖 =
|
|
|
|

𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖−1

log𝐸𝐸k,𝑖𝑖 − log𝐸𝐸k,𝑖𝑖−1

|
|
|
|

,� (2)

and the ion flux ji, where the suffix i denotes the ith energy bin Ek,i. At a specific time moment, we identify the 
energy bin forming the charging line with two procedures. First, we identify the minimum energy bin Ek,i with 

𝐴𝐴 𝐶𝐶𝑖𝑖 > 0.7 and ni > 20, below which the maximum value of 𝐴𝐴 𝐶𝐶𝑖𝑖 is less than 0.2 and the average value of 𝐴𝐴 𝐶𝐶𝑖𝑖 is less 
than 0.1. If no energy bins are identified from the first procedure, we perform the second procedure to identify 
the minimum energy bin Ek,i with ji > 10 8 cm −2 s −1 sr −1 keV −1. These procedures generally help recognize the 
lower energy edge of the charging line, which the cold ions are most likely accelerated to. Figure 1e shows the 
derived |Us| values from all the channels in this event. Most of the time, these channels gave roughly consistent 
evaluation on the spacecraft potential. At certain time moments, because of the existence of feathered structures 
related to the sheath focusing effect, the relative difference of these identified charging potentials with respect to 
the Ch05 values can reach 13% when |Us| > 1,000 V and 30% when |Us| < 500 V.

Considering that Ch05's field of view was less obstructed and its sheath focusing effect was relatively weak, 
we statistically analyze the data of Ch05. Using the algorithm described above, we have found 4068 extreme 
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charging events from 24 September 2021 to 25 May 2023 (with a data gap related to the latch-up in the LEIS 
electronics from 09 May 2022 to 28 December 2022). These extreme charging events (|Us| > 100 V) are scattered 
over 133 days.

3.  Surface Charging Magnitudes, Locations, and Timings
Figure  2 shows the distribution of charging events in terms of magnitude, location, and time. As shown in 
Figure 2a, the surface charging of this navigation satellite occurs mainly over the magnetic local time (MLT) from 
20:00 through 00:00 to 09:00, consistent with previous results for the Los Alamos National Laboratory (LANL) 
geosynchronous satellites (Thomsen et al., 2013). We further classify these events into two groups according to 
their occurring MLTs. One group is located at MLT = 22.5–0.5, whose potentials |Us| extend to 10 4 V. Charging 

Figure 1.  Ion differential fluxes and charging potentials from 15:00 UT to 21:00 UT on 14 October 2021. (a–d) Ion 
differential fluxes j (color-coded) recorded by the Ch05, Ch01, Ch09, and Ch13 channels. The black circles mark the negative 
surface charging events identified automatically. (e) Charging potential absolutes |Us| from all the 16 channels. Colors help 
differentiate among these channels.
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events with |Us| > 2 × 10 3 V in this group gather near the equinoxes (Figure 2b) and could be triggered by the 
solar eclipses (Ferguson et al., 2015; Grard et al., 1983; Matéo-Vélez et al., 2018). In contrast, the other group 
has a lower charging potential limit and occurs primarily in the region counterclockwise from MLT = 0.5 to 
MLT = 9. This group should be free from the solar eclipse effect and be directly related to the substorm injec-
tion. These spatial distribution characteristics of the eclipse and non-eclipse events are generally consistent with 
those for the Van Allen Probes (Mauk et al., 2013; Sarno-Smith et al., 2016). The significant MLT asymmetry of 
non-eclipse events should be a result of electron drift in the magnetosphere. A statistical study (Li et al., 2010) 
has shown that the MLT asymmetry of electron fluxes decreases with the increase of energies. These non-eclipse 
charging could be caused primarily by electrons with energies from keV to tens of keV (Li et al., 2010).

4.  Substorm Dependent Negative Limit of Charging Potentials
The substorm activities are characterized by the SuperMAG electrojet (SME) index (Gjerloev, 2012; Newell & 
Gjerloev, 2011). SME index is the SuperMAG generalization of the traditional auroral electrojet (AE) index. 
Different from AE based on the measurements of 12 ground-based magnetometer stations, SME is evaluated 
with more than 100 stations. Considering the drift and accumulation of substorm-injected electrons, we introduce 

Figure 2.  Magnitudes, locations, and timings of surface charging. (a) Extreme negative charging event number Nc 
(color-coded) as a function of potential absolute |Us| and magnetic local time (MLT). The radial direction represents |Us| and 
the azimuthal direction represents MLT. (b) Scatter plot of extreme negative charging events in the MLT-month plane, with 
the side panels representing the number of events contained within each interval. The color and size of each point are coded 
according to |Us|. Note that our data has a gap approximately from June to August.

 15427390, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023SW

003780 by U
niversity O

f Science, W
iley O

nline L
ibrary on [20/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Space Weather

FU ET AL.

10.1029/2023SW003780

5 of 8

SME*, the maximum SME in the preceding 2 hr. Figure 3 presents a scatter plot of 4068 charging events in the 
|Us| − SME* plane. Near the midnight (MLT = 22.5–0.5), the charging potentials |Us| appear to be distrib-
uted irregularly. This feature is reasonable because both the solar eclipse effect and substorm activities could 
contribute to the surface charging. In contrast, away from the midnight, the non-eclipse events are related to the 
substorm-injected electrons. The corresponding charging potentials |Us| have an upper limit 𝐴𝐴 |𝑈𝑈s| controlled by 
SME*. Specifically, when 300 nT < SME* < 800 nT, the logarithm of potential upper limit 𝐴𝐴 log |𝑈𝑈s| increases 
approximately linearly with SME*; when SME* > 800 nT, 𝐴𝐴 |𝑈𝑈s| visually reaches a saturation level of 1.3 × 10 3 V. 
Overall, we can obtain a simple relation between 𝐴𝐴 |𝑈𝑈s| and SME*

|𝑈𝑈s| = 10
𝑐𝑐1 tanh

SME
∗
−𝑐𝑐2

𝑐𝑐3

+𝑐𝑐4

V,
� (3)

with the fitting parameters c1, c2, c3, and c4 and the determination coefficient R 2 listed in Table 1. For the events 
near the midnight, we cannot accurately differentiate between the contributions of solar eclipse and substorm 
injection. Intuitively, the substorm injection effect may not vary steeply within several hours of MLT around 
the midnight. Thomsen et al. (2013) had shown that, for the LANL satellites, the months away from equinoxes 
have approximately the same probability of charing potential < −100 V. We speculate that the black dots below 
the green line represent the same charging characteristic as the green dots and both are mainly controlled by the 
substorm injection. With the addition of solar eclipse effect, the charging potentials would be able to exceed the 
negative limit related to the substorm injection.

The 𝐴𝐴 |𝑈𝑈s| –SME* Relation 3 described above can be reasonably explained by the substorm-dependence of ener-
getic electron fluxes. Figure 4 shows the SME*-dependent distribution of 1, 10, and 50 keV electron fluxes j 
measured by the Van Allen Probes (Blake et al., 2013; Funsten et al., 2013; Spence et al., 2013) from MLT = 0 

Figure 3.  Scatter plot of extreme negative surface charging events in the 𝐴𝐴 |𝑈𝑈s| –SME* plane, with the black color for the 
events near the midnight (MLT = 22.5–0.5) and the green color for the events away from the midnight (MLT = 18–22.5 and 
MLT = 0.5–9). The green line represents a nonlinear fit to the upper potential limit (green circles) of the events away from 
the midnight.

Name c1 c2 (nT) c3 (nT) c4 R 2

Charging Potential 0.34380 495.03 198.90 2.7223 0.96941

Electron Flux 1 keV 0.021213 439.27 266.95 0.81318 0.98872

10 keV 0.75240 −1,258.9 686.99 0.0023428 0.94154

50 keV 0.046832 196.18 291.53 0.65568 0.98295

Table 1 
Fitting Parameters and Determination Coefficients of the 𝐴𝐴 |𝑈𝑈s| –SME* and 𝐴𝐴 𝑗𝑗  –SME* Relations Defined in Equations 3 and 4
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to MLT = 9 near the geosynchronous orbit during the time range from November 2012 to July 2019. We have 
divided these data into 8 intervals of SME* and then calculate the geometric mean 𝐴𝐴 𝑗𝑗  in each interval. It is obvious 
that, at every energy bin, 𝐴𝐴 𝑗𝑗  exhibits a SME*-dependence analogous to 𝐴𝐴 |𝑈𝑈s| . Specifically, there is a monotonic 
increase of 𝐴𝐴 𝑗𝑗  when SME* < 800 nT and a saturation of 𝐴𝐴 𝑗𝑗  when SME* > 800 nT. Similar to 𝐴𝐴 |𝑈𝑈s| , 𝐴𝐴 𝑗𝑗  can be fitted 
to a SME*-dependent function

𝑗𝑗 = 10
𝑐𝑐1 tanh

SME
∗
−𝑐𝑐2

𝑐𝑐3

+𝑐𝑐4

cm
−2
s
−1
sr

−1
keV

−1
,

� (4)

with the fitting parameters and determination coefficients listed in Table 1.

5.  Summary
This study sets out to develop an empirical relation between substorm strength and spacecraft surface charging 
potential in the non-eclipse region. For the Chinese satellite in the geosynchronous orbit, we infer the extreme 
negative charging potentials from the charging lines in the ion energy spectrograms measured by the LEIS instru-
ment. The 4068 charing events with the potential absolutes |Us| > 100 V can be classified into two groups: (a) 
the events close to the midnight, whose charging potentials have been affected by the solar eclipses near the equi-
noxes, and (b) the other events away from the midnight, whose charging potential absolutes have an upper limit 

𝐴𝐴 |𝑈𝑈s| determined by the maximum SuperMAG electrojet index in the preceding 2 hr SME*. This simple 𝐴𝐴 |𝑈𝑈s| -SME* 
relation for the non-eclipse events can be reasonably explained by the dependence of 1–50 keV electron fluxes 
on SME*. Spacecraft charging depends on the geometry and material properties of the spacecraft, as well as 
its orbital characteristics. For other inner magnetospheric spacecraft in the non-eclipse region, similar relations 
between the negative charging limit and the substorm strength may also exist. These empirical relations would be 
useful for spacecraft engineering and space weather alerts.

Data Availability Statement
LEIS data are available at DREAMS Website  (2023). Van Allen Probes data are available at NASA’s Space 
Physics Data Facility (SPDF) Website (2023). We have analyzed the following Van Allen Probes data: HOPE 
electron flux data (Funsten, 2022) and MagEIS electron flux data (Spence et al., 2022). SME index is available 
at SuperMAG Website (2023).

Figure 4.  SME*-dependent electron differential fluxes j at (a) 1, (b) 10, and (c) 50 keV measured by the Van Allen Probes from MLT = 0 to MLT = 9 near the 
geosynchronous orbit during the time range from November 2012 to July 2019. These data have been divided into 8 intervals of SME*: 0–120 nT, 120–190 nT, 
190–300 nT, 300–430 nT, 430–590 nT, 590–760 nT, 760–1,100 nT, and 1,100–2,000 nT. In each SME* interval (gray horizontal line), the geometric mean 𝐴𝐴 𝑗𝑗  (gray 
circle) and the corresponding upper and lower quartiles (gray vertical line) have been calculated. The black lines represent a nonlinear fit to the obtained geometric 
means of electron fluxes.
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