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ABSTRACT

Context. Understanding the horizontal velocity field of the highly magnetized plasma within the solar atmosphere is essential to under-
standing the complicated dynamics and energy evolution of solar phenomena at various scales, from small-scale swirls to coronal mass
ejections. Most traditional methods estimate the photospheric horizontal velocity field by tracking bright features. These reconstructed
velocity fields may differ from the ground truth because the photosphere is not a single layer but has a depth of ∼500 km. The observed
bright features are combined emissions from different heights in the photosphere.
Aims. In this work, we aim to develop a series of models for tracking the photospheric horizontal velocity field with high accuracy
from high-resolution observations using a modified shallow U-Net architecture and to evaluate the performance of different models.
Methods. We used photospheric intensity, vertical magnetic field strength, and horizontal velocity fields from a realistic 3D radiative
numerical simulation of a quiet-Sun region generated using the Bifrost code to train and validate the shallow U-Net models. We built
three shallow U-Net models: an intensity model using photospheric intensity as the input, a magnetic model using vertical magnetic
field strength as the input, and a hybrid model combining both.
Results. All three models yield good performances, among which the hybrid model shows the best performance with a correla-
tion coefficient of 0.85 with the ground-truth velocity field. Comparisons with the Fourier local correlation tracking (FLCT) and the
DeepVel methods demonstrate the superiority of the shallow U-Net models. Based on the research of this work, we have released a
software named SUVEL for public use to extract photospheric horizontal velocity fields from high-resolution observations. SUVEL is
only designed to be used on photospheric observations in the quiet-Sun regions with high temporal (best at 10 s, preferably less than
50 s) and high spatial resolutions.

Key words. Sun: atmosphere – Sun: general – Sun: photosphere

1. Introduction

Tracking the velocity field of highly magnetized solar plasma is
a key objective in understanding the complicated dynamics at
various layers of the solar atmosphere from the photosphere to
the corona. Understanding plasma motions provides vital infor-
mation about the Sun’s dynamic behavior, magnetic activities,
and the resulting space weather phenomena that can impact
the Earth. The movement of plasma in the solar atmosphere,
especially the photosphere, where the plasma β > 1, is closely
related to a range of phenomena from small scales to large scales,
including the generation and propagation of vortices and Alfvén
pulses (e.g., Wang et al. 1995; Velli & Liewer 1999; Bonet et al.
2008; Attie et al. 2009; Shelyag et al. 2011, 2013; Requerey et al.
2018; Liu et al. 2019c,d; Tziotziou et al. 2023), the emergence
and evolution of sunspots (e.g., Evershed 1910; Brown et al.
2003; Yan & Qu 2007; Su et al. 2008; Bi et al. 2016; Gou et al.
2024), the formation and propagation of spicules and jets (see
e.g., Sterling 2000; Pariat et al. 2009; Matsumoto & Shibata

⋆ Corresponding author: jiajialiu@ustc.edu.cn

2010; Raouafi et al. 2016; Liu et al. 2016; Huang et al. 2019; Tian
et al. 2021; Dey et al. 2022), and the initiation and dynamics
of solar flares and coronal mass ejections (CMEs) (e.g., Nindos
& Zhang 2002; Schrijver 2009; Chen 2011; Shen et al. 2012;
Wang et al. 2018; Georgoulis et al. 2019; Zhou et al. 2022).
Understanding the plasma velocity field helps to elucidate
the complex interactions between the Sun’s magnetic fields
and plasma, providing insights into the processes that govern
solar activities.

The solar plasma’s line-of-sight (LOS) velocity component
can be obtained using spectroscopic observations. Space-borne
observatories such as Hinode (Kosugi et al. 2008), the Inter-
face Region Imaging Spectrograph (IRIS, De Pontieu et al.
2014), and the Chinese Hα Solar Explorer (CHASE, Li et al.
2022) , and ground-based telescopes including the Swedish
Solar Telescope (SST, Scharmer et al. 2003), the New Vac-
uum Solar Telescope (NVST, Liu et al. 2014), and the Daniel
K. Inouye Solar Telescope (DKIST, Rimmele et al. 2020) pro-
vide high-resolution spectroscopic data that allow for precise
measurements of Doppler shifts at various heights of the solar
atmosphere, offering estimates of the velocity along the line of
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sight. These measurements are critical for investigating the solar
atmosphere’s velocity structure and impact on solar features with
different spatial and temporal scales. Numerous significant find-
ings have been made based on the Doppler velocities obtained
from spectral observations of the solar atmosphere. This topic is
among the most important in solar and stellar physics research.
We will not list all the literature due to the vast number of
papers, but readers are encouraged to look into some relevant
research. Nevertheless, the LOS velocity alone is insufficient for
a complete characterization of the solar plasma flows, as it only
provides a projection of the velocity along the observer’s view-
ing angle and neglects the horizontal components of the velocity
field.

Various techniques have been developed to map the horizon-
tal velocity field at the solar photosphere. For studies involving
a limited number of features or events, the horizontal velocity
field could be measured using manual methods such as con-
structing the time-distance plots along the propagating direction
of the target motions. While effective for specific applications,
these manual methods are time-consuming and lack automation.
Thus, automated processes have been introduced. For exam-
ple, one of the most widely used techniques is the Fourier
local correlation tracking method (FLCT, Welsch et al. 2004;
Fisher & Welsch 2008). Local correlation tracking (LCT) meth-
ods estimate the 2D horizontal velocity field by calculating the
correlation between the intensity (brightness) features in two
successive images taken within a short interval. Despite its suc-
cessful applications in tracking solar horizontal velocity fields,
studies have shown that FLCT usually underestimates the actual
speed and should be used with caution (e.g., Verma et al. 2013;
Louis et al. 2015). Another disadvantage of FLCT when applied
to photospheric observations is that the estimated velocity field
may be biased because the observed photospheric intensity is
generally an integration of the emission over the LOS, i.e., the
observed features in the images may not be located at the same
layer.

One way to bypass FLCT’s above shortcomings is to use
the photospheric magnetic field to estimate its horizontal veloc-
ity field (e.g., Schuck 2006, 2008). The most used methods
are the differential affine velocity estimator (DAVE, Schuck
2006) for the LOS magnetic field observations and DAVE4VM
(Schuck 2008) for the vector magnetic field observations. DAVE
and DAVE4VM have been extensively used to reconstruct the
horizontal velocity fields, especially in active regions. These
reconstructed horizontal velocity fields can be used to estimate
the variations of the magnetic energy, helicity, and magnetic
twist (e.g., Kusano et al. 2002; Berger & Field 1984; Liu et al.
2013a; Tziotziou et al. 2015; Wang et al. 2017; Liu et al. 2018;
Korsós et al. 2022), as well as the input of realistic data-driven
numerical simulations (e.g., Liu et al. 2019a).

One shortcoming of these traditional methods is the rela-
tively slow calculation speed, though parallelization techniques
have been used. In recent years, deep learning techniques have
shown great promise in automating the tracking of the solar hor-
izontal velocity fields. Masaki et al. (2023) proposed to estimate
the horizontal velocity field using one intensity image at only
a specific moment for the input of a neural network. Despite
the relatively low correlation coefficient between the evaluated
and the ground-truth velocities, the physics of how the veloc-
ity field could be derived from one intensity map instead of at
least two consecutive ones remains questionable. Asensio Ramos
et al. (2017) and Tremblay & Attie (2020) employed two different
neural network architectures and built models named DeepVel
and DeepVelU with the numerical simulation data as their inputs

to estimate the horizontal velocity field. Although the perfor-
mances were found to be good, the temporal (30 s) and spatial
(48 km pixel−1) resolutions were relatively low. This was later
improved by Ishikawa et al. (2022), whose temporal and spatial
resolutions are 35 s and 42 km, respectively. Instead of using
numerical simulation data to train the neural networks, Shang
et al. (2023) developed a model based on PWCNet to estimate
the horizontal velocity field specifically from the Hα and TiO
observations by NVST. Considering that the highest available
(and future) spatial resolution provided by DKIST (Rimmele
et al. 2020), the European Solar Telescope (EST, 4-m aperture,
under construction, Collados et al. 2013), and the Chinese Giant
Solar Telescope (CGST, 8-m aperture, actively promoted, Liu
et al. 2013b) (will) have pixel scales of 10–20 km, a neural
network model able to reconstruct the photospheric horizontal
velocity field from these extremely high-resolution observations
is urgently needed. Moreover, most of the above models only
use the intensity data as their inputs. The contribution of the
photospheric magnetic field strength in estimating the horizontal
velocity field is not considered.

In this paper, we introduce a new method for tracking the
photospheric horizontal velocity field from observations with
high temporal and spatial resolutions using shallow U-Net mod-
els, a convolutional neural network known for its efficacy in
image segmentation tasks (Ronneberger et al. 2015). The shal-
low U-Net architecture, with its relatively small number of layers
compared to the original U-Net architecture, offers a promising
trade-off between computational efficiency and model perfor-
mance. The built models will take simultaneous data of the
photospheric intensity and LOS magnetic field strength as input
to achieve better performance. The rest of this paper is organized
as follows: Data and methods will be described in Sect. 2, with
the results presented in Sect. 3, followed by the comparison and
generalization test in Sect. 4, and conclusions and discussions in
Sect. 5.

2. Data and methods

The data utilized for training and testing in this work is from
a realistic numerical simulation of a quiet-Sun region by the
Bifrost code (Gudiksen et al. 2011). Bifrost was built by con-
sidering the radiative transfer effect in the energy balance equa-
tion, with the capability of solving the Magnetohydrodynamics
(MHD) equation in three-dimensional space. It has been applied
to realistically simulate active regions, quiet-Sun regions, and
more in a variety of studies (see, e.g. Carlsson et al. 2016). The
simulation data employed to train and validate the neural net-
works are bounded in a 6 Mm × 6 Mm quiet-Sun region with
a 2.93 km pixel size located at the photosphere (τ500 = 1, where
τ500 is the optical depth at 500 nm), resulting in 2048× 2048 pix2

in the field of view (FOV). There are 440 frames in the dataset
with a temporal cadence of 10 s.

Considering the pixel size of the photospheric observations
with the highest resolution is ∼12 km at the TiO passband by
DKIST (e.g., Rimmele et al. 2020) with currently the world’s
largest aperture (4 m) of solar observations, the original numeri-
cal simulation data is then downgraded by a factor of 4, resulting
in data cubes of 440 × 512 × 512 pix3 for each physical parame-
ter contained in the simulation with a pixel size of 11.71 km. The
physical parameters used in this work are photospheric intensity
(I), vertical magnetic field strength (Bz), plasma speed along the
x-axis (vx), and plasma speed along the y-axis (vy). The photo-
spheric intensity I is the intensity of the continuum bin in the
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Fig. 1. Flow chart of the three shallow U-Net models. Photospheric intensity and vertical magnetic field (Bz) data are from the numerical
simulation detailed in the main text. Three models are illustrated in this flow chart. Model 1 (intensity model) takes three consecutive frames
of the photospheric intensity as input. Model 2 (magnetic model) takes three successive frames of the photospheric vertical magnetic field strength
as input. Model 3 (hybrid model) combines the inputs and outputs of Model 1 and Model 2 as its input. The outputs of the three models are
images with two channels; the first channel is the velocity field along the x direction (vx) and the second channel is the velocity field along the y
direction (vy). Here, δt represents the cadence of the data (10 s). Subscripts i, m, and h denote outputs of the intensity, magnetic, and hybrid models,
respectively.

multi-group opacity method (Nordlund 1982), and there is no
meaningful physical unit for the photospheric intensity obtained
from the simulation. I is then normalized to [0, 1] based on its
maximum (0.3) and minimum values (0.15). The vertical mag-
netic field strength Bz has a maximum value of 1891 G(auss) and
a minimum value of –1807 G. Considering that about 98% of
Bz has an absolute value less than 200 G, Bz is capped between
[–200 G, 200 G] and then normalized to [0, 1]. The horizon-
tal velocities (vx and vy) have maximum and minimum values of
11.5 km/s and –10.4 km/s. To maximize the generalization of the
models to be built when applied to new data, the units of vx and
vy are converted to pixel per frame (PPF) and then normalized to
[0, 1] between –10 PPF and 10 PPF.

The distributions of all the above physical parameters are
checked individually in each frame before the normalization, and
frames with invalid or infinite values are omitted to maintain the
sanity of the whole dataset. To allow the models used to capture
more small-scale details in the input images, each frame (with a
size of 512 × 512 pix2) is divided into 4×4 equal-sized patches,
resulting in patches with a size of 128 × 128 pix2. Examples
of these patches are depicted in Figure 1, showing the overall
framework of the built models, which will be detailed below. As
one can see from Figure 1, there are in total three models built:
Model 1 (the intensity model) taking three successive frames
of I as the input, Model 2 (the magnetic model) taking three
consecutive frames of Bz as the input, and Model 3 (the hybrid
model) taking both I and Bz together with the outputs of Mod-
els 1 and 2 as the input. The outputs of these three models are the
reconstructed horizontal velocity fields vx and vy, but are given
different symbols (subscripts i for the intensity model, m for
the magnetic model, and h for the hybrid model) to distinguish
between their outputs. To obtain the velocity field at time t, three
frames of the intensity (vertical magnetic field strength) at t − δt,

t, and t + δt are needed for Model 1 (Model 2), where δt = 10 s
is the cadence of the simulation. These six frames (three frames
of the intensity and three frames of the vertical magnetic field
strength), together with the outputs (four frames) of Model 1 and
Model 2, are combined to serve as the input of Model 3 (see
Fig. 1). These models are built with shallow U-Net architectures.

The original U-Net convolutional neural network was pro-
posed by Ronneberger et al. (2015) and applied to the segmenta-
tion task for biomedical images. It was named “U-Net” because
its architecture resembles the letter “U.” There have been several
different variations of U-Net that revealed good performances in
various tasks, including “Attention U-Net” with attention gates
added to the architecture (Oktay et al. 2018), “TransUNet” to
enable explicit modeling of the long-range dependency in images
(Chen et al. 2021), and many more. Besides its success in other
fields, U-Net has also been used for solar and space physics
research. For example, Liu et al. (2024) developed an automated
jet detection algorithm to find off-limb coronal jets based on
the U-Net architecture. Zheng et al. (2024) employed a U-Net
model to identify and track filaments from the Hα observa-
tions by the Chinese Hα Solar Explorer (CHASE, Li et al.
2022). An automated and bias-free sunspot detection method
was recently proposed by Chen et al. (2025), which is also based
on the U-Net architecture. After a series of trial-and-error tests,
we found that the original U-Net and TransUNet would lead to
over-fitting (good performance in the training set but lousy per-
formance in the validation set) with the specific inputs in this
work. Thus, adapted from the original U-Net, we have designed
a shallow U-Net architecture depicted in Figure 2. We demon-
strate that the shallow U-Net architecture, with its relatively
small number of layers compared to the original U-Net, offers a
promising trade-off between computational efficiency and model
performance.
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Fig. 2. Architecture of the shallow U-Net. This figures is a modification of Figure 2 in Liu et al. (2024). See Sect. 2 for a detailed description of the
shallow U-NET architecture.

The light yellow block on the top left in Figure 2 represents
the input, which has a size of 128 × 128 × n, where n = 3 for
Models 1 and 2 and n = 10 for Model 3. In the first step, the input
image is fed into two convolutional layers, each having 64 filters
with a kernel size of 3×3. In each layer, the Rectified Linear Unit
(ReLU) activation function is used after each convolutional oper-
ation, where ReLU(x) = max(0, x). The resulting image after the
first step is then down-sampled to 64×64 by a max pooling oper-
ation (purple arrows in Fig. 2), where only the maximum value
in every 2× 2 region in the image is kept, and all other pixels are
discarded. This operation is added to increase the ability of the
architecture to fit nonlinear relations and to minimize the chance
of over-fitting. The image is then taken into the next step, which
contains two convolutional layers with 128 filters.

The above process is repeated with the number of filters
doubling each step until the image size is down-sampled to
16 × 16 with 512 filters. Then, a reverse series of operations of
the above process (yellow arrows in Fig. 2) is performed and
skip connected to the left part of the shallow U-Net to up-sample
the image until it has a size of 128 × 128. These skip con-
nections remind the shallow U-NET of the previously learned
fine details. Two extra convolutional layers, both with two fil-
ters, are used to generate the final output images with a size
of 128 × 128 × 2, where the first and second channels of the
last dimension are vx and vy, respectively (see the blue block
in Fig. 2). The architecture’s left (right) part is often called the
encoder (decoder).

3. Results

After removing invalid patches with infinite or invalid values, the
final dataset built contains 6843 sets of instances. As illustrated

above, each instance includes eight images, i.e., three consec-
utive images of the photospheric intensity (I), three successive
images of the photospheric vertical magnetic field strength (Bz),
and two images of the horizontal velocity field (vx and vy). The
dataset is then randomly shuffled and divided into two parts:
the training set (∼80%, 5458 instances) and the validation set
(∼20%, 1385 instances). The training set is used to train the shal-
low U-Net models, resulting in the intensity model (Model 1),
the magnetic model (Model 2), and the hybrid model (Model 3).
The validation set is employed to evaluate the performance of
the above three models. Panels a1–a4 in Figure 3 are examples
of one instance in the dataset with vx in panel a1, vy in panel
a2, intensity in panel a3, and Bz in panel a4. The vector velocity
field is also visualized as black arrows in panel a3. It is noted
that all three models are trained independently, while Model 3
takes the input and output of Models 1&2 as its input. These
models are trained with up to 1000 epochs, with the training pro-
cess stopped when the loss of the validation set does not improve
within 50 epochs.

In this section, we will describe the training and validation
results of the intensity model before presenting the training and
validation of the magnetic and hybrid models.

3.1. The intensity model

The target of training a neural network is minimizing the loss
function between the output and the ground truth labels. In the
case of tracking the photospheric horizontal velocity fields, the
labels are vx and vy from the numerical simulation, and the task
of the built shallow U-Net model is to reconstruct a horizon-
tal velocity field as similar to the ground truth as possible. This
means choosing a suitable loss function and the learning rate
(the step size at which the optimization algorithm updates the
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Fig. 3. Example velocity fields by the shallow U-Net models. Panels in the first column are the ground-truth vx (a1) and estimated vx by the intensity
model (b1), magnetic model (c1) and hybrid model (d1), respectively. Panels in the second column are similar to panels in the first column, but
for the velocity field along the y direction (vy). The background in panel (a3) shows the photospheric intensity with the black arrows depicting the
vector velocity field. Panel (a4) represents the photospheric vertical magnetic field strength. Backgrounds in panels (b3)–(d3) are the cosine of the
angle (θ) between the estimated and ground-truth velocity field by the three shallow U-Net models, with the black arrows depicting the estimated
vector velocity fields by the models. Panels (b4)–(d4) are the distributions of the velocity differences between the ground-truth and estimated
velocity fields by the three shallow U-Net models.
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Table 1. Evaluation metrics for the intensity model.

Loss function Learning rate RMSE (PPF) MAE (PPF) COS CC SSIM

MSE 0.1 1.124 0.872 0.997 0.751 0.781
MAE 0.1 1.076 0.821 0.997 0.772 0.786

MASE 0.01 1.042 0.79 0.997 0.784 0.791
LCOS 0.01 1.062 0.809 0.997 0.776 0.790

Notes. The four loss functions are MS E for the mean square error, MAE for the mean absolute error, MAS E for a combination of MS E and MAE,
and LCOS for a customized loss function. The evaluation metrics contain the RMS E (root mean square error), MAE, COS (average cosine of the
angle between the reconstructed velocity field and the ground truth), CC (correlation coefficient), and S S IM (structural similarity). See the main
text for the definitions and formulas of the loss functions and the evaluation metrics. Values in red are the best ones of each evaluation metric.

model’s parameters during training) is critical to finding and
building the most accurate model.

Table 1 lists the evaluation metrics of the intensity model
on the validation set with different learning rates. The loss func-
tions are MS E (mean square error), MAE (mean absolute error),
MAS E (a combination of MS E and MAE), and a customized
loss function LCOS . The definitions of these loss functions are:

MS E =
1
N

∑[
(vxi − vx)2 + (vyi − vy)2

]
, (1)

MAE =
1
N

∑[
|vxi − vx| + |vyi − vy|

]
, (2)

MAS E = MAE + α · MS E, (3)

LCOS = MAE + β · (1 −COS ). (4)

Here, vx (vxi) and vy (vyi) are the ground truth (reconstructed
values by the intensity model) of the horizontal velocity field in
the x direction and y direction. N is the number of pixels in all
instances in the validation set. COS is the average cosine of the
angle (θ) between the reconstructed velocity field and the ground
truth, which is defined as

COS =
1
N

∑ vxi · vx + vyi · vy√
v2xi + v

2
yi ·

√
v2x + v

2
y + ϵ

, (5)

where ϵ is a small number used to avoid division by zero. α and
β in the above equations are used to scale the different losses
into the same order of magnitude. Running some test pieces of
training revealed that the MAE is, on average, 10 times larger
than the MS E and 10 times larger than 1 −COS . So, both α and
β have been set to 10 in this work.

The first row in Table 1 lists the evaluation metrics used.
They are the RMS E (square root of MS E, Eq. (1)), MAE
(Eq. (2)), and COS (Eq. (5)). Note that the RMS E and MAE
in the evaluation metrics are rescaled to have their units as pixel
per frame (PPF) to allow an intuitive sense of the actual errors
in the velocity fields. CC is the correlation coefficient between
the estimated and ground-truth velocity fields, ranging from –1
to 1, which considers the pixel-to-pixel relation in the images.
S S IM is the structural similarity between the reconstructed
and ground-truth velocity fields. It is based on comparing three
measurements associated with the pixel values, contrast, and
structure. A value close to 1 indicates the two compared images
have high similarity. Details on the definition of S S IM can be
found in Equations (2)–(13) in Wang et al. (2004).

Considering that the maximum values of vx and vy are less
than 10 PPF, 10 pixels at each boundary of the images will be

omitted in calculating the evaluation metrics for all the mod-
els in the rest of this paper. In practice, the velocity field of
these omitted pixels could be easily recovered by having over-
laps of at least 20 pixels in each direction when cutting a bigger
FOV into patches with a size of 128 × 128 pix2. For each of the
four loss functions, we train a series of shallow U-Net models
with different learning rates (10−4, 10−3, 10−2, 10−1) as the initial
value of the Adaptive Gradient (Adagrad) optimizer (e.g., Ward
et al. 2018). These models for each loss function are then evalu-
ated based on the above evaluation metrics, and only the model
with the best performance is kept. The second column in Table 1
shows the learning rate that results in the best performance with
different loss functions. It is seen that although different loss
functions lead to models with similar performances, the model
with MAS E as the loss function (Eq. (3)) and a learning rate of
0.01 leads to a better result. The RMS E and MAE of the inten-
sity model are as low as ∼1.04 PPF and ∼0.79 PPF, respectively.
This means that the reconstructed velocity field (vxi and vyi) is
on average 1 PPF away from the ground-truth velocity field (vx
and vy). COS is very close to 1, indicating that the reconstructed
velocity field points in almost the same direction as the ground-
truth velocity field on most pixels. CC and S S IM are ∼0.78 and
0.79, respectively, suggesting the high correlation and structural
similarity between the reconstructed and ground-truth velocity
fields.

Panels b1, b2, and the black arrows in panel b3 in Figure 3 are
one example of the reconstructed velocity field. Compared with
panels a1–a3, one can find that the overall distributions of the
reconstructed and ground-truth velocity fields are very similar,
with the reconstruction lacking some detailed structures. This is
consistent with the fact that most deviations happen at locations
with many small-scale structures, as seen as the green areas in
the cos(θ) distribution (Fig. 3b3). Figure 3b4 shows the differ-
ence (residual) between the absolute value of the reconstructed
(vi) and the ground truth (v) velocity fields. In most cases, the
absolute difference is less than 1 PPF with maximum values less
than 3 PPF, which is consistent with what we have found in the
evaluation metrics MAE and RMS E.

Figure 4a1 is the pixel-to-pixel relation between the recon-
structed vxi by the intensity model and the ground truth vx. Colors
in Figure 4a1 depict the number density distribution of all points
in the scatter plot, with warmer colors denoting higher num-
ber densities. Most points are located at the diagonal, indicating
good alignment between the reconstructed and the ground-truth
velocity fields. A good linear relation can be seen with a CC
of 0.80. The slope (1.08) is very close to 1 with an intercept of
0.22, meaning that the intensity model generally overestimates
vx slightly. These observations are the same for the velocity field
along the y direction (Fig. 4a2). Panel a3 in Figure 4 is the distri-
bution of the angle (θ) between the reconstructed by the intensity
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Fig. 4. Correlation between the Shallow U-Net velocity fields and the ground truth. Panels (a1), (b1) and (c1) are the pixel-to-pixel correlations
between the ground-truth vx and the model estimated vx by the three shallow U-Net models. Colors in these panels depict the number densities of
points at each coordinate, with warmer colors for higher number densities. Black dashed lines are the corresponding linear fit results, with their
functions displayed on the top left corner of each panel. Panels (a2), (b2), and (c2) are similar to panels (a1), (b1), and (c1) but for vy. Panels (a3),
(b3), and (c3) are the distribution of the angles between the ground-truth velocity fields and the estimated velocity fields by the three shallow U-Net
models.

model and the ground-truth velocity fields. In most (∼82%)
cases, the angle is less than 50◦, showing the good alignment
between the directions of the reconstructed and the ground-truth
velocity fields. In only 7% cases, the angle is above 90◦.

3.2. The magnetic and hybrid models

Unlike the intensity model (Model 1), the magnetic model
(Model 2) takes three consecutive frames of the vertical mag-
netic field strength as its input (Fig. 1). However, similar to the
intensity model, the final magnetic model is also selected from a
series of models with different loss functions and learning rates.
The second row in Table 2 lists the loss function and learning rate
used to build the best magnetic model and its evaluation metrics.

The magnetic model performs slightly better than the intensity
model (first row in Table 2). The RMS E drops to less than 1
(0.96 PPF), with the MAE dropping from 0.79 PPF to 0.74 PPF.
CC and S S IM rise from 0.78 and 0.79 by the intensity model to
0.81 and 0.80 by the magnetic model, respectively.

Panels c1–c2 in Figure 3 exhibit the reconstruction by the
magnetic model (with three successive frames centered at the
vertical magnetic field shown in Fig. 3a4) of the velocity field
in Figures 3a1–a3. Compared to the velocity field given by the
intensity model in Figures 3b1–b2, the velocity field given by
the magnetic model reveals more detailed structures that are
consistent with the ground-truth velocity field in panels a1–
a2. Although the direction of the reconstructed velocity field
shows more deviation from the ground-truth velocity field for
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Table 2. Evaluation metrics for all presented models in this work.

Model Loss function Learning rate RMSE (PPF) MAE (PPF) COS CC SSIM

Model 1 (intensity model) MASE 0.01 1.042 0.790 0.997 0.784 0.791
Model 2 (magnetic model) MASE 0.01 0.961 0.745 0.998 0.806 0.799

Model 3 (hybrid model) MASE 0.01 0.842 0.639 0.998 0.851 0.826
FLCT-I / / 1.712 1.339 0.993 0.229 0.655

FLCT-M / / 1.669 1.077 0.995 0.517 0.669
Original DeepVel MSE 0.0001 3.174 2.566 0.980 0.592 0.485
Retrained DeepVel MSE 0.0001 1.505 1.201 0.994 0.533 0.665

Notes. Models 1, 2, and 3 are the intensity, magnetic, and hybrid models built on a shallow U-Net architecture. FLCT-I and FLCT-M are the
velocity fields derived from the photospheric intensity and vertical magnetic field strength, respectively, using the FLCT method (e.g. Fisher &
Welsch 2008). The last two rows are results from the original DeepVel (Asensio Ramos et al. 2017) and the retrained DeepVel (Sect. 4.2). See the
main text for the definition of the loss functions and evaluation metrics.

this particular instance, evidenced by the distribution of cos(θ)
in Figure 3b3, the overall alignment between the reconstructed
and ground-truth velocity fields are better in the magnetic field
model (COS = 0.998 in the second row in Table 2). Comparison
between Figures 3b4 and 3c4 reveals that in regions where the
intensity model overestimates the velocity, the magnetic model
mainly underestimates it. This indicates that a model considering
both the intensity and magnetic field strength would probably
perform better. This is indeed the case for the hybrid model,
which is detailed below.

Figure 4b1 is the pixel-to-pixel relation between the recon-
structed vxm by the intensity model and the ground truth vx.
Again, most points are located at the diagonal, showing good
alignment between the reconstructed and ground-truth velocity
fields. A better linear relation can be seen with an improved CC
of 0.82, compared to that of the intensity model in Figure 4a1.
The slope (0.99) is almost 1 with an intercept of –0.08, show-
ing no systematic overestimation or underestimation of vx by
the magnetic model. The performance of the magnetic model
on predicting vy (Fig. 4b2) is not as good as its performance
on predicting vx, but still better than the performance of the
intensity model. Panel b3 in Figure 4 is the distribution of the
angle (θ) between the reconstructed by the magnetic model and
ground-truth velocity fields. It reveals very similar results with
the intensity model that in most (∼82%) cases, the angle is less
than 50◦, and in only 7% cases, the angle is above 90◦.

The hybrid model (Model 3) takes advantage of the infor-
mation provided by both the photospheric intensity and vertical
magnetic field strength. It takes three frames of the intensity,
three frames of the vertical magnetic field strength, the output
(vxi and vyi) of the intensity model, and the output (vxi and vyi)
of the magnetic model as its input to reconstruct the horizon-
tal velocity field (vx and vy) at the simulated photosphere. Fed
with this additional information, the hybrid model is expected
to perform better than the intensity and magnetic models. This
is proven by the evaluation metrics in the third row of Table 2.
The best model is again found to be built with MAS E as the
loss function and a learning rate of 0.01. The RMS E and MAE
are further reduced to 0.84 PPF and 0.64 PPF, respectively. The
hybrid model improves CC and S S IM to 0.85 and 0.83, respec-
tively. These improvements in the evaluation metrics are also
evidenced by the example in Figures 3d1–d4. The velocity fields
(vxh and vyh) in Figures 3d1–d2 have more details than those
reconstructed by the intensity (Figs. 3b1–b2 or the magnetic
model (Figs. 3c1–c2) and are more similar to the ground truth
in Figures 3a1–a2. There are much fewer pixels with values less

than 0 in the cos(θ) distribution (Fig. 3d3), suggesting that the
hybrid model could produce velocity fields that are more aligned
with the ground truth. The residual velocity norm (vh - v) is also
further reduced (Fig. 3d4).

The correlations between the reconstructed velocity field by
the hybrid model and the ground-truth velocity field are shown
in Figures 4c1 and c2. The correlation coefficients are further
improved to 0.86 and 0.84 for vx and vy, respectively. The slope
between vx (vy) and vxh (vyh) is 1.00 (1.04) with an intercept of –
0.07 (–0.02). This means the hybrid model does not overestimate
or underestimate the horizontal velocity fields. In 87% cases, the
angle between the reconstructed and the ground-truth velocity
fields is below 50◦, and in only 5% cases, the angle is above 90◦.

4. Comparison and generalization tests

In this section, we will describe a series of benchmark tests
between the three models mentioned above and two other mod-
els built on traditional and neural network methods. Further tests
of the generalization ability of the three shallow U-Net models
on the noisy data and data from a different numerical simulation
are also presented in this section.

4.1. Comparison with FLCT

As described in the introduction, the Fourier Local correlation
tracking (FLCT, Welsch et al. 2004; Fisher & Welsch 2008)
method has been widely used to estimate the horizontal velocity
field at various layers from the photosphere to the corona in the
solar atmosphere since its inception. Many research papers have
proven its success, and in this subsection, we will apply FLCT to
the particular numerical simulation data employed in this paper,
evaluate its performance using the evaluation metrics introduced
in the above subsections, and compare it with the shallow U-Net
models constructed in this paper. The version of FLCT used is
v1.06, with the threshold and low-pass spatial filtering left unde-
fined. Following suggestions in literature (e.g. Louis et al. 2015;
Liu et al. 2019c) and to be consistent with that the maximum
velocity norm in the data is less than 10 PPF, the pixel width
of the Gaussian filter (sigma) is also set to 10. A new feature in
v1.06 is to add the bias correction to the calculation. Preliminary
tests by Liu et al. (2019b) suggest that turning on the bias correc-
tion can increase the calculated horizontal velocity field strength
by ∼80%, but still underestimate the actual velocity field by a
factor of ∼3. In the rest of this subsection, we will discuss the
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Fig. 5. Example velocity fields by FLCT. Panels are similar to their corresponding panels in Figure 3. FLCT-I (FLCT-M) represents the resulting
velocity fields by the FLCT with the photospheric intensity (vertical magnetic field strength) as the input.

velocity fields estimated by FLCT with the photospheric inten-
sity (labeled as FLCT-I) and vertical magnetic field (labeled as
FLCT-M) as its input, respectively.

Panels in the first row in Figure 5 show an example instance
of the estimated velocity field (vx f i and vy f i) by FLCT-I whose
ground truth is shown in the first row of Figure 3. A direct com-
parison between Figures 5a1–a2 and Figures 3a1–a2 reveals that
FLCT-I only recovers very little of the original velocity field.
Zero to negative values of cos(θ), which represent large angles
(90◦ to 180◦) between the directions of the estimated and ground-
truth velocity fields, are almost randomly distributed throughout
the whole FOV. The residuals of the velocity norm are rela-
tively high, with absolute values up to 5 PPF, while the absolute
velocity residuals of the shallow U-Net models are below 3 PPF.
Figures 5b1–b4 are similar to Figures 5a1–a4, but are results of
FLCT-M. It is hard to see which of FLCT-I and FLCT-M per-
forms better, but we can find the answer from their statistics in
Figure 6.

Figure 6 is similar to Figure 4 but for velocity fields estimated
by FLCT-I (panels a1–a3) and FLCT-M (panels b1–b3). The cor-
relation between the velocity field (vx f i and vy f i) given by FLCT-I
and the ground-truth velocity field (vx and vy) is barely above
0.20. The slopes of the linear fit (black dashed lines in Figs. 6a1
and a2) are both 0.16, suggesting that FLCT-I underestimates
the horizontal velocity field by a factor of about 6. The num-
ber density distributions of all points in the scatter plot (colors in
Figs. 6a1 and a2) also show the poor alignment between the esti-
mated and ground-truth velocity fields. In ∼46% cases, the angle
between the FLCT-I estimated velocity field and the ground-
truth velocity field is less than 50◦, and in 32% cases, the angle
is above 90◦ (Fig. 6a3). The performance of FLCT-M is better
with CCs above 0.5 (Figures 6b1 and b2). The slopes of the lin-
ear fit (black dashed lines in Figs. 6b1 and b2) are around 0.5,
indicating that FLCT-M only underestimates the photospheric

horizontal velocity field by a factor of 2. The better performance
of FLCT-M over FLCT-I is also seen in the number density dis-
tributions in Figures 6b1–b2, as well as in Figure 6b3, where in
62% cases the angle between the FLCT-M reconstructed veloc-
ity field and the ground-truth velocity field is less than 50◦, and
in 19% cases, the angle is above 90◦.

The middle two rows in Table 2 list the evaluation metrics of
FLCT-I and FLCT-M. The RMS E and MAE for FLCT-I (FLCT-
M) are ∼1.71 PPF (∼1.67 PPF) and ∼1.34 PPF (∼1.08 PPF),
respectively. The alignment between the reconstructed velocity
field and the ground-truth velocity field is worse than that of the
shallow U-Net models with COS as 0.993 and 0.995, respec-
tively, for FLCT-I and FLCT-M. CC and S S IM of FLCT-I are
only ∼0.23 and ∼0.66. The performance of FLCT-M is better
with a CC of ∼0.52 and an S S IM of ∼0.67. The poor perfor-
mance of FLCT-I is expected because the photospheric intensity
is an integration of the combined emission at different heights in
the photosphere. Features in the photospheric intensity images
would indicate the plasma motion not only at the τ500 = 1 layer
but also at other layers. Horizontal velocity fields derived by
FLCT from comparing the intensities at different frames are
likely not the same as the horizontal velocity field at the τ500 = 1
layer. These findings that FLCT performs better when taking the
magnetic field strength as the input than when taking the inten-
sity as the input is consistent with what was found in Li et al.
(2023).

4.2. Comparison with DeepVel

The neural network architecture DeepVel proposed by
Asensio Ramos et al. (2017), as mentioned in the intro-
duction, also takes numerical simulation data as inputs to
train the network. Although the model (hereafter referred to
as the original DeepVel) trained on the simulation data with a
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Fig. 6. Correlation between the FLCT velocity fields and the ground truth. Panels are similar to panels in Figure 4 but for the results of FLCT-I
(top) and FLCT-M (bottom).

cadence of 60 s and a pixel size of 96 km may not be fit for
other simulation data and observations, Asensio Ramos et al.
(2017) suggested retraining DeepVel on data with corresponding
temporal and spatial resolutions may improve its performance.
Therefore, following the instructions available at their reposi-
tory1, a version of DeepVel (hereafter referred to as the retrained
DeepVel) with new weight parameters was retrained using our
training set described in Sect. 2. It is noted that the two versions
of DeepVel both use MS E as the loss function with the same
learning rate of 10−4, as shown in Table 2 following the sugges-
tions by Asensio Ramos et al. (2017). Similar to Sect. 4.1, we
will employ both the original DeepVel and the retrained DeepVel
to our validation set, to evaluate their performances using the
five evaluation metrics in Table 2, and make comparisons with
the shallow U-Net models proposed in this work.

The linear fit between the velocity field (vxod and vyod) recon-
structed by the original DeepVel and the ground-truth velocity
(vx and vy) show slopes of 2.28 and 2.17, with intercepts of 0.23
and 0.33, respectively. The slopes suggest that the original Deep-
Vel overestimates the horizontal velocity by a factor of ∼2. CCs
between the estimated and the ground-truth velocity fields are
found to be 0.62 and 0.56, for vx and vy respectively, indicat-
ing that the original DeepVel reconstructs the velocity field with
decent linear relations. On the other hand, the velocity field (vxrd
and vyrd) estimated by the retrained DeepVel show better lin-
ear fits with the ground-truth velocity field, with slopes of 1.07
and 1.22 (closer to 1), suggesting that the scale of the velocity
field estimated by the retrained DeepVel is comparable to the
ground truth. The better performance of the retrained DeepVel

1 https://github.com/aasensio/deepvel

also proves the future potential of DeepVel by being retrained
with new training data.

The evaluation metrics of the original DeepVel and retrained
DeepVel are listed in the bottom two rows in Table 2. Consistent
with the above results, the RMS E and MAE for the retrained
DeepVel are ∼1.50 PPF and ∼1.20 PPF, less than ∼3.17 PPF and
∼2.57 PPF for the original DeepVel, respectively. COS s (0.980
and 0.994) are both near 1, but still less than those of the shallow
U-Net models proposed in this work. CC and S S IM of the orig-
inal DeepVel (retrained DeepVel) are not optimal, with values of
∼0.59 (∼0.53) and ∼0.53 (∼0.67), respectively. The poor perfor-
mance of the two versions of DeepVel compared to the shallow
U-Net models proposed in this paper might have been caused by
the limitation of the neural network structure of DeepVel.

4.3. Generalization test

Noting that DeepVel exhibits less optimal performance when
handling simulation and observational data with different tem-
poral resolutions (Asensio Ramos et al. 2017), a natural question
is if the shallow U-Net models proposed in this work are also
affected by different temporal resolutions. To examine the gener-
alization ability of the shallow U-Net models, in this subsection,
we will test them with data from another realistic 3D radiative
numerical simulation framework – the CO5BOLD code (Freytag
et al. 2012).

Based on a relaxed, purely hydrodynamical model with an
initial vertical and homogeneous magnetic field of 50 G, data
from the CO5BOLD code simulating the surface layers of the
Sun are bounded in a 9.6 × 9.6 × 2.8 Mm3 box, with a pixel
size of 10 km. The height of the box (2.8 Mm) is large enough

A263, page 10 of 15

https://github.com/aasensio/deepvel


Liu, J., et al.: A&A, 698, A263 (2025)

Fig. 7. Example velocity fields by Model 2 and their correlation with the ground truth derived from CO5BOLD simulation. Panels (a) and (b) are
similar to their corresponding panels in Figures 3 and 5. Panels (c) are similar to panels in Figures 4 and 6 but for the results of Model 2 applied to
the CO5BOLD simulation data.

to include the surface layers of the convection zone, the photo-
sphere, and up to the middle chromosphere (Cuissa & Steiner
2024). In this subsection, only the simulation data at the photo-
spheric layer (∼1400 km from the bottom of the box) is utilized
for testing the shallow U-Net models. In total, 26 frames are
obtained from the simulation with a cadence of 240 s.

Notably, the data contains the vertical magnetic field (Bz)
at different heights, but only includes the sum of photospheric
intensity over all heights. Therefore, only the magnetic model
(Model 2) is applied to track the photospheric horizontal velocity
in the CO5BOLD simulation. Since vx and vy in the training data
are capped between [–10 PPF, 10 PPF] ([–11.7 km/s, 11.7 km/s])
and normalized to [0, 1], we could then re-scale the output (vxm
and vym) of Model 2 to the real velocity (vxmr and vymr) in units
of km/s by using the following relations:

vxmr = vxm · 23.4 − 11.7,
vymr = vym · 23.4 − 11.7.

(6)

By comparing the reconstructed velocity field (vxmr and
vymr) given by Model 2 (Figs. 7b1–b2) and the ground-truth
velocity field (vx and vy, Figs. 7a1–a2), it can be found that
different structures and small details of the velocity field are
mostly successfully detected by Model 2. Moreover, the scales
of vxmr and vymr are comparable to vx and vy (both concentrating

between –10 km/s and 10 km/s), proving the reliability of Eq. (6).
Considering that Eq. (6) is irrelevant to spatial and temporal res-
olutions, it can generally be utilized for different observational
and simulation data.

However, the slopes of linear fits between vxmr (vymr) and vx
(vy) are 3.53 (4.39), suggesting that Model 2 overestimated the
velocity field by a factor of ∼4 (see Figs. 7c1–c2). The correla-
tion coefficients drop to 0.36 and 0.35 for vx and vy, respectively.
It is natural to speculate that the poor performance of Model 2
on CO5BOLD simulation data might be caused by the longer
cadence (240 s) than our Bifrost simulation training data (10 s),
given their similar pixel sizes (∼11 km vs. ∼10 km).

To study the influence of different cadences on the perfor-
mance of the shallow U-Net models, we can manually increase
the cadence of the instances in the validation set from the Bifrost
numerical simulation. For instance, for the velocity of the image
at time t, its next image is selected at t + n · δt and its previous
image is chosen at t − n · δt, where δt = 10 s and n represents
the number of frames skipped in the original validation set. In
this way, we manually increase the cadence of the inputs and
calculate the evaluation metrics obtained from the hybrid model
(Model 3, see Fig. 8). When the cadence increases, RMS E and
MAE both increase, while CC and S S IM both decline. It’s noted
that, when the cadence increases to 240 s (equal to the cadence
of CO5BOLD simulation data used above), RMS E and MAE
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Fig. 8. Evaluation parameters of Model 3 (the hybrid model) with differ-
ent cadences. The bottom x-axis represents the number of the interval
frames used to increase the cadence (see the main text), and the top
x-axis is the corresponding cadence. The definition of the evaluation
metrics (RMS E, MAE, CC, and S S IM) can be found in the main text.
RMS E and MAE have units of pixel per frame (PPF). CC and S S IM
are unitless.

reach 2.4 PPF and 2.0 PPF, respectively. Meanwhile, CC drops
quickly to about 0.16, and S S IM slowly decreases to 0.56. The
rapidly increasing RMS E and MAE explain the overestimated
velocity field by the shallow U-Net models on CO5BOLD sim-
ulation data. And the slowly decreasing value (0.56) of S S IM
is consistent with the results that different structures and small
details are mostly detected. It is also noted that CC stays above
0.5 and MAE is still less than 1.5 PPF even when the cadence is
downgraded to 50 s.

In conclusion, these results suggest that the shallow U-Net
models in this work focus on the velocity reconstruction from
data with high cadences (∼10 s to 50 s) which are common for
the current and forthcoming solar telescopes with large apertures
(e.g., DKIST, EST, and CGST as mentioned in the introduc-
tion). Their performance is expected to be less optimal when the
cadence increases.

4.4. Performance on noisy data

It is worth noting that the data utilized for training and testing in
this work are both from a noise-free Bifrost numerical simulation
without spatial degradation. Different from the ideal simulation
data, high-resolution observational data collected from 4 to 8 m
class ground-based telescopes (e.g., DKIST, EST, and CGST)
are subject to atmospheric effects, diffraction, and thus noise.
To examine the performance of the shallow U-Net models on
noisy observational data, in this subsection, we test them with a
generated test set by adding 10% noise into the original test set.

The photospheric intensity (I) of the simulation in this work
has the maximum value of 0.3, as mentioned in Sect. 2, and
approximately 99.8% of the vertical magnetic field strength (Bz)
has an absolute value below 200 G. However, it is noticed
that ∼84% of the values of Bz range between [-50 G, 50 G].
Therefore, to generate the noisy test data, Gaussian noises with
intensity values in the range of [–0.03, 0.03] and Bz values in [–5
G, 5 G] are randomly added into the original test data. Then, the
shallow U-Net models are employed to reconstruct the velocity
field from the noisy test data.

Figure 9 shows the velocity fields at the same time instance
but reconstructed by the three different shallow U-Net models

(panels a1–a3 for Model 1, panels b1–b3 for Model 2, and pan-
els c1–c3 for Model 3). The ground truth of these velocity fields
is shown in the first row of Figure 3. Comparisons with the
bottom three rows of Figure 3 suggest that the introduced 10%
noise does affect the performance of the Shallow U-Net mod-
els in both the direction (Figs. 9a3–c3) and the absolute value
(Figs. 9a4–c4) of the estimated velocity field, although the dif-
ference are subtle. Figure 10 further shows the influence of noise
on the performance of the shallow U-Net models, i.e., decreases
in the correlation coefficients (CCs) and deteriorations in the
linear regressions compared to Figure 3. Nevertheless, the shal-
low U-Net models still perform well on the generated noisy test
data. For instance, for the hybrid model (Model 3), CCs of vx
and vy remain high at 0.78 and 0.76, with slopes close to 1
(0.98 and 1.05) and intercepts close to 0 (–0.03 and –0.02, see
Fig. 10). The distributions of the angle θ between the velocity
field reconstructed by the three models and the ground truth are
highly consistent with the distribution from the noise-free data
(see Figs. 9 and 3). In most cases (∼66% to ∼78%), the angle is
less than 50 degrees, while in only ∼10% to ∼15% of the cases it
exceeds 90 degrees. Again, the performance of the hybrid model
is, as expected, better than that of the intensity and magnetic
models.

Therefore, the shallow U-Net models, especially the hybrid
model proposed in this work, demonstrate robust performance on
simulation data with a 10% noise, suggesting their applicability
to the solar observational data. In the future, it is worth looking
into how different noise levels would affect the performance of
the shallow U-Net models.

5. Conclusions and discussion

In this paper, we introduce three neural network models to obtain
the horizontal velocity field in the solar photosphere. These three
models are built upon a realistic 3D MHD numerical simulation
of the solar photosphere with a shallow U-Net architecture. The
first model takes three consecutive images of the photospheric
intensity as its input and achieves a correlation coefficient of 0.78
with the ground-truth velocity field. The second model takes
three successive images of the vertical magnetic field strength
as its input and achieves a correlation coefficient of 0.80 with
the ground-truth velocity field. The third model takes both the
inputs and outputs of the first two models, takes advantage of
additional information provided by different measurements, and
achieves a correlation coefficient of 0.85 with the ground-truth
velocity field. These models are named the intensity model, the
magnetic model, and the hybrid model, respectively.

Despite the good correlation between the ground-truth veloc-
ity field and the estimated velocity fields by the three models,
analysis shows that the built shallow U-Net models do not over-
estimate or underestimate the velocity field. Most importantly,
but often overlooked in the literature, we have also investigated
the distribution of the angles between the estimated and the
ground-truth velocity fields. It is found that in most cases (82–
87%), the angle is below 50◦, indicating that the reconstructed
velocity field of the shallow U-Net models is in good alignment
in terms of their vector directions with the ground-truth veloc-
ity field. This is vital in many tasks sensitive to the directions of
the velocity vectors, such as automated detection of photospheric
small-scale swirls (e.g. Liu et al. 2019c).

As a benchmark test, the horizontal velocity field is also
estimated by FLCT with the intensity (FLCT-I) and the mag-
netic field strength (FLCT-M) as the input. FLCT-I reveals a
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Fig. 9. Example velocity fields by the Shallow U-Net models but for the generated noisy test data. Panels are similar to their corresponding panels
in Figure 3, but for the results of the Shallow U-Net models from the noisy test data.

correlation coefficient of 0.23, indicating a poor performance in
processing high-resolution photospheric intensity observations.
FLCT-M performs better with a correlation coefficient of 0.52,
but is still significantly lower than the shallow U-Net models in
this work. A deep learning approach for estimating the velocity
field named DeepVel is also utilized for comparisons. The hor-
izontal velocity field is reconstructed by the DeepVel built by
Asensio Ramos et al. (2017) (original DeepVel) and the version
retrained on our training data (retrained DeepVel). The Original
DeepVel overestimates the velocity field by a factor of ∼2, while
the Retrained DeepVel shows a limited improvement of the per-
formance. The lower correlation coefficients (0.59 and 0.53) of
these two models with the ground-truth velocity fields suggest
the superiority of the shallow U0Net models over the DeepVel
models.

Another numerical simulation data from CO5BOLD code
with different temporal (240 s) resolutions is applied to the
shallow U-Net models, aiming to check their generalization abil-
ities on data with different temporal resolutions. Comparisons
between the model-generated and the ground-truth velocity field
suggest that different cadences do affect the performance of the
shallow U-Net models. But downgrading the cadence of the
Bifrost numerical simulation data to 50 s still keeps the CC
above 0.5. Moreover, we also test the Shallow U-Net models

with a generated test dataset with a 10% noise level to exam-
ine their performance on noisy data. By comparing the results
estimated from the 10%-noise test data with results from the
noise-free data, it is found by the studied evaluation metrics that
a 10% noise has little influence on the performance of the Shal-
low U-Net models when reconstructing the velocity field. The
distribution of the angles θ between the estimated velocity field
and the ground truth also further proves the robustness of the
shallow U-Net models, with a 10% noise introduced. One of our
future works is to study the influence of different noise levels on
the performance of the shallow U-Net models.

These three pre-trained shallow U-Net models introduced
in this paper have been integrated into a user-friendly software
named SUVEL available at our Github repository2. This tool
takes three successive images of the photospheric intensity or
(and) the LOS magnetic field strength as its input. When only the
photospheric intensity (magnetic field strength) is provided, the
intensity (magnetic) model will be used. When both the intensity
and magnetic field strength are supplied as the input, the hybrid
model will be used to estimate the horizontal velocity field. It is
noted that all the inputs shall be capped with certain upper and
lower limits and then normalized to [0, 1] before being fed to

2 https://github.com/pydl/suvel
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Fig. 10. Correlation between the Shallow U-Net velocity fields from the generated noisy test data and the ground truth. Panels are similar to panels
in Figure 4 but for the results of the Shallow U-Net models from the noisy test data.

SUVEL. The upper and lower limits for the magnetic field obser-
vations are suggested to be ±200 G. The upper and lower limits
for the photospheric intensity observations shall depend on the
data. We demonstrate that SUVEL is superior to FLCT in terms
of not only the similarity with the ground-truth velocity field but
also the calculation speed. On a test machine with a 24-core Intel
i9 12900K CPU and a modern GPU, it takes SUVEL less than
2 seconds to estimate the horizontal velocity field for the vali-
dation set with 1385 instances. The processing time needed for
FLCT on the same dataset is ∼8 minutes.

It is worth noting that though the hybrid model exhibits good
performance, its output still has some deviations from the ground
truth (see, e.g., the last row in Fig. 3), especially at locations with
many very small-scale structures. Figure 11 shows the variation

of the evaluation metrics when the velocity fields are down-
sampled to different scales with different downsampling factors.
The blue, orange, green, and red curves in Figure 11 are for
the RMS E, MAE, CC, and S S IM, respectively. Both RMS E
and MAE drop rapidly when the downsampling factor rises and
the pixel scale increases. The RMS E reaches 0.61 PPF, and the
MAE drops to 0.49 PPF when the pixel scale is increased to
∼160 km. Meanwhile, CC and S S IM increase when the pixel
scale increases. CC and S S IM could be improved to 0.89 and
0.90, respectively, when the pixel scale is ∼160 km. These results
suggest that SUVEL performs better in reconstructing the veloc-
ity field of larger-scale structures. Here, larger scale corresponds
to structures with a typical size of ∼100 km, which in most
cases is still considered small scale. Future work will focus
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Fig. 11. Evaluation parameters of Model 3 (the hybrid model) with dif-
ferent pixel sizes. The bottom x-axis represents the downsampling factor
of the velocity field in the validation set, and the top x-axis is the corre-
sponding pixel scale at different downsampling factors. The definition
of the evaluation metrics (RMS E, MAE, CC, and S S IM) can be found
in the main text. RMS E and MAE have units of pixel per frame (PPF).
CC and S S IM are unitless.

on further improving the model performance and introducing
physics constraints in the models.
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