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Abstract Magnetospheric quasiperiodic whistler-mode emissions have long been considered a
consequence of the relaxation oscillation or the compressional ultralow-frequency wave modulation. Here
we experimentally demonstrate that the whistler-mode chorus, exohiss, and magnetosonic emissions can
be effectively modulated by the toroidal ultralow-frequency waves. On 04 August 2017, the solar wind
dynamic pressure fluctuations excited the fundamental toroidal standing Alfvén waves in the dayside
magnetosphere. These regular toroidal pulsations displayed the approximately same periods as the power
variations of the whistler-mode emissions from 50 Hz to 5 kHz. Along with the decay of the toroidal
pulsations, the quasiperiodic feature of these whistler-mode emissions gradually became indistinct.
However, no modulation signatures of background parameters and resonant particles for the
whistler-mode emissions were observable near the equator, and the exact cause for this phenomenon
remains to be elucidated.

Plain Language Summary Whistler-mode emissions contribute significantly to the Van Allen
radiation belt electron dynamics, and their power can exhibit quasiperiodic variations on a timescale
of tens of seconds to several minutes in the dayside magnetosphere. Since the 1960s, the quasiperiodic
whistler-mode emissions have been considered a consequence of the relaxation oscillation or the
compressional ultralow-frequency wave modulation. Using the Van Allen Probes data, we reveal here new
physical mechanism for the quasiperiodic whistler-mode emissions: The solar wind dynamic pressure
fluctuations trigger the magnetospheric fundamental toroidal standing Alfvén waves and then modulate
the whistler-mode chorus, exohiss, and magnetosonic emissions from 50 Hz to 5 kHz. Further investigation
of this unexpected phenomenon may deepen our understanding of the growth and propagation of
whistler-mode emissions and facilitate the radiation belt model developments.

1. Introduction
Chorus, hiss, and magnetosonic emissions are whistler-mode emissions observed commonly in the inner
magnetosphere (Burtis & Helliwell, 1975; Falkowski et al., 2017; Gurnett, 1976; Russell et al., 1969, 1970;
Thorne et al., 1973; Tsurutani & Smith, 1974, 1977; Tsurutani et al., 2014, 2009), which have been frequently
invoked to explain the complex dynamics of the Van Allen radiation belt electrons (Horne & Thorne, 1998;
Shprits, 2009; Summers et al., 1998; Thorne, 2010). These whistler-mode emissions are highly organized
by the plasmapause location (Malaspina et al., 2016): Chorus and exohiss are restricted outside the plas-
masphere (W. Li et al., 2009; Meredith et al., 2001; Zhu et al., 2015); plasmaspheric hiss is trapped in the
plasmasphere (Hayakawa & Sazhin, 1992; Meredith et al., 2004; Tsurutani et al., 2015, 2018; Su et al., 2018a,
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2018b); magnetosonic emissions occur more frequently outside than inside the plasmasphere (Kim & Chen,
2016; Ma et al., 2013; Shprits et al., 2013). Their free energies are ultimately provided by the anisotropic hot
electrons (Bortnik et al., 2008; Burtis & Helliwell, 1975; Thorne et al., 1979; Tsurutani et al., 1979) or the
velocity ring-distributed hot protons (e.g., Boardsen et al., 1992; Gulelmi et al., 1975; Perraut et al., 1982),
but the detailed generation processes remain to be fully understood.

In the dayside magnetosphere, the whistler-mode emissions often consist of repeated noise bursts with
a lifetime of tens of seconds to several minutes (Carson et al., 1965; Helliwell, 1965). To explain these
quasiperiodic emissions, two classes of physical scenarios have been proposed. One envisions the relaxation
oscillation of plasma instabilities (Davidson, 1979; Pasmanik, Demekhov, et al., 2004; Pasmanik, Titova,
et al., 2004; Trakhtengerts, 1995): (1) the waves grow and resonantly scatter the source particles; (2) when
the source distributions are sufficiently relaxed, the wave instabilities are halted; (3) as the fresh particles
drift into the source region, the wave instabilities are restarted; (4) the interplay between resonant instabili-
ties and external sources leads to a cyclic variation of the wave power. The other involves the modulation of
wave instabilities by the accompanied ultralow-frequency (ULF) waves (Helliwell, 1965; McPherron et al.,
1968; Sato & Fukunishi, 1981; Sato et al., 1974): (1) the ULF pulsations modulate the background parame-
ters and the resonant particle distributions; (2) the wave instabilities are cyclically turned on and off. For the
former scenario, few observational evidences (Titova et al., 2015) have been provided along with the theo-
retical and numerical progresses (Davidson, 1986; Demekhov & Trakhtengerts, 1994). In contrast, there is
evidence both for and against the latter scenario. Although the ULF pulsations were found to substantially
modulate the linear growth rates of whistler-mode emissions in several events (W. Li et al., 2011; Manninen
et al., 2010), there are still the quasiperiodic whistler-mode emissions occurring without the observable ULF
pulsations (Boardsen et al., 2014; Kitamura et al., 1969; Němec et al., 2014; Sato et al., 1974; Titova et al.,
2015; Tsurutani & Smith, 1974) or with the ULF pulsations of the essentially different periods (Němec et al.,
2015). Particularly, previous theoretical (e.g., Coroniti & Kennel, 1970; Kimura, 1974; Watt et al., 2011) and
observational (e.g., Němec et al., 2014; Sato & Fukunishi, 1981; Tixier & Cornilleau-Wehrlin, 1986) works
have focused on the compressional ULF wave modulation, and the potential contributions of the poloidal
and toroidal ULF pulsations have long been ignored or even denied (Sato & Kokubun, 1980). Recently, by
analyzing magnetospheric waves following a substorm injection, Jaynes et al. (2015) suggested the mod-
ulation of chorus emissions by a combination of toroidal and poloidal ULF waves. However, in the event
reported by Jaynes et al. (2015), the toroidal and poloidal ULF waves (with a period of ∼2 min) occurred
with roughly twice the periodicity as the chorus power variation (with a period of ∼45 s to 1 min), differ-
ent from the previous one-to-one correlation between the compressional ULF waves and the chorus power
variation (e.g., W. Li et al., 2011).

In this letter, we show the surprising observations by the Van Allen Probes (Mauk et al., 2013) of the mag-
netospheric chorus, exohiss, and magnetosonic emissions simultaneously modulated by the fundamental
toroidal standing Alfvén waves following the solar wind dynamic pressure fluctuations. Our observa-
tions clearly demonstrate the importance of toroidal ULF pulsations in the generation of quasiperiodic
whistler-mode emissions over a broad frequency range.

2. Data and Method
In 2012, the National Aeronautics and Space Administration (NASA) launched the Van Allen Probes mis-
sion to explore the fundamental physics of the Earth's radiation belts (Mauk et al., 2013). Here we use the
data from the Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) suite (Kletzing
et al., 2013), the Electric Field and Waves (EFW) instrument (Wygant et al., 2013), and the Energetic Parti-
cle, Composition, and Thermal Plasma (ECT) suite (Spence et al., 2013) on this mission. The EMFISIS suite
contains the triaxial fluxgate magnetometer, the Waveform Receiver and the High Frequency Receiver. The
EMFISIS suite and the EFW instrument together measure direct current (DC) and alternating current (AC)
electromagnetic fields. The ECT suite consists of the Helium Oxygen Proton Electron Mass Spectrometer
(Funsten et al., 2013), the Magnetic Electron Ion Spectrometer (Blake et al., 2013), and the Relativistic Elec-
tron Proton Telescope (Baker et al., 2013), which collectively detect electrons and ions with energies from
electronvolts to tens of megaelectron volts.

From measurements of the magnetic field and the upper hybrid resonance frequency by the EMFISIS suite,
we can determine the local cold electron density (Kurth et al., 2014). The spacecraft potential measurement
by the EFW instrument allows an alternative estimation of the cold electron density. Specifically, the electron
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Figure 1. Magnetospheric responses to solar wind disturbances on 04 August 2017: (a) solar wind magnetic filed and
dynamic pressure; (b) geomagnetic activity indices; magnetospheric spin-averaged fluxes of hot (c) electrons and
(d) protons; (e) magnetospheric toroidal, poloidal, and compressional pulsations. The vertical dashed lines mark the
sudden variations in the solar wind dynamic pressure.

density is assumed to be ne = a1 exp(bx) + a2 exp(cx), where x = (V1 + V2)∕2 is the average of opposing
antenna potentials over a spin period (∼11 s) of the spacecraft, and a1, a2, b, and c are constants determined
by fitting to the density data from the EMFISIS suite. We use the TS04 package (Tsyganenko & Sitnov, 2005)
to model the ratio of the local magnetic field to the equatorial field. For ULF pulsations, only the two electric
components in the spin plane of the satellite are available, and we derive the third component along the spin
axis from the assumption E · B = 0. Note that the angle between satellite spin plane and the magnetic field
ranged from 40◦ to 60◦ during this specific event. We project the ULF pulsations on the mean field aligned
coordinate system (with the p axis along the 1,000-s running averaged magnetic field, the a axis along the
cross product of the p axis and the satellite position vector, and the r axis completing the triad) and then
apply a band-pass filter (a 20-s running average minus a 500-s running average) on the signals to reduce the
noise. These ULF signals are classified into toroidal (Er and Ba), poloidal (Ea and Br), and compressional
(Bp) components, respectively. For whistler-mode emissions, we estimate the wave vector directions and the
magnetic field polarizations by applying the singular value decomposition technique (Santolík et al., 2002,
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Figure 2. Magnetospheric responses to solar wind disturbances on 04 August 2017: (a) geomagnetic activity index and
cold electron density; magnetospheric wave (b and c) power, (d) normal angle, (e) ellipticity (negative for left hand
polarized waves and positive for right-handed ones) and (f) parallel Poynting flux sign (positive for parallel flowing and
negative for antiparallel flowing). The vertical dashed lines mark the sudden variations in the solar wind dynamic
pressure.

2003) on the wave spectral matrices and calculate the wave Poynting fluxes from the cross-power spectra
between components of the electric and magnetic fields (Santolík et al., 2010).

3. Observations
Figures 1 and 2 present an overview of interplanetary conditions, geomagnetic activities, and magneto-
spheric plasma and waves on 04 August 2017. Under the northward interplanetary magnetic field condition,
the magnetosphere was free from both storms (SYM-H > 10 nT) and substorms (AE < 180 nT). In the day-
side (12 < |MLT| < 16, MLT = magnetic local time) equatorial (|MLAT|< 8◦, MLAT = magnetic latitude)
plasmatrough (L > 5 and ne < 30cm−3), the Van Allen Probe A observed the magnetospheric responses
to the solar wind dynamic pressure fluctuations (marked by vertical dashed lines): the enhancement or
reduction of hot particle fluxes, the emergence of ULF pulsations, and the intensification or weakening of
whistler-mode emissions. Similar phenomena had been reported in the previous works (e.g., Claudepierre
et al., 2010; Falkowski et al., 2017; Fu et al., 2012; Liu, Su, Gao, Reeves, et al., 2017; Liu, Su, Gao, Zheng, et al.,
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Figure 3. Zoom-in view of magnetospheric waves from 03:30 UT to 04:00 UT: (a) chorus, (b) exohiss, and
(c) magnetosonic power; (d) toroidal, (e) poloidal, and (f) compressional pulsations. The overplotted vertical dashed
lines help identify the quasiperiodic structures.

2017; Liu et al., 2018b; Su, Zhu, Xiao, Zheng, et al., 2015; Su, Zhu, Xiao, Zong, et al., 2015; Rae et al., 2012).
The ULF pulsations were predominant in the toroidal mode of 5–9 mHz with azimuthal magnetic pulsa-
tions and radial electric pulsations. Essentially different from the sinusoidal waveforms of the toroidal ULF
components, the poloidal and compressional ULF components often behaved in an irregular manner. The
whistler-mode emissions can be clearly classified into right circularly polarized chorus (0.3–0.7fce), right
linearly polarized exohiss (0.2–0.8 kHz), and highly elliptically polarized magnetosonic emissions (< flhr).
Chorus emissions with a gap at 0.5fce were excited by the anisotropic hot electrons near the magnetic equa-
tor (e.g., W. Li et al., 2009; Su et al., 2014; Tsurutani & Smith, 1977, 1974) and propagated quasi-parallel
toward higher latitudes. Exohiss emissions leaked from the high-latitude plasmapause (Bortnik et al., 2008;
Gao et al., 2018; Thorne et al., 1973; Zhu et al., 2015) and propagated mainly toward the equator. Magne-
tosonic emissions were at quasi-perpendicular propagation and closely tracked the lower hybrid frequency
(e.g., Tsurutani et al., 2014), which were likely generated by the ring-distributed hot protons (e.g., Gary
et al., 2010).

Figure 3 shows a zoom-in view of magnetospheric waves from 03:30 UT to 04:00 UT. At 03:32 UT, the
solar wind dynamic pressure enhancement intensified both chorus and magnetosonic emissions but weak-
ened exohiss emissions. As discussed by Liu et al. (2018b), the intensification of chorus and magnetosonic
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Figure 4. Responses of background parameters and resonant particles of the whistler-mode emissions to toroidal
ultralow-frequency pulsations: (a) total magnetic field strength, cold electron density (circles for the Electric and
Magnetic Field Instrument and Integrated Science suite and line for the Electric Field and Waves instrument) and
azimuthal magnetic perturbation; spin-averaged and differential fluxes of hot (b–d) electrons and (e and f) protons.
The vertical dashed lines are exactly the same as those in Figure 3.

emissions probably resulted from the adiabatic acceleration of source particles (Figures 1c and 1d). The
weakening of exohiss emission was likely a result of the enhanced Landau damping at high latitudes or the
geomagnetic field reconfiguration. During the next ∼25 min, all these whistler-mode emissions exhibited
the synchronous and quasiperiodic (2–3 min) variations in power. After the solar wind dynamic pressure
reduction at 03:58 UT, these quasiperiodic whistler emissions became unobservable. Because the three types
of emissions had essentially different origins, their independent relaxation oscillations were difficult to pro-
duce the same variation cycle. In contrast to the irregular ULF poloidal and compressional components, the
regular toroidal ULF pulsations always exhibited the approximately same periods as the power variations of
these whistler-mode emissions. Corresponding to the toroidal ULF pulsations with a decreasing amplitude,
the quasiperiodic feature of these whistler-mode emissions gradually became indistinct. Our observations
strongly imply the modulation of these whistler-mode emissions from 50 Hz to 5 kHz by the coexisting
toroidal ULF pulsations. Clearly, the azimuthal magnetic pulsations leaded the radial electric pulsations by
approximately 90◦ in phase, and near the magnetic equator, the azimuthal magnetic pulsations were quite
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small (below 2 nT) in contrast to the large radial electric pulsations (up to 4.5 mV/m). The acting toroidal
ULF pulsations associated with the solar wind dynamic pressure fluctuations were most likely to be the
fundamental standing Alfvén waves (Anderson et al., 1990; Hudson et al., 2004; Takahashi et al., 2006). It
should be mentioned that in the time range of interest, the Van Allen Probe B within the duskside plas-
masphere observed the concurrence of toroidal, poloidal, and compressional ULF pulsations with small
amplitudes and the quasiperiodic plasmaspheric hiss at frequencies greater than ∼3 kHz (supporting infor-
mation Figure S1). However, the ULF pulsations (with periods ∼2 min) were unlikely to be responsible for
the quasiperiodic variations (∼12 s) in the hiss power.

In Figure 4, we analyze the evolution of background parameters and resonant particles for the whistler-mode
emissions. The background magnetic field strength and the cold electron density determine the wave dis-
persion relation, and the resonant particles contribute to growth or decay of the whistler-mode emissions.
In contrast to the local generation of chorus and magnetosonic emissions, the source locations of exohiss
emissions were likely beyond the orbital coverage of the Van Allen Probes. A plausible scenario is that the
chorus emissions at larger radial distances propagate into the plasmasphere, evolve into the plasmaspheric
hiss emissions (Bortnik et al., 2008; Falkowski et al., 2017; W. Li et al., 2015; Tsurutani et al., 2015), leak
from the dayside high-latitude plasmapause, and finally become the exohiss emissions (Gao et al., 2018; Liu,
Su, Gao, Zheng, et al., 2017; Zhu et al., 2015). At the location of Van Allen Probe A, the minimum resonant
energies of electrons (Summers et al., 2007) were about 3 keV for chorus at 3 kHz and 120 keV for exohiss
at 0.4 kHz, and the growth of magnetosonic emissions was related to the proton rings centered at 17 keV.
At 03:32 and 03:58 UT, the magnetic field strength, the cold electron density, and the hot particle fluxes
responded promptly to the sudden variations of solar wind dynamic pressure. However, both background
parameters and resonant particles exhibited no observable ULF modulation signatures from 03:32 to 03:57
UT. The random fluctuations of the derived density did not correlate with the ULF pulsations, and the mod-
ulation signatures of the particle fluxes at the other energy channels were also unobservable (Figures S2–S4).
These observations were quite different from the situations in the previous compressional ULF modulation
events (e.g., J. Li et al., 2017; W. Li et al., 2011; Xia et al., 2016).

4. Discussions
In the past, the compressional ULF modulation of chorus has been frequently observed both on ground and
in space (e.g., Kimura, 1974; W. Li et al., 2011; Manninen et al., 2010; Sato & Fukunishi, 1981; Xia et al., 2016),
the modulation of chorus by a combination of the toroidal and poloidal ULF waves has been examined in
an event study (Jaynes et al., 2015), no observations have explicitly shown the modulation of exohiss by any
ULF modes, and the accompanied compressional ULF pulsations have been found to possess the systemat-
ically larger periods than the quasiperiodic magnetosonic emissions (Němec et al., 2015). Our present study
clearly demonstrates the toroidal ULF modulation of three types of whistler-mode emissions approximately
from 50 Hz to 5 kHz. Particularly, the chorus power variation is found to show a one-to-one correlation
with the toroidal ULF waves, different from the previous observations of Jaynes et al. (2015). Such a modu-
lation phenomenon appears to be not rare in the dayside magnetosphere following the solar wind dynamic
pressure fluctuations. On the same day as Figure 3, there were also signatures of the toroidal ULF modula-
tion of exohiss and magnetosonic emissions from 02:50 to 03:05 UT (Figure S5) and from 05:00 to 05:20 UT
(Figure S6). Compared to the interval of Figure 3, the intervals of Figures S5 and S6 with the weaker ULF
pulsations allowed the less obvious quasiperiodic variations in the whistler-mode power. Another interest-
ing feature of Figure 3 is the falling frequency magnetosonic emissions in each cycle, different from the
previously reported rising frequency magnetosonic emissions (Boardsen et al., 2014; Fu et al., 2014). These
magnetosonic frequency sweep structures might be composed of the non-time-continuous harmonic emis-
sion lines along the proton gyrofrequency harmonics in the high-resolution frequency-time spectrogram
(Němec et al., 2015; Walker et al., 2016). Note that the magnetosonic harmonic rising and falling frequency
emission lines deviating from the proton gyrofrequency harmonics had been reported under the conditions
of the substorm proton injection (Su et al., 2017) or the nonlinear wave-wave interactions (Liu et al., 2018a).

For the fundamental standing Alfvén waves, the magnetic field pulsations have a node at the equator
(Southwood & Kivelson, 1981). Under the ideal magnetohydrodynamic condition, the density should vary
in phase with the magnetic field. When the satellite flies slightly away from the equator, the pulsations of
magnetic field and density remain at low level. For the hot electrons with the cyclotron, bounce, and drift
frequencies substantially deviating from the observed toroidal wave frequency, their adiabatic oscillations
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are ignorable corresponding to the tiny (<1%) oscillation of the toroidal ULF magnetic field (Figure 4). To
explain the quasiperiodic chorus and exohiss emissions in resonance with hot electrons, we may consider
the ULF modulation of the geomagnetic field configuration. For the chorus generated at the equator, both
theoretical (Katoh & Omura, 2013; Katoh et al., 2018; Omura et al., 2008) and observational (Keika et al.,
2012; Liu, Su, Gao, Zheng, et al., 2017) studies have suggested that the spatial inhomogeneity of the back-
ground magnetic field can control the adiabatic force on the resonant electrons and then affect the nonlinear
growth process. For the exohiss emissions leaking from the high-latitude plasmapause, their propagation
paths and then the near-equatorial power should also depend on the geomagnetic field configuration. As
for the hot (10–20 keV) protons, their bounce frequencies in a dipole field are quite close to the toroidal
wave frequencies (5–9 mHz), allowing the action of bounce resonance (Southwood & Kivelson, 1981, 1982).
There have been observations of the bounce resonance between poloidal ULF pulsations and hot ions in
the inner magnetosphere (Yang et al., 2010). By analogy, we can expect the fundamental toroidal standing
Alfvén waves to modulate the hot proton distributions and then the magnetosonic power. Probably because
of the rapid relaxation by the magnetosonic emissions or the limited detection efficiency of the Van Allen
Probes, only small irregular oscillations of these hot proton fluxes (Figure S4) were recorded.

5. Summary
Magnetospheric quasiperiodic whistler-mode emissions were usually considered a consequence of the relax-
ation oscillation (Davidson, 1986; Demekhov & Trakhtengerts, 1994; Titova et al., 2015) or the compressional
ULF modulation (Coroniti & Kennel, 1970; Kimura, 1974; Němec et al., 2014; Sato & Fukunishi, 1981; Tixier
& Cornilleau-Wehrlin, 1986; Watt et al., 2011). Recently, Jaynes et al. (2015) suggested the modulation of
chorus by a combination of toroidal and poloidal ULF pulsations following the substorm injection. On
the basis of the analysis of a rare event where chorus, exohiss, and magnetosonic emissions exhibited the
synchronous and quasiperiodic variations in power, we here show that the toroidal ULF pulsations can
effectively modulate the whistler-mode emissions over a broad frequency range. On 04 August 2017, the
solar wind dynamic pressure fluctuations produced the dayside magnetospheric ULF pulsations predomi-
nantly in the fundamental toroidal standing Alfvén mode. These toroidal ULF pulsations with the regular
sinusoidal waveforms displayed the approximately same periods as the whistler-mode power variations
throughout the event. Along with the decay of the toroidal ULF pulsations, the whistler-mode quasiperiodic
feature became indistinct. However, different from the situations in the previously reported compressional
ULF modulation events (J. Li et al., 2017; W. Li et al., 2011; Xia et al., 2016), there were no observable mod-
ulation signatures of background parameters and resonant particles for the whistler-mode emissions in this
specific event. From the available measurements, we speculate on the following as plausible explanations
for this phenomenon: (1) The fundamental toroidal pulsations of magnetic field and plasma density had a
node at the equator. (2) The hot electrons conserved the adiabatic invariants and exhibited physically lit-
tle variations near the equator. The toroidal modulation of the geomagnetic field configuration caused the
quasiperiodic variations in the nonlinear growth of chorus and in the propagation path of exohiss. (3) The
hot protons were in bounce resonance with the toroidal ULF pulsations, producing the quasiperiodic vari-
ation in the linear growth of magnetosonic emissions. The satellite did not record the expected oscillations
of hot proton fluxes because of the rapid relaxation or the limited detection efficiency. Future observational,
theoretical, and numerical studies are required to examine the proposed scenarios.
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