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Abstract

Coronal jets are one of the most common eruptive activities in the solar atmosphere. They are related to rich
physics processes, including, but not limited to, magnetic reconnection, flaring, instabilities, and plasma heating.
Automated identification of off-limb coronal jets has been difficult due to their abundant nature, complex
appearance, and relatively small size compared to other features in the corona. In this paper, we present an
automated jet identification algorithm (AJIA) that utilizes true and fake jets previously detected by a laborious
semiautomated jet detection algorithm (SAJIA) as the input of an image segmentation neural network U-NET. It is
found that AJIA can achieve a much higher (0.81) detecting precision than SAJIA (0.34) while giving the
possibility of whether each pixel in an input image belongs to a jet. We demonstrate that with the aid of artificial
neural networks, AJIA can enable fast, accurate, and real-time off-limb coronal jet identification from Solar
Dynamics Observatory/Atmospheric Imaging Assembly 304Å observations, which are essential in studying the
collective and long-term behavior of coronal jets and their relation to the solar activity cycles.

Unified Astronomy Thesaurus concepts: Solar activity (1475); Plasma jets (1263); Neural networks (1933);
Observational astronomy (1145); Astronomy image processing (2306); Solar cycle (1487)

1. Introduction

Jets are abundant in the solar atmosphere. A large amount of
jets with various scales and temperatures originating from
different locations on disk or off limb have been observed
using modern telescopes since the first observations of Hα
surges (“cold jets”; Newton 1934) almost one century ago.
Based on their different sizes, solar jets are often divided into
two categories: small-scale jets and large-scale jets.

Small-scale jets are usually referred to as spicules. Spicules
are further subdivided into the traditional Secchi type (also
called as type I) and the ones generated by magnetic
reconnections (type II, which is also referred to as rapid
blue/red excursions), while both are usually observed in the
chromosphere and transition region (e.g., Beckers 1968;
Sterling 2000; De Pontieu et al. 2007; Sekse et al. 2012).
The importance of small-scale jets is well known as they are
suggested to have substantial contributions to coronal
heating and solar wind acceleration (e.g., He et al. 2009; Moore
et al. 2011; Goodman 2012; Samanta et al. 2019). The
triggering mechanisms of spicules are complicated, which
could involve (combined) effects of small-scale magnetic
reconnections (e.g., De Pontieu et al. 2007; Samanta et al.
2019), waves (e.g., Heggland et al. 2007; Jess et al.
2009, 2012; Dey & Chatterjee 2022), and vortices/Alfvén

pulses (e.g., Liu et al. 2019a, 2019b; Oxley et al. 2020;
Battaglia et al. 2021; Scalisi et al. 2021b, 2021a).
Large-scale jets have been given different names based on

the passbands they are observed in, including white-light jets
(e.g., Filippov et al. 2011; Kudriavtseva & Prosovetsky 2019),
Hα surges (e.g., Brooks et al. 2007; Zhelyazkov et al. 2015),
UV/EUV jets (e.g., Liu et al. 2015a; Chen et al. 2017; Liu
et al. 2019c; Zhang et al. 2021; Schmieder et al. 2022), and
X-ray jets (e.g., Shibata et al. 1992; Cirtain et al. 2007).
Although various models have been proposed (e.g., Shibata
et al. 1992; Canfield et al. 1996; Moore et al. 2010; Sterling
et al. 2015; Pariat et al. 2015), almost all have magnetic
reconnections, especially the interchange reconnection between
open and closed magnetic field lines, involved as the triggering
mechanism of large-scale jets. In addition, they have been
widely found to be related to many phenomena at different
scales, including rotational motions (e.g., Liu et al. 2014;
Raouafi et al. 2016; Shen 2021), waves/instabilities (e.g.,
Giannios & Spruit 2006; Cirtain et al. 2007; Kuridze et al.
2016; Bogdanova et al. 2018; Zhao et al. 2018; Li et al. 2023),
blobs (e.g., Zhang & Ji 2014; Ni et al. 2017; Chen et al. 2022),
radio bursts (e.g., Mulay et al. 2016; Hou et al. 2023),
“switchbacks” in the solar wind (e.g., Sterling & Moore 2020;
Raouafi et al. 2023), and coronal mass ejections (CMEs; e.g.,
Shen et al. 2012; Liu et al. 2015b; Zheng et al. 2016; Chen
et al. 2021). These have made solar jets one of the most
important phenomena that connect small and large scales,
lower and higher layers, and flows and waves in the highly
magnetized and stratified solar atmosphere.
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Owing to their complex observational features and abundant
nature, it has been rare to study the statistical and long-term
behavior of solar jets using a data set with a large number of
events although we have now entered an era with a tremendous
amount of high spatial and high temporal resolution observa-
tions of the Sun. Musset et al. (2024) started a citizen science
initiative called “Solar Jet Hunter” to utilize human resources
worldwide in manually identifying coronal jets observed in the
Atmospheric Imaging Assembly (AIA; Lemen et al. 2012)
304Å passband on board the Solar Dynamics Observatory
(SDO; Pesnell et al. 2012). Although more than 800 coronal
jets have been reported, this approach suffers from some
shortcomings, including the low efficiency of manual identi-
fication and the inconsistency of the criteria between different
individuals, where the latter could pose unknown bias when
statistical analysis is performed.

To facilitate more systematic studies of off-limb coronal jets
with less human biases, Liu et al. (2023) developed a
semiautomated jet identification algorithm (SAJIA) based on
applying traditional computer vision techniques to SDO/AIA
304Å observations. More than 1200 coronal jets were detected
by applying SAJIA to SDO/AIA 304Å observations obtained
from 2010 to 2020. A power-law distribution of the jets’
thermal energy was found to be highly consistent with those of
microflares, indicating that they should result from the same
nonlinear statistics of scale-free processes. This result was also
supported by the first coronal jet butterfly diagram, which is
usually seen in the migration of sunspots during solar activity
cycles. By doubling the number of observations and extending
them to the end of 2021, Soós et al. (2024) expanded the data
set to more than 2700 coronal jets and found some intriguing
oscillatory behaviors from their spatial-temporal distributions.
It is worth noting that many of these detected jets are in polar
regions. Previous studies suggest that solar jets at various
scales (e.g., Chandrashekhar et al. 2014; Chitta et al. 2023;
Uritsky et al. 2023) could contribute to energizing the solar
wind. The above data set would enable further such studies
from a statistical perspective.

However, it should be noted that the automated identification
part in SAJIA has a relatively low precision (∼0.34) and
suffers from the CCD degradation of the AIA instrument (Dos
Santos et al. 2021; Liu et al. 2023; Soós et al. 2024). A way to
address the above issue was to check the identification results
manually to eliminate fake jets. The above process was time
consuming and prevented SAJIA from being deployed for real-
time jet detection. This paper presents the automated jet
identification algorithm (AJIA) with the U-NET neural network
(Ronneberger et al. 2015). We demonstrate that the average
precision of AJIA is above 0.8, which enables a more accurate
coronal jet detection. The paper is organized as follows: the
data set is described in Section 2, with the model and training
process detailed in Section 3. Results are presented in
Section 4, before the conclusions and discussions in
Section 5.

2. Data

True and fake jets detected by SAJIA are used as the input of
the U-NET model to be detailed in Section 3. The method of
SAJIA (Liu et al. 2023) is briefly recapped as follows:

1. For a given SDO/AIA 304Å image, a background is
constructed using four images obtained on the same day
and then subtracted from the given image.

2. The solar disk (with a radius of 1.02 Re) of the
background-removed image is masked as we only detect
off-limb jets.

3. The masked image (4096× 4096 pix2) is downgraded to
512× 512 pix2 to reduce the computational power
needed.

4. The downgraded image is then normalized and binarized
with given thresholds.

5. The Douglas–Peucker algorithm (Douglas & Peucker
1973) is employed to determine the shape of bright
features in the image and yield candidate polygons.

6. Polygons with four edges, inclination angles less than
60° and aspect ratios greater than 1.5 are kept as jet
candidates.

7. Each candidate is manually checked to determine whether
it is a true or fake jet.

By applying the above processes to SDO/AIA 304Å
observations from 2010 June 1 to 2021 December 31 with
six images per day at a cadence of 3 hr from 00 UT, 7890 jet
candidates were detected (Liu et al. 2023; Soós et al. 2024).
Among all the candidates, 2704 are found to be true jets, and
5186 are fake ones, resulting in a precision of 2704/
7890≈ 0.34. Initially, full-disk images that contain the above
jet candidates were used to build the input of the U-NET
model. However, it resulted in poor performance, with the
model generating all off-limb bright features but not focusing
on jets. This result was unsurprising as jets are relatively small
in the full-disk observations, and other bright features would
have introduced many distractions to the neural network model.
Considering that the largest detected jet has a length of

approximately 70 pixels, small patches of 96× 96 pix2

centered at each jet candidate are then extracted from the
masked observations (see the first three steps in SAJIA
described above). This particular size of patches could
minimize the appearance of nonjet features in the images
while ensuring that one single jet would not be cut into several
patches. These patches are then normalized to [0, 1] with a
threshold of 5, which was determined via trial and error. Some
examples of these patches are shown in column (a) in Figure 1,
where the first three rows are true jets, and the last two contain
fake jets. Patches with the same size are generated to serve as
the ground truth (labels) of the neural network, with pixels
covered by true jets set to 1 and all other pixels set to 0. Panels
in column (b) in Figure 1 show the ground truth of the
corresponding observations in panel (a). SAJIA detections are
depicted in panels in column (c).
The resulting data set contains 2704 (5186) pairs of image

and label patches of true (fake) jets. These true jets have
projected lengths in the plane of the sky from more than 10Mm
to about 330Mm. All jets are divided into two parts: 80% into
the train set and 20% into the validation set. However, the data
set is imbalanced as there are 91.7% more fake jets than true
jets. To solve this problem, new images and labels are
generated by randomly flipping and rotating (between ±0.4π,
big enough to introduce differences between the original and
created images, while still less than 0.5π above which many
parts of the images would be cropped) the original images and
labels of true jets. The above data augmentation is performed
separately in the train and test sets to avoid possible data
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Figure 1. Examples of coronal jets and detection results. Images in column (a) are patches of SDO/AIA 304 Å observations with a size of 96 × 96 pix2. Column (b)
lists the corresponding ground truths where yellow colors denote pixels belonging to jets. Column (c) shows detection results by the SAJIA developed by Liu et al.
(2023). Panels in column (d) are the jet detection results by the AJIA proposed in this paper.
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leakage. After the data augmentation, the data set is balanced
with 5186 fake jets and 5408 true jets. The final data set has
8474 (2120) pairs of images and labels in the train (test) set.

3. Model and Training

The U-NET convolutional neural network architecture (see
Figure 2) was initially proposed by Ronneberger et al. (2015)
for biomedical image segmentation purposes. It was applied to
transmitted-light microscopy images and won the ISBI Cell
Tracking Challenge 2015 (Ronneberger et al. 2015). U-NET
was then modified and successfully applied for different kinds
of image segmentation purposes, including 3D image segmen-
tation and road segmentation (e.g., Minaee et al. 2021).

U-NET contains several convolutional layers with different
filter sizes. In the first step, the input image with a size of
96× 96× 1 (yellow block in Figure 2) is taken into two
convolutional layers, each having 64 filters with a kernel size of
3× 3. In each layer, the rectified linear unit activation function
is used after each convolutional operation, where ( ) =xReLU

( )xmax 0, . The resulting image after the first step has a size of
96× 96× 64. This image is then downsampled to
48× 48× 64 by a max pooling operation (purple arrows in
Figure 2), where only the maximum value in every 2× 2
region in the image is kept and all other pixels are discarded.
The image is then taken into the next step, which contains two
convolutional layers but doubles the number of filters (128).

The above process is repeated until the image size is
downsampled to 6× 6 but with 1024 filters. Then, a reverse
series of operations of the above process is performed to
upsample (yellow arrows in Figure 2) the image until it again
has a size of 96× 96× 64. Two extra convolutional layers with

2 and 1 filters are used to generate the final output image (blue
block in Figure 2). This unique convolutional neural network is
named “U-NET” as its architecture resembles the letter U
(Figure 2). The left (right) part of U-NET is usually called the
encoder (decoder). Layers in the encoder are skip connected
with layers in the decoder (gray arrows in Figure 2). These skip
connections remind U-NET of the fine details learned in the
encoder that could be used to construct images in the decoder.
It has been found particularly effective and successful in image
segmentation as its contracting path (downsampling) can
capture the context of an image, and its symmetric expanding
path (upsampling) can enable precise localization (Ronneberger
et al. 2015). The loss function of U-NET is set to be the binary
cross-entropy loss, which is defined as follows:

( ) [ ( ˆ ) ( ) ( ˆ )] ( )å= + - -
=

L
N

y y y ylog
1

log 1 log 1 , 1
i

N

i i i i
1

where L is the loss. N is the number of pixels in each image. yi
is the value (0 or 1) of each pixel in the label, and ŷi is the
corresponding prediction value (0 to 1).
All 8474 pairs of images and labels in the train set were

taken into the above U-NET neural network to train a jet
identification model. Considering the capacity of the GPU
(Nvidia GeForce GTX 4090 with a RAM of 24 GB), the batch
size was set to be 256. Another vital hyperparameter during
training is the learning rate. The learning rate determines how
much the model weights are updated in response to the loss of
each batch. A too-big learning rate will result in the model
skipping the minimum of the loss function and making it hard
to converge, while a too-small learning rate will probably trap
the model in a local minimum of the loss function. A common

Figure 2. Architecture of U-NET. This cartoon is adopted from Ronneberger et al. (2015). See Section 3 for a detailed description of the U-NET architecture.
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practice is to set a relatively large learning rate at the beginning
of the training and decrease it along a given function at certain
steps. In the case of our model, a cosine decay function is used
to prevent the learning rate from decreasing too fast (see, e.g.,
Loshchilov & Hutter 2016, for more details).

Figure 3 depicts the losses obtained in the train (upper panel)
and validation sets (lower panel) with different initial learning
rates and decaying steps. An “infinite” decaying step represents
a fixed learning rate without decay during training. It can be
seen from Figure 3 that the minimum losses (in the order of
∼10−3) in both the train and validation sets can be achieved
when the learning rate is fixed at 10−4.

4. Results

4.1. Model selection

The blue curve in Figure 4 is the evolution of the training
loss, with a fixed learning rate of 10−4. It is seen that the
training loss decreases as the number of training epochs grows
and reaches its minimum of 1.2× 10−3 at 117 epochs. At 117
epochs, the validation loss (orange curve in Figure 4) is
5.5× 10−3, which is also around its minimum. Two other
commonly used parameters to measure the performance of
image segmentation tasks are the mean average precision
(mAP) and the mean intersection over union (mIoU). Here, we
report that, at 117 epochs, the trained model has an mAP of
0.87 and an mIoU of 0.50 for the training set and an mAP of
0.58 and an mIoU of 0.50 for the validation set.

Based on the above observations, we use the model trained
at 117 epochs as the final coronal jet identification model. This
model could take the 96× 96 patches of the SDO/AIA 304Å
observations as its input and automatically identify coronal jets
(thus named AJIA). Images in column (d) in Figure 1 are the
predictions by AJIA based on the inputs in column (a). Colors
in the images denote the possibility of the corresponding pixels
belonging to jets. A pixel with a value of 1 (0) means that AJIA
thinks there is a 100% (0%) chance that this pixel belongs to a

jet. In the first three rows, where true jets are present in the
input images, AJIA could successfully identify jets almost
identical to the ground truths. In the last two rows, where there
are no jets but our traditional jet identification algorithm SAJIA
(Liu et al. 2023) wrongly detects jets, AJIA successfully avoids
making the same mistakes.

4.2. Model Evaluation

To evaluate the performance of AJIA, a threshold needs to
be defined—only above which the detected feature by AJIA
can be considered a jet. For example, if we have a threshold of
T, a detected feature by AJIA can be considered a jet (true/
positive) only if the maximum predicted value of the feature by
AJIA is no less than T. Otherwise, it is considered as nonjet
(fake/negative). Panel (a) in Figure 5 shows how the recall, the
true negative rate (TNR), the precision, and the F-measure
evolve with different thresholds T. Recall, TNR, precision, and
F-measure are defined as follows:

( )

=
+

=
+

=
+

- =
* *

+

Recall
TP

TP FN
,

TNR
TN

TN FP
,

Precision
TP

TP FP
,

F Measure
2 Precision Recall

Precision Recall
, 2

where TP is true positive (AJIA successfully detects the jet in
the label), FN is false negative (AJIA misses the jet in the
label), TN is true negative (there is no jet in the label, and AJIA
also does not detect any jet), and FP is false positive (there is no
jet in the label but AJIA detects a jet). One can see from the
above definitions that recall represents the percentage of true
jets in the labels that are successfully detected by AJIA. TNR
denotes the percentage of fake jets in the labels that are also
considered fake jets by AJIA. Precision is the percentage of
true jets in all jets detected by AJIA. F-measure measures the
combined effect of precision and recall.
We can see from Figure 5(a) that both TNR and precision

increase as the threshold grows. However, the recall decreases

Figure 3. Model losses under different learning rates. The upper (lower) panel
shows the logarithm of the training (validation) losses for different
combinations of learning rates and decaying steps. A decaying step of Inf
means the learning rate is fixed without any decaying.

Figure 4. Training history with a fixed learning rate of 10−4. The blue (orange)
curve is the evolution of the training (validation) loss.
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with the threshold. When the threshold is around 0.76, the
F-measure peaks at ∼0.81, and all three other measurements
converge at similar values. This suggests that a threshold of
0.76 would give the most ideal and balanced performance.
Figure 5(b) is a comparison between the ground truths and the
predictions of AJIA. Among 1040 candidates identified by
AJIA, 835 (205) are true (fake) jets, yielding a precision
of ∼80.3%.

4.3. Application to Higher-cadence Data

The current data set used for building the model was
generated by Liu et al. (2023) and Soós et al. (2024) and
contains coronal jets detected with a cadence of 3 hr. This low
cadence, together with the relatively low precision of SAJIA,
results in a missing rate of ∼30% in nonpolar regions (see
estimations in Liu et al. 2023) and prevents us from further
studying the temporal evolution of the detected jets. The high
performance of AJIA indicated by its high recall, TNR,
precision, and F-measure, as detailed in the previous subsec-
tion, provides an excellent opportunity to look into the above
issue via automatically detecting jets with high accuracy at
higher cadences.

To test the application of AJIA to higher-cadence data, we
employed SAJIA to detect coronal jets at 1 hr intervals from
00:30 UT every day throughout 2011 January. SAJIA yields
409 jet candidates, compared to 68 jet candidates given by
SAJIA with a 3 hr cadence in 2011 January. After laborious
identification of these jet candidates by downloading and
checking their temporal evolution one by one, 235 are
identified as true, and the other 174 are fake. Among all fake
jets, ∼94% are (part of) prominences, CMEs, or coronal rains.
This gives a precision of SAJIA of ∼51%, consistent with the
findings in Liu et al. (2023) and Soós et al. (2024; also see
discussions in Section 5).
These jets were not included in the previous data set

employed to build AJIA and could be used to test the
application of AJIA to unknown events. Figure 6 depicts the
confusion matrix of AJIA’s prediction on the above 235 true
and 174 fake jets. TP, TN, FP, and FP are 213, 148, 26, and 22,
respectively. This indicates that the precision of AJIA in
detecting these unknown events is about 0.81. The recall, TNR,
and F-measure are 0.81, 0.80, and 0.81, respectively. These
values are consistent with what was found in the validation set
as described in the previous subsections and further suggest
AJIA’s potential to detect off-limb coronal jets accurately.

5. Conclusions and Discussions

In this paper, we presented the development of the
Automated Jet Identification Algorithm (AJIA), which is built
based on off-limb coronal jets detected by our previously
developed semiautomated jet identification algorithm (SAJIA;
Liu et al. 2023). These jets were fed into a U-NET
(Ronneberger et al. 2015) neural network to train the final
model. Evaluating AJIA on a test set containing 2120 true and
fake jets yields a precision, recall, TNR, and F-measure of
around 0.81, where the precision is significantly larger than that
of SAJIA (0.34).
It was found in Soós et al. (2024) that the precision of SAJIA

is heavily impacted by the CCD degradation of SDO/AIA.
Diamonds connected by dashed lines in Figure 7 are the
precisions of SAJIA measured each year (inferred from Table 1
in Soós et al. 2024), with colors denoting the normalized

Figure 5. Confusion matrix of the trained U-NET model. Panel (a) shows how
the recall (blue curve), TNR (orange curve), precision (green curve), and
F-measure (red curve) changes with different thresholds. See Equation (1) for
the definitions of the above measurements. Panel (b) is the distribution of true
and fake jets in the input labels and predictions made by AJIA.

Figure 6. Confusion matrix of AJIA with 1 hr cadence data. Similar to panel
(b) in Figure 5, this figure shows the distribution of true and fake jets in the
input labels and predictions made by AJIA from the 235 true and 174 fake jets
detected in 2011 January.
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number of events. In general, the precision of SAJIA undergoes
an overall decreasing trend, which is consistent with the overall
decreasing sensitivity of the SDO/AIA detectors (e.g., Dos
Santos et al. 2021). We demonstrate that AJIA is not affected
by the same effect although it was trained using SDO/AIA
304Å images before being corrected for CCD degradation.
Dots connected by solid lines in Figure 7 are the precisions of
AJIA measured each year, where colors are the normalized
number of events. It can be seen that the performance of AJIA
does not decrease with time, and its minimum value (>0.55 in
2018) is above the maximum precision of SAJIA (∼0.54
in 2010).

To conclude, AJIA is a step forward compared to SAJIA as
it is more precise (with a precision of 0.81) and not affected by
CCD degradation. AJIA is also fast, and it takes less than 6 s to
make predictions for all 2120 images in the test set (2.6 ms per
image). Another advantage of AJIA should be noted—it gives
the “possibility” of whether a pixel in the observation belongs
to a jet or not (see column (c) in Figure 1). This enables us to
generate jet heat maps directly from SDO/AIA 304Å
observations and allows real-time jet detection and visualiza-
tion. These advantages of AJIA are essential in enabling many
pieces of research, including, but not limited to, studying the
collective behavior of coronal jets over the long term, their
evolution over the solar activity cycles, and their relation with
other solar phenomena (see, e.g., Liu et al. 2023; Soós et al.
2024).

Future work will also focus on improving AJIA’s detection
precision, which might be achieved by adding several fully
connected layers after U-NET instead of giving a fixed
threshold, as was done in this work. Another future work will
utilize the improved model to detect more jets at a much higher
cadence (i.e., 1 hr or less) than 3 hr to explore the temporal
aspects of coronal jets, especially given the capability of AJIA
in accurately detecting jets from such data as described
in Section 4.3. This will also enable the study of their
velocities by developing a dedicated automated algorithm
using techniques, including, but not limited to, the surfing
transform technique (Uritsky et al. 2023), the Gaussian fitting
method (Chitta et al. 2023), and the optical flow estimation

(Fleet & Weiss 2006). Their kinetic energy would further be
estimated, and the existence of a power-law distribution, which
is essential in understanding the fundamental physics of the
release of free magnetic energy in the solar atmosphere, would
then be examined following Liu et al. (2023) and Uritsky
et al. (2023).
This will further enable a series of statistical studies that

were not done before due to the relatively small number of
events detected. For example, Liu et al. (2023) found the
“butterfly diagram” of coronal jets where the average latitudes
of jets migrate from mid-latitudes to the equator from the
beginning to the end of the solar activity cycle. It is well known
that magnetic elements in high latitudes also migrate toward the
polar regions throughout the solar cycle. However, this trend
was not seen in Liu et al. (2023), and whether its absence is
caused by the limited number of events or the possibly different
triggering mechanisms between jets originating from active
regions and nonactive regions is yet to be examined by building
a larger data set with more events.
By having more samples of off-limb coronal jets, the

distributions and differences of active-region, quiet-region, and
polar jets can be further studied. Their different behaviors
during solar activity can also be evaluated. The future large
data set would also enable statistical studies on how coronal
jets can gain their kinetic energy (e.g., Liu et al. 2014), how
many twists they release (e.g., Liu et al. 2019c), and how the
magnetic energy is distributed to different forms of energies
during their eruption (e.g., Liu et al. 2016). Moreover,
preliminary evidence of the so-called solar active longitude
(e.g., Gyenge et al. 2017) was given in both Liu et al. (2023)
and Soós et al. (2024), but more evidence can be supplied by
studying a significantly larger number of jets. Finding and
validating active longitudes from these small-scale events will
be significant for the theory and simulation of the solar
dynamo.
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