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Abstract Plasmaspheric hiss waves are important to shape the Earth’s electron radiation belt. These waves
are commonly envisioned to have a long lifetime which allows them to permeate the global plasmasphere from a
spatially restricted source. However, this hypothesis has not been experimentally confirmed yet, because of the
challenging observational requirements in terms of location and timing. With wave and particle measurements
from five magnetospheric satellites and detailed modeling, we present the first report of long lifetime (∼42 s)
hiss rays in the substorm‐disturbed plasmasphere. The low‐frequency hiss waves are found to originate from the
middle piece of the plasmaspheric plume, bounce between two hemispheres, and eventually drift into the
plasmaspheric core. These hiss rays can travel through∼3 hr magnetic local time and ∼4 magnetic shell. Such a
long‐time and large‐scale permeation of hiss rays could benefit from the ducting process by plasmaspheric field‐
aligned density irregularities.

Plain Language Summary Earth’s plasmasphere is populated by a type of whistler‐mode wave
named plasmaspheric hiss which is able to shape the electron radiation belt. Hiss waves were commonly
envisioned to have a long lifetime which allows them to permeate the global plasmasphere from a spatially
restricted source. Although there have been numerous studies on the source of plasmaspheric hiss waves, the
hypothesis regarding their long lifetime remains not experimentally confirmed yet because of the challenging
observational requirements in terms of location and timing. On the basis of wave and particle measurements
from five magnetospheric satellites covering the entire plasmasphere and detailed modeling, we show that the
hiss rays can survive at least 42 s in the plasmasphere disturbed by substorms. Within the survival period, these
hiss rays migrated from the middle piece of the plasmaspheric plume to the plasmaspheric core, whose path
lengths reached 25 Earth radii. Such a long‐time and large‐scale permeation of hiss rays from the plasmaspheric
plume to the plasmaspheric core could benefit from the ducting process by plasmaspheric field‐aligned density
irregularities.

1. Introduction
The Earth’s plasmasphere is populated by a type of whistler‐mode wave named plasmaspheric hiss (Chan &
Holzer, 1976; Dunckel & Helliwell, 1969; Meredith et al., 2004; Ni et al., 2023; Russell et al., 1969; Su
et al., 2018a; Thorne et al., 1973; Tsurutani et al., 2015; Yang et al., 2022; Yu et al., 2017). Plasmaspheric hiss
waves have been well known to scatter the radiation belt electrons (Li et al., 2007; Summers et al., 2008;
Shprits, 2009; Ni et al., 2013; Breneman et al., 2015; Zhang et al., 2019; Fu et al., 2020), causing the slot region
separating the inner and outer radiation belts (Abel & Thorne, 1998; Lyons et al., 1972; Lyons & Thorne, 1973),
the slow decay of radiation belts (Thorne et al., 2013; Xiao et al., 2009), and the reversed energy spectrum of
electrons (Ni et al., 2019; Zhao et al., 2019). These waves are commonly envisioned to have a spatially restricted
source but survive long to permeate the global plasmasphere (Chen et al., 2009; Liu et al., 2020; Santolík
et al., 2021; Su et al., 2018b; Thorne et al., 1973; Wu et al., 2022). Three types of sources for plasmaspheric hiss
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have been proposed and verified: (a) lightning‐generated whistler waves in
low‐altitude atmosphere (Green et al., 2020; Meredith et al., 2006; Sonwalkar
& Inan, 1989); (b) whistler‐mode chorus waves outside the plasmasphere
(Bortnik et al., 2008; Bortnik et al., 2009; Wang et al., 2011; Meredith
et al., 2013; Li et al., 2015; Zhou et al., 2016); (c) background thermal noises
amplified by energetic electrons in the outer core or plume of the plasma-
sphere (Thorne et al., 1973; Li et al., 2013; Chen et al., 2014; Laakso
et al., 2015; Su et al., 2018a, Su et al., 2018b). In contrast, the hypothesis of a
long lifetime of hiss rays remains not experimentally confirmed yet.

The lifetime of hiss rays may be determined by three types of physical pro-
cesses: (a) Landau damping by suprathermal electrons (Thorne &
Horne, 1994; Zhu et al., 2015; Li et al., 2019;Wang et al., 2020); (b) cyclotron
absorption by thermal ions at low altitudes (Chen et al., 2020; Kintner
et al., 1991); (c) energy bifurcation at the wavelength‐scale density irregu-
larities (Woodroffe & Streltsov, 2014; Zudin et al., 2019). On the basis of
Wentzel‐Kramer‐Brillouin (WKB) approximation, several ray‐tracing simu-
lations with Landau damping alone suggest a lifetime of 100 s for plasma-
spheric hiss (Bortnik et al., 2003, 2008, 2011; Chen et al., 2009). To what
extent the other two processes affect the lifetime of hiss rays has not been
evaluated systematically. In experiment, to identify the hiss rayswith a lifetime
on the order of 100 s is challenging. First, two spacecraft are required to be
located on the path of hiss propagation. Second, the hiss waves are required to
exhibit some frequency‐time structures to allow cross‐spacecraft tracing.

In this letter, with five magnetospheric spacecraft, Van Allen Probes A and B
(Mauk et al., 2013), TH‐D of the Time History of Events and Macroscale
Interactions during Substorms (THEMIS) mission (Angelopoulos, 2008),
GOES‐13 of the Geostationary Operational Environmental Satellites (GOES)
mission (Davis, 2007), and Arase (also known as the Exploration of energi-
zation and Radiation in Geospace, ERG) (Miyoshi et al., 2022; Miyoshi,
Shinohara, Takashima, et al., 2018), we investigate the evolution of plas-
masphere and the generation and propagation of plasmaspheric hiss waves
following a series of substorms on 03 July 2017. These hiss waves happened
to be modulated by an ultralow‐frequency magnetic perturbation, allowing
the cross‐spacecraft tracing. The significant lag‐correlation between low‐
frequency hiss waves in the plasmaspheric core and in the near‐base piece
of the plasmaspheric plume supports the propagation of waves between the
two places within 27 s. The wave Poynting flux measurements, linear growth
rate calculations, and ray‐tracing simulations further establish the hiss wave

source in the middle piece of the plasmaspheric plume. Our data and modeling together demonstrate that hiss rays
in the disturbed plasmasphere probably survived at least 42 s.

2. Event Overview
As depicted in Figures 1a–1c, the enhanced magnetospheric convection related to substorms (Figure 1d) caused
the formation of plasmaspheric plume drained from the plasmaspheric core on 03 July 2017. These boundaries of
the plasmaspheric core and plume are determined on the basis of density and wave measurements from four
magnetospheric spacecraft (Figures 1e–1h): Van Allen Probes, TH‐D, and Arase. For Van Allen Probes and
Arase, the electron density is derived from the upper hybrid frequency (Kurth et al., 2015) which was measured by
the High Frequency Receiver (HFR) of the Electric and Magnetic Field Instrument and Integrated Science
(EMFISIS) suite (Kletzing et al., 2013) and the High‐Frequency Analyzer (HFA; Kumamoto et al., 2018) of
PlasmaWave Experiment (PWE; Kasahara et al., 2018), respectively. For TH‐D, the electron density is estimated
from the spacecraft potential (Nishimura et al., 2013) which was measured by the Electrostatic Analyzer (ESA;
McFadden et al., 2008). The wave power spectral density was measured by the Waveform Receiver (WFR) of

Figure 1. Overview of plasmaspheric morphology and hiss waves on 03 July
2017. (a)–(c) Schematic diagrams of plasmasphere morphology, overlain by
the orbits (solid lines) and locations at specific moments (solid dots) of Van
Allen Probes A and B, TH‐D, Arase, and GOES‐13. (d) Geomagnetic
indices SYM‐H (black) and AE (green). Wave magnetic power spectral
densities PB (color‐coded) from (e) Van Allen Probes A and (f) B, (g) TH‐D,
and (h) Arase, overlain by electron densities Ne (black lines).
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EMFISIS, the Search Coil Magnetometer (SCM; Roux et al., 2008), and the Onboard Frequency Analyzer (OFA;
Matsuda et al., 2018) of PWE for the three missions, respectively.

For Van Allen Probe A (Figure 1e) and TH‐D (Figure 1g) on the dayside, the density jumps closer to Earth
signified the passages through the plasmaspheric core boundary (plasmapause), and the density jumps further
away from Earth signified the passages through the plasmaspheric plume boundary. For Arase (Figure 1h) on the
nightside, only the density jumps related to the plasmapause existed. The plasmapause was located around L= 4.8
on the dayside and L = 6.1 on the nightside. The dayside plasmaspheric plume extended to at least L = 9.2 (TH‐
D). The plasmaspheric hiss was strongest in the dayside plasmaspheric plume, followed by the pre‐noon plas-
maspheric core, weaker in the duskside plasmaspheric core, and weakest in the nightside plasmaspheric core.
Nearly in the same orbit as Van Allen Probe A, Probe B gave a quite different density profile during 13:30–21:15
UT (Figure 1f). Van Allen Probe B probably crossed a notch (Gallagher et al., 2005) at 13:50 UT (L = 3.2) and
then persisted in the high‐density environment during the next 7 hr. A reasonable explanation is that, along with
the evolution and rotation of the plasmasphere, Van Allen Probe B moved from the core through the plume’s base
to the plume and re‐entered the core through the plume’s base. The duskside plume‐to‐core boundary may be
characterized by the jump of plasmaspheric hiss power at 19:30 UT, whose location was generally consistent with
the plasmapause observations of Van Allen Probe A and TH‐D at the nearest moments.

Figure 2a presents the perturbations in the magnetic field magnitude from 20:00 UT to 20:20 UT, measured by the
tri‐axial fluxgate Magnetometer (MAG) of EMFISIS suite onboard Van Allen Probes, the three orthogonal flux‐
gate magnetometer elements (MAG) onboard GOES, the Fluxgate Magnetometer (FGM; Auster et al., 2008)
onboard THEMIS, and the Magnetic Field Experiment (MGF; Matsuoka, Teramoto, Nomura, et al., 2018) on-
board Arase. The magnetic field perturbations are calculated by subtracting the 8‐min running average of
magnetic field magnitude from the instantaneous magnetic field magnitude. The spatial locations of the five
spacecraft with respect to the plasmasphere have been described in Figure 1b. Van Allen Probe A (L ∼ 5.8 and
MLT ∼ 15.8), GOES‐13 (L ∼ 6.8 and MLT ∼ 15.3) and TH‐D (L ∼ 7.3 and MLT ∼ 13.7) on the noonside
simultaneously observed the spatially coherent magnetic field perturbation which was unobservable for Van
Allen Probe B (L ∼ 4.1 and MLT ∼ 17.7) on the duskside and Arase (L ∼ 5.7 and MLT ∼ 1.5) on the nightside
(Figure 2a). This magnetic field perturbation had a peak‐to‐peak amplitude of 2–2.5 nT and a period of ∼8 min.
As shown in Figure 2b, the electron densities behaved in different ways from the magnetic fields, indicating the
absence of density fluctuations related to the ultralow‐frequency magnetic perturbations. These high‐resolution
electron densities estimated from the spacecraft potentials measured by the Electric Field and Wave (EFW;
Wygant et al., 2013) onboard Van Allen Probes, the Electrostatic Analyzer (ESA;McFadden et al., 2008) onboard
THEMIS, and the Electric Field Detector (EFD; Kasaba et al., 2017) of the Plasma Wave Experiment (PWE;
Kasahara et al., 2018) onboard Arase. Following the work of Kazama et al. (2018), the electron density Ne and
spacecraft potential U are related as

Ne = C1eC2U (1)

with fitting parameters C1 = 198.93 cm
− 3 and C2 = 0.29 V

− 1 for Van Allen Probe A; C1 = 8,212.31 cm
− 3 and

C2 = 4.59 V
− 1 for Van Allen Probe B; C1= 176.15 cm

− 3 and C2= 2.73 V
− 1 for Arase. As for TH‐D, the specific

technique was developed by Nishimura et al. (2013).

Interestingly, Van Allen Probe A observed plasmaspheric hiss waves seemingly modulated by the weak magnetic
perturbation (Figure 2c). At Van Allen Probe B without the magnetic perturbation, the plasmaspheric hiss waves
still exhibited a similarmodulation feature (Figure 2d). FromProbeA to Probe B, the power spectral density of hiss
waves decreased by approximately one order of magnitude (Figures 2c–2e).When the low‐frequency (80–112Hz)
hiss waves of Probe B lag behind those of Probe A by 15–33 s, their cross‐correlation becomes significant.
Particularly, the peak correlation coefficient rAB = 0.6 occurs at the time lag of 27 s for the hiss waves of 90 Hz.
These results indicate that the propagation of low‐frequency hiss rays from the near‐base piece of the plasmaspheric
plume to the plasmaspheric core. In other words, the 90 Hz hiss rays had survived at least 27 s, which is
approximately 4–5 times larger than previous direct measurements of hiss ray lifetimes (Bortnik et al., 2009;Wang
et al., 2011; Li et al., 2015; Wu et al., 2022). The cross‐correlation of low‐frequency hiss waves exhibits some
dispersion over the lag time, which may be caused by noise contamination on the low‐resolution (6 s) wave data or
superposition of waves with different propagation times. At higher frequencies, the detected wave power was
weaker and consequently the results from the cross‐correlation analysis may become less reliable.
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3. Generation of Plasmaspheric Hiss
Figures 3a–3f show the propagation characteristics of plasmaspheric hiss for Van Allen Probes from 19:00 UT to
21:00 UT. We adopt the techniques proposed by Santolík et al. (2002) and Santolík et al. (2003, 2010) to calculate
the wave normal angles and Poynting fluxes from the wave spectral matrices measured by WFR of the EMFISIS
suite. In the plasmaspheric plume (for Van Allen Probe A during 19:00–21:00 UT and for Van Allen Probe B
during 19:00–19:25 UT), the hiss waves may be divided into two parts separated by 0.1 fce ( fce is local electron
gyrofrequency). The waves above 0.1 fce propagated away from the equator and had the ordered normal angles
extending to ψ = 50°, indicating their near‐equatorial generation by energetic electrons (He et al., 2019; Laakso
et al., 2015). In contrast, the waves below 0.1 fce have disordered Poynting fluxes and normal angles, which

Figure 2. Cross‐correlation analysis between hiss signals from Van Allen Probes A and B during 20:00–20:20 UT.
(a) Perturbations ΔB of magnetic field magnitudes from five magnetospheric spacecraft (indicated). ΔB is calculated by
subtracting the 8‐min running average of magnetic field magnitude from the instantaneous magnetic field magnitude.
(b) Electron density perturbations ΔNe calculated in the same way as that of ΔB calculation. Wave magnetic power spectral
densities PB observed by (c) Van Allen Probes A and (d) B. (e) Wave magnetic power spectral density profiles PB at
f = 90 Hz from Van Allen Probes A (red) and B (blue). (f) Cross‐correlation coefficients rAB of wave magnetic power
spectral densities between Van Allen Probes A and B. Positive (negative) time lags represent the lagging (leading) of signals
of Probe B against those of Probe A.
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should originate from some distant sources. Similarly, the irregularly‐behaving hiss waves in the plasmaspheric
core (for Van Allen Probe B during 19:25–21:00 UT) must have some distant sources. Lighting‐generated
whistler waves usually emerge at frequencies from hundreds of Hz to tens of kHz (Meredith et al., 2006; San-
tolík et al., 2021; Sonwalkar & Inan, 1989). As observed by TH‐D (Figure 1g), the event‐specific whistler‐mode
chorus waves occurred above 300 Hz outside the plasmasphere. We therefore speculate that the observed low‐
frequency hiss waves were generated in the duskside plasmaspheric plume (Laakso et al., 2015; Liu
et al., 2020; Shi et al., 2019; Su et al., 2018a) far away from Earth (Figure 1b).

Figure 3. Identification for plasmaspheric hiss source. (a) and (b) Wave power spectral densities PB, (c) and (d) normal
angles ψ, and (e) and (f) Poynting flux directions Sp for Van Allen Probes A (left) and B (right), overlain by 0.1 fce (dashed
lines). Note Sp represents the sign of wave Poynting flux component along the magnetic field line. (g) Observed (circles)
and modeled (red line) electron phase space densities F(α = 90°) at the pitch‐angle α = 90°. Data are provided by HOPE
(black) and MagEIS (blue) onboard Van Allen Probe A and EPS (purple) onboard GOES‐13 during 20:05–20:15 UT.
(h) Observed (symbols) and modeled (solid lines) electron pitch‐angle distributions F. Colors help differentiate among the
energy channels and symbols help differentiate between Van Allen Probe A (circles) and GOES‐13 (stars). (i) Observed
(circles) and modeled (black line) magnetic field strengths B and electron densities Ne. Data are from Van Allen Probe A
(gray), GOES‐13 (purple), and TH‐D (orange) in the dayside orbits. (j) Linear growth rates of waves Ki at different L‐
shells (color‐coded) and normal angles (indicated), in comparison to wave magnetic power spectral densities PB measured
by Van Allen Probe A around 20:10 UT.
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To examine the speculation above, we calculate the L‐dependent linear growth rate of whistler‐mode waves in the
plasmaspheric plume at the equator, which is commonly considered a source region of hiss waves (Laakso
et al., 2015; Su et al., 2018a; Wu et al., 2022). The specific code (Liu et al., 2018a, 2018b; Su et al., 2018a) is
based on the linear instability theory (Chen et al., 2010; Kennel, 1966) and requires the inputs of electron
phase space density F, cold electron density Ne and magnetic field strength B. Hiss waves are typically
excited by electrons with energies above tens of keV (Chen et al., 2014; Su et al., 2018b; Thorne et al., 1973).
These energetic electron phase space densities statistically vary little from L = 5 to L = 8 on the duskside (Li
et al., 2010), as supported by present observations (Figures 3g and 3h) from the Helium Oxygen Proton and
Electron (HOPE) mass spectrometer (Funsten et al., 2013) and the Magnetic Electron Ion Spectrometer
(MagEIS) instrument (Blake et al., 2013) of the Energetic particle, Composition and the Thermal plasma
(ECT) suite (Spence et al., 2013) onboard Van Allen Probe A (L = 5.8, MLAT = 5.1°, MLT = 15.8) and
from the Energetic Particle Sensor (EPS) onboard GOES‐13 (L = 6.8, MLAT = 9.4°, MLT = 15.3). There-
fore, we assume a constant electron phase space distribution within L = 5.8–8. To remove random fluctuations,
we average the phase space density in a 2‐min window and model the pitch‐angle dependence as
F = F(α = 90°)( 1+ sin α

2 )
2. The radial density profile observed by Van Allen Probe A and TH‐D in the plasma-

spheric core and plume (Figure 3i) is well described by a previously‐developed model (Carpenter &
Anderson, 1992)

Ne = 10− 0.3145L+3.9043. (2)

The magnetic fields observed by Van Allen Probe A, GOES‐13 and TH‐D (Figure 3i) at the magnetic latitudes
MLAT < 10° during 16:00–23:30 UT are well described by a compressed dipole field model (Kabin et al., 2007)
at the equator. In the spherical coordinate system (r, θ, ϕ), this magnetic field model is expressed as

B = − er[2B0(
RE
r
)

3

− Bex] cos θ − eθ[B0(
RE
r
)

3

+ Bex] sin θ (3)

with B0= 27,500 nT and Bex= 16 nT. Clearly, the linear growth rates peak at lower frequencies at larger magnetic
shells (Figure 3j). The peak frequency of linear growth rates within L = 7–8 generally agrees with that of hiss
wave power recorded by Van Allen Probe A in the near‐base piece of the plasmaspheric plume. The increase of
wave normal angles does not change the peak frequency of growth rates but reduces their peak value. As the
normal angle ψ increases from 0° to 45°, the peak linear growth rate decreases by 85%. These modeling results
suggest that the low‐frequency (∼100 Hz) hiss waves were primarily generated at the quasi‐parallel normal angles
in the middle piece of the plasmaspheric plume (L = 7–8). Given the limited linear growth rate (∼10− 7 m− 1),
additional nonlinear amplification may be required (Nakamura et al., 2016; Omura et al., 2015; Su et al., 2018a).
Both Van Allen Probes A and B were located at the mid‐way stations of hiss rays, and a more comprehensive
evaluation of hiss lifetime has been left to the ray‐tracing simulations.

4. Propagation of Plasmaspheric Hiss
We use the ray‐tracing code of Kimura (1966) to understand the propagation of 90 Hz hiss waves from the middle
piece of the plasmaspheric plume through the near‐base piece to the plasmaspheric core. The background mag-
netic field is modeled by Equation 3. The corresponding background density is modeled with the same techniques
of Wu et al. (2022) and Denton et al. (2002). To avoid duplication and facilitate readers, we here just give some
general descriptions of the density model and list more details in the Supporting Information (Text S1 and Figures
S1 and S2 in Supporting Information S1). As shown in Figure 4a, we analytically set the plasmaspheric core and
plume boundaries and specify the background density base N0 with Equation 2. To qualitatively describe the
lumpy nature of the plasmaspheric plume (Borovsky & Denton, 2008; Nishimura et al., 2022), we additionally
introduce the density ducts with the equatorial cross‐section of ΔL = 0.05 and ΔMLT = 0.01 hr (Figure 4b)

δNe = N0 (Nfl − 1), (4)
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where the density fluctuation factor Nfl(L, MLT) ∈ [0.9,1.1]. The transverse scale of density ducts is approxi-
mately 10–30 times the whistler wavelengths of our interest and the WKB approximation remains valid because
the WKB parameter RWKB (Horne & Thorne, 1997) is always below 0.1 in our following simulations.

According to the calculations in Figure 3, we launch the hiss rays of f = 90 Hz with normal angles ψ i ∈ [0°,45°]
spaced by 1° and azimuthal angles φi ∈(− 180°,180°] spaced by 3° at the equator of the middle piece L∈ [7,8] of

Figure 4. Ray‐tracing modeling for f = 90 Hz hiss waves. Equatorial cross‐section of the plasmasphere with (a) a smooth
plume and (b) a lumpy plume. The electron density Ne is scaled by green saturation, and the gray and red lines are the
projected paths of rays that are able to reach sufficiently close to Van Allen Probes A and B at 20:10 UT. The subpanel in
Figure 4b plots the checkerboard density fluctuations δNe scaled by the magnitude of black saturation. (c) and (d) Initial
normal angles ψi and azimuthal angles φi of rays capable of migrating from source to plasmaspheric core (gray bins). Those
rays that successively propagate through Van Allen Probes A and B are color‐coded according to the propagation time from
the plume source to Van Allen Probe B ΔtPB. (e) and (f) Wave normal angle ψ (black), magnetic shell L (brown), and
magnetic local time MLT (purple) of selected rays (red lines) in Figures 4a and 4b. (g) Three‐dimensional paths of selected
rays (color‐coded according to the propagation time). Van Allen Probes A and B at 20:10 UT are represented by red and blue
solid spheres. The gray lines are the modeled geomagnetic field lines. The equatorial electron density is scaled by green
saturation.

Geophysical Research Letters 10.1029/2023GL107825

WU ET AL. 7 of 13

 19448007, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
107825 by U

niversity O
f Science, W

iley O
nline L

ibrary on [15/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the plasmaspheric plume. Note that φ = 0°, 90°, and − 90° correspond to the anti‐earthward, eastward, and
westward directions, respectively. Without density ducts, only the hiss rays with initial normal angles ψi > 6° and
azimuthal angles |φi − 115°| < 85° can migrate into the plasmaspheric core (Figure 4c). The addition of density
ducts allows almost all the hiss rays to migrate to the plasmaspheric core (Figure 4d). Because the plume hiss
waves are generated primarily at the quasi‐parallel normal angles, the ducting process appears to be crucial for the
plume hiss waves to permeate the entire plasmasphere.

We select hiss rays that are able to reach sufficiently close to Van Allen Probes A and B at 20:10 UT: magnetic
shell |ΔL| < 0.3, magnetic local time |ΔMLT|< 20 min, and magnetic latitude |ΔMLAT|< 3° (Figures 4a and 4b).
These rays are scattered around the initial normal angles ψi = 40° for the simulation with a smooth plume. In
contrast, for the simulation with a lumpy plume, the initial normal angles of selected hiss rays have extended
down to ψi = 15°. The total lifetimes of modeled hiss rays from the source region through Probe A to Probe B
range from 33 to 69 s. These rays take 15–42 s from Probe A to Probe B, which, at least to some extent, explains
the dispersion of the cross‐correlation coefficient over the lag time (Figure 2f). We further elaborate two
representative rays for the smooth (ψi = 45°, φi = − 156°) and lumpy (ψi = 21°, φi = − 102°) plumes (Figures 4a,
4b and 4e–4e), which take nearly the same time (25–26 s) from Probe A to Probe B (Figures 4e and 4f) as the
“optimal” lag time derived frommeasurements (Figure 2f). The two rays exhibit the most significant difference in
the normal angle. The addition of density ducts causes the repeated reflections of rays and then the fluctuations of
normal angles. The total time of these hiss rays propagating from the plasmaspheric plume to the plasmaspheric
core is 42 s, which may be interpreted as a lower limit of the hiss ray lifetime because of the absence of ray
observations after passing through Van Allen Probe B.

5. Conclusion and Discussion
We set out to test the hypothesis that hiss waves have a long lifetime allowing themselves to permeate the global
plasmasphere from a spatially restricted source. Although several modeling studies (Bortnik et al., 2003, 2008,
2011; Chen et al., 2009) predicted the lifetime of hiss rays on the order of 100 s, the propagation of hiss rays only
within 2–6 s has been experimentally verified (Bortnik et al., 2009; Wang et al., 2011; Li et al., 2015; Wu
et al., 2022). Our present observations and modeling establish the lower limit of 42 s for the lifetime of low‐
frequency hiss rays in the disturbed plasmasphere. These hiss waves were excited primarily along the field‐
aligned direction by energetic electrons near the equator in the middle piece (L = 7–8, MLT = 15) of the
plasmaspheric plume. The modeled hiss rays can propagate from the middle piece (L = 7–8, MLT = 15) of the
plasmaspheric plume, bounce between two hemispheres, pass through the near‐base piece (L= 5.8, MLT = 15.8)
of the plasmaspheric plume, and eventually drift into the plasmaspheric core (L = 4.1, MLT = 17.7). This mid‐
course propagation from the near‐base piece of the plasmaspheric plume to the plasmaspheric core was fortu-
nately detected by two magnetospheric spacecraft, whose elapsed time (∼27 s) is determined from the lag‐
correlation analysis of waves at the two places.

The migration of hiss waves from the plasmaspheric plume to the plasmaspheric core could largely benefit from
the ducting process by the plasmaspheric density irregularities. Without these plasmaspheric density ducts, the
quasi‐parallel plume hiss waves would be difficult to enter the plasmaspheric core. In the low‐altitude ionosphere,
the gradient drift instability (Gondarenko & Guzdar, 2004; Keskinen et al., 2004; Rathod et al., 2021) and
temperature gradient instability (Greenwald et al., 2006; Hudson & Kelley, 1976) can produce density fluctua-
tions on a scale from several to tens of km, which may further cascade into fluctuations of 10 m scale (Eltrass
et al., 2016; Heine et al., 2017; Nishimura et al., 2021). When mapped from the ionosphere to the magnetosphere,
these density fluctuations appear as the field‐aligned density ducts with cross‐field sizes of ∼0.1–100 km (Gu
et al., 2022; Nishimura et al., 2022). Other than the ionospheric instabilities, the local interchange instability and
turbulent flow could also produce the small‐scale density irregularities in the plasmaspheric plume (Borovsky &
Denton, 2008; Huang et al., 1990; Rodger et al., 1998; Sazykin et al., 2002). These physical processes of small
scales could eventually affect the large‐scale distribution of plasmaspheric hiss waves.

Data Availability Statement
Van Allen Probes data are available at NASA’s Space Physics Data Facility (SPDF) Website (2023); THEMIS
data are available at THEMIS mission GOES mission homepage (2023); GOES data are available at GOES
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mission SPEDAS homepage (2023); ERG (Arase) data are available at ERG Science Center (2023) operated by
ISAS/JAXA and ISEE/Nagoya University (Miyoshi, Hori, et al., 2018); SYM‐H and AE data are available at
World Data Center (WDC) for GeomagnetismWebsite (2023). In this work, we have analyzed the following data:
(a) Van Allen Probes: EMFISIS L2 WFR Cross Spectral Matric data (Kletzing & Smith, 2022), L3 MAG
magnetic field data (Kletzing, 2022b), L4 HFR density data (Kletzing, 2022a); EFW L2 1‐second sensor potential
data (Wygant, 2022); ECT L3 Release4 HOPE electron fluxes data (Funsten, 2022), MagEIS electron fluxes data
(Spence et al., 2022); (b) THEMIS: FGM L2 magnetic field data (2023); ESA L2 spacecraft potential data
(Angelopoulos, Carlson, & McFadden, 2023); SCM FFT power spectra of magnetic field data (Angelopoulos,
Bonnell, et al., 2023); (c) Arase: MGF‐L2 8s v03.02 data (Matsuoka, Teramoto, Imajo, et al., 2018); PWE/OFA‐
L3 spec v01_03 data (Kasahara, Kojima, et al., 2021); PWE/HFA‐L3 v02_03 data (Kasahara, Kumamoto,
et al., 2021); PWE/EFD‐L2 potential v01_01 data (Kasahara et al., 2020); ORB‐L2 v03 data (Miyoshi, Shinohara,
& Jun 2018); (d) GOES‐13: GOES 13 EPS/MAGD electron flux data (2023); GOES 13 MAG L2 magnetic field
data (2023). Ray tracing program for Investigation of WAves Near the Earth (IWANE) is available at homepage
of the Space Group of Kyoto University (Kimura, 2023). SPEDAS v5.0 code (Angelopoulos et al., 2019) for the
electron density evaluation of THEMIS is downloaded from SPEDAS homepage (2023).
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