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Abstract The Fokker-Planck diffusion equation is widely used for simulating the evolution of Earth's
radiation belt electrons, which pose significant hazards to space-borne systems. To preserve the positivity of the
numerical solution of the electron phase space density (PSD), several finely designed finite difference, Monte
Carlo, spatiotemporal interpolation, and finite volume schemes have been developed. However, these schemes
often suffer from either high implementation complexity or low execution efficiency. Here we propose an
efficient, easy-to-implement, and positivity-preserving finite difference scheme, named the Semi-Implicit
Logarithmic Linearization (SILL) scheme. The basic principle is to linearize the nonlinear equation of the
natural logarithmic PSD. This scheme ensures accuracy and stability, even with large time steps, up to hundreds
of seconds for typical radiation belt electron diffusion processes. Nonetheless, it exhibits oversensitivity to near-
vanishing phase space densities, which necessitates reduced time steps when handling extremely large
variations in orders of magnitude between neighboring grid points. We have publicly released the protype code
of the SILL scheme, which could be useful for the radiation belt modeling community.

1. Introduction

Earth's radiation belt electrons exhibit dramatic dynamics (e.g., Blake et al., 1992; Baker et al., 2004; Horne,
Thorne, Shprits, et al., 2005; X. Li et al., 2001; W. Li & Hudson, 2019; Miyoshi et al., 2004; Reeves et al., 2003;
Reeves et al., 2013; Ripoll et al., 2020; Zong et al., 2009) and pose significant hazards to space-borne systems
(e.g., Horne et al., 2013). Wave-particle interactions are commonly regarded as one of the primary mechanisms
for the evolution of radiation belt electrons (Thorne, 2010). To understand and forecast the wave-driven evolution
of global radiation belt electrons, quasi-linear Fokker-Planck diffusion models have been widely adopted (Schulz
& Lanzerotti, 1974; Lyons & Williams, 1984; Beutier & Boscher, 1995; Summers et al., 1998; Horne &
Thorne, 1998; W. Li et al., 2007; Varotsou et al., 2008; Summers et al., 2007a, 2007b; Fok et al., 2008; Albert
et al., 2009; Xiao et al., 2009, 2010; Su, Xiao, et al., 2010; Su et al., 2011a; Bortnik & Thorne, 2010; J. Li
etal.,2014; L. Y. Lietal, 2017; Ni et al., 2019; Zhao et al., 2019;, Shprits, 2009; D. A. Subbotin & Shprits, 2009,
2012; Tu et al., 2013; Shprits et al., 2013; Thorne et al., 2013; Glauert et al., 2014; Xiao et al., 2015; He
et al., 2016; C. Wang et al., 2017; Yuan et al., 2018; Fu et al., 2019; D. Wang et al., 2020; Yu et al., 2024, and
others). The Fokker-Planck diffusion equation describes the evolution of electron PSD, and the positivity of the
numerical solution is a fundamental physical requirement. However, the presence of cross-diffusion terms has
proven to pose a significant challenge in preserving the positivity of the numerical solutions (Albert, 2013;
Camporeale et al., 2013a, 2013b, 2013c).

Until now, three classes of positivity-preserving techniques have been proposed to solve the Fokker-Planck
diffusion equation. The first class involves applying the traditional Fully Implicit (FI) finite difference scheme
to the diffusion equation after diagonalizing it through coordinate transformation (Albert, 2018; Albert &
Young, 2005). The second class involves utilizing Monte Carlo methods or spatiotemporal interpolation methods
to a set of stochastic differential equations reformulated from the original diffusion equation (Tao et al., 2008,
2016). The third class involves introducing a nonlinear two-point flux approximation in the finite volume scheme
to solve the diffusion equation (Gao & Wu, 2015; Peng et al., 2024). However, compared to other finite difference
techniques (Xiao et al., 2009; D. Subbotin et al., 2010; Camporeale et al., 2013a, 2013b, 2013c¢), which may not
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preserve the positivity of the numerical solutions (Albert, 2013), these positivity-preserving techniques often
suffer from either higher implementation complexity or lower execution efficiency.

In this study, we propose a new positivity-preserving finite difference scheme, named Semi-Implicit Logarithmic
Linearization (SILL) scheme, for solving the Fokker-Planck diffusion equation. Our tests demonstrate that this
novel scheme balances positivity preservation, ease of implementation, efficiency, and accuracy.

2. Construction of SILL Scheme

The Fokker-Planck diffusion equation for the evolution of the PSD f in a general coordinate system
o = (o1, 05, 63) can be written as (Schulz & Lanzerotti, 1974)

f ol o of
a__ - z a_< alaja_o_j>’ (1)

i=1 j=1

with the time 7, the Jacobian transformation parameter G, and the diffusion matrix D, . Achieving numerical
stability in solving this equation requires D, ; D, ;. > D? _ when i#j (Albert, 2004; Gourlay & McKee, 1977;

0j0} 0;0;

Richtmyer & Morton, 1967). Applying a natural logarithmic transformation

_ f
=In () (f|;=0) @)

is a straightforward approach to ensure the positivity of f = max(f |,=0) exp(h). However, this transformation
introduces nonlinearity into the equation for &

1{9(GD,,,) oh 0*h oh oh
) 3)

= +GD,, +GD,,——)
Z < 60‘1 i ’0(7,-66]« ! '6(7,- 0(7]

With the operator splitting technique (Kim et al., 1999; Strang, 1968), the multi-dimensional problem is divided

into three sub-problems
oh 0%h 1 9(GD on\?
—=D,pmt M +Da'o' -
ot “oo; = G 00; 60‘ i\ do;

+§ 4, Ohon @
”’”fa i00; %% 0o, ilef ’

i=1, 2, and 3.

At each time step, the solution process starts with the sub-problem for i = 1, proceeds to the sub-problem for
i = 2 using the solution from the first as an initial condition, and then concludes with the sub-problem fori = 3,
utilizing the solution from the immediately preceding step. Given that the sub-problems listed in Equation 4 are
not solved in isolation over an extended period, a detailed theoretical analysis of the numerical behavior of any
individual sub-problem may not be appropriate in this context. Equation 4 may be written in a more general form

w_ 0w ow (0w’
ot ox2 ' ox ox

+b—+c —) +d(w), (5)

which is discretized with a time step Ar and a spatial grid size Ax in the finite difference framework. A semi-
implicit scheme (Strang, 1968) is expressed as
ow n+l1
+b;|—
l [ 0x ]i

witl — Pw]™! ow\2 "2 n
NI [ﬁ]l ¢ (*) + [dW)];, (6)

ox

i
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where the superscript n represents the nth time step, the superscript 1/2 presents half a time step, and the subscript
i represents the ith spatial grid. The nonlinear term can be linearized using a geometric mean (Evans &

Sanugi, 1987)
ow\> 2 aw]”" [aw]"H! e
ox i ox|; [ox];, °

The geometric mean exhibits the same second-order temporal accuracy as the commonly used arithmetic mean, a
property that can be readily verified through Taylor expansion

owl"  [ow]™  Ar[oPw]™ ,
[5;]A= {5;} _'75[557} +0(AF), 8)

1
n+s

aw]™! [ow]™ At[dPw R
I A s R ©)

i i i

ow]" [ow]""! aw\2 " )
L] =|G) ] e =

Then Equation 6 becomes

witl —yn 2wl [ow]™! "
] i B o RO (an

i

with
—n ow]"
b = b,-+c,~[—w] . (12)
ox |;

On the right-hand side of Equation 11, the second-order implicit central difference is used for the first diffusion
term

(13)

2,71 n+1 n+1 n+1
0w Wi = 2w+ wit
ox? |, Ax? ’

the first-order implicit upwind difference is used for the second advection term
n+1

i+sign(5¢)
Ax ’

n+l _

aW n+1 . Wl
[a] ~ —sign(b; )

w

(14)

i

which is critical to make the solver stable by introducing sufficient numerical dissipation; the second-order
explicit central differences are used for the all the spatial derivatives of diffusion coefficients and w in Z? and
[dw)]!. The discretization above leads to a tridiagonal system of linear equations that is computationally
inexpensive to solve. This numerical scheme is referred to as the SILL scheme, reflecting its distinctive
characteristics.

Due to the difference in operator splitting, the SILL scheme requires solving a tridiagonal system of linear
equations only half as many times as the previously developed Hybrid Finite Difference (HFD) scheme (Xiao
et al., 2009). However, compared to the HFD and other schemes that do not employ the natural logarithmic
transformation, the SILL scheme shows oversensitivity to near-vanishing PSDs. For example, while the spatial
variation of PSDs from f = 1072 to 10! is significant, the spatial variation of PSDs from f = 10720 to 107'% is
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negligible. When applying the natural logarithmic transformation, the transformed PSD exhibits a much larger
spatial gradient for the latter case compared to the former case. This increased sensitivity imposes additional
constraints on time step, necessitating smaller time steps to prevent numerical instability and accurately capture
the PSD behavior. An extreme situation arises when f = 0, where the direct application of the natural logarithmic
transformation is undefined, requiring special treatments in the SILL scheme to handle such cases.

3. Numerical Tests

3.1. Simplified One-Dimensional Diffusion Tests

An one-dimensional diffusion equation is written as

Y _ 0

ot ox2’

15)
where the diffusion coefficient D = 1. The initial condition is designed as
1 E-1)?
f=—e (&), (16)
p
p=e¢, 17)
E=0.511(\/1+p2 —1), (18)

in the computational domain E € [0.2,5.0]. The boundary conditions are specified as

o

= ]
0x 0 (19

E=0.2

o

. =0. (20

E=5.0

Figure 1 shows the simulation results from the SILL scheme and the FI scheme. The computational domain is
discretized into 50 uniformly spaced grids along x. We first focus on the results obtained using a time step of
At = 107*. Both schemes produce positive PSDs from ¢ = 0 to t = 0.1, and over longer time scales, such as
t = 0.1, they yield generally consistent results. However, compared to the FI scheme, the SILL scheme is more
capable of capturing extremely subtle changes in PSDs at higher energies (E > 2). For example, at E = 5.0 within
the first time step, f increases from 1.7 X 107'7¢ to 2.5 x 107! in the SILL results but increases from
1.7 x 107'7% to 1.3 x 10732 in the FI results. If one does not care about such subtle variations in PSDs, the
extreme accuracy of the SILL scheme can become an oversensitivity limitation. When the time step in the SILL
scheme is sufficiently large, for example, Az = 0.1, the results can become distorted. In contrast, the results from
the FI scheme are less sensitive to the time step.

3.2. Simplified Two-Dimensional Diffusion Tests

A simple two-dimensional diffusion equation introduced by Albert (2013) is

o . p o 0[D of of 1)

o _Olp W p | oy F
ar ox| “ox  May| oyl Pax oyl

with the diffusion coefficients D,, = 1, D,, =1, and D,, = 0.8, the computational domain x € [0,1] and
y € [0, 1], the initial condition

flio = €77 sin(zx/2), 22)

QIET AL. 40f 16

85U8017 SUOWWOD 8AIEa.D 3(qedlidde ays Aq pausenob are seoife YO ‘8N 4O Sa|nJ 40} Areiq1 8UUO /8|1 UO (SUORIPUCD-PUE-SWBI W00 A8 1M Aeiq U UO//SdnL) SUORIPUOD pue W | 8L 885 *[5202/20/22] uo AriqiTauluo A8|iMm ‘80w s JO AIsAIUN AQ ¥8SEE0VTYZ0Z/620T OT/I0p/wod A8 im Are.q i jpul|uo'sgndnBe//sdny wo.j pepeojumoq ‘v ‘5202 ‘Z0v669T2



I VY ed B | . .
A\I Journal of Geophysical Research: Space Physics 10.1029/2024JA033584

1 010
10°
10710
1020
1030
1040
100
1070
107°
10°%
10
1 0-100
107110
1 0-120
1 0-130
1 0-140
107150

(a) 50 grids

— t=0.0
SILL t=10"* At=10"*
Fl t=10* At=10"*
10-160 3| — SILL t=103 At=10"
10170 3| --- Fl t=10° At=10*
10180 e — N —

f
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Figure 1. Comparison between numerical solutions of the simplified one-dimensional diffusion problem with the Semi-
Implicit Logarithmic Linearization (solid lines) and Fully Implicit (dashed lines) schemes.

and the boundary conditions

of
ox

of

ol =0 (23)

y=1

f|x=0 =O’

=0, f| y=0 =f|1=0, y=0>
x=1

To avoid taking the logarithm of zero values in the SILL scheme, the left boundary is artificially moved from
x = 0tox = Ax and the correspoing boundary condition is implemented as

1
flx:Ax,t = Ef'x:ZAx,t' (24)

This boundary condition can be interpreted as an approximation of f| using central interpolation

x=Ax

Slezos /1=
flx:AX,t = =01 2 At s (25)
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(a) SILL flx-0=0 50x50 grids
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104"

10°®.

— SILL y=0.2
— SILL y=0.4
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-~ HFD y=0.8

0.5 1.0
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Figure 2. Numerical solutions of the simplified two-dimensional diffusion problem at = 0.01. Two-dimensional PSDs
(color-coded) from the (a) Semi-Implicit Logarithmic Linearization (SILL) and (b) Hybrid Finite Difference (HFD) schemes
in the x—y plane. (c) Comparison between phase space density profiles from SILL (sold lines) and HFD (dashed lines)
schemes. Colors help differentiate among the x-dependent profiles at different y values.

where

flicos =0. (26)

After the natural logarithmic transformation 2 = In f, this implicit boundary condition becomes

h|x=Ax,t = h|x=2Ax,t —In2, (27)

which can be directly included in the tridiagonal system of linear equations.

Figure 2 presents the simulation results from the SILL and HFD schemes at# = 0.01. The computational domain
is evenly divided into 50 X 50 grids, and the time step is set to be At = 107>. The SILL scheme gives a smooth,
positivity-preserving solution throughout the computational domain. In contrast, a series of negative stripes
extending from the left boundary to the upper boundary arise in the HFD solution, similar to the results given by
Albert (2013). Apart from those nonphysical negative PSD values, the HFD solution is generally consistent with
the SILL solution. Near the right boundary, unlike the solution given by the positivity-preserving finite volume
scheme (Figure 3 of Peng et al., 2024), which shows an abnormal upward increase in PSD values, both the HFD
and SILL solutions yield flat PSD profiles, which appear to be more compatible with the right boundary
condition.

3.3. Realistic Two-Dimensional Diffusion Tests

The evolution of electron PSD driven by plasma waves through violating the first and second adiabatic invariants
in the space of pitch-angle @ and momentum p can be written as (e.g., Albert, 2004; Lyons & Williams, 1984)
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Figure 3. Diffusion rates of chorus waves. (a) Pitch-angle diffusion rate (D,,). (b) Momentum diffusion rate (Dpp)/pz.
(c) Cross diffusion rate (D,,,)/p. (d) Sign of cross diffusion rate Sign({D,,)).

of 10 of of 10 of of f
0= a0+ O+ 5 o O+ O |- 9

where G = p?(1.30 — 0.56 sin @)sina cos @ is the Jacobian transformation parameter, and (D),
(Dgp) = (D), and (D,,) represent the pitch angle, cross, and momentum diffusion coefficients, respectively,
and the term —f /7 characterizes the precipitation loss within the bounce loss cone (Shprits et al., 2009). To better
capture the electron energy spectrum, a simple variable transformation (Xiao et al., 2009) is applied to
Equation 28

)4
MmeC

E=1In

(29)

with the electron mass m, and the speed of light c. Then Equation 28 becomes

o 1o of (Dgy,) of 1 o0 of (D,,) of f
3= a0+ T )+ ool eme e )| G0

There have been two types of boundary treatments near the bounce loss cone. One treatment is to set 7;_ to be 1/4
bounce period in the loss cone a < a1 and infinite outside the loss cone, and introduce the equivalent extrapolation
boundary condition df /da = 0 at the left pitch-angle boundary @ = 0° (Shprits et al., 2009). The other treatment
is to set the fixed boundary condition f],_, = 0 at the left pitch-angle boundary @ = ay, equivalent to setting
7. = 0 in the loss cone a<ay (e.g., Selesnick et al., 2003; Albert & Young, 2005; W. Li et al., 2007; Tu
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et al., 2010; Pham et al., 2017). The former treatment is applicable for both the strong and weak diffusion
problems, while the latter treatment is applicable only for the weak diffusion problems (Shprits et al., 2009; Su
etal., 2011b; Su, Zheng, & Wang, 2010). At the right pitch-angle boundary @ = 90°, the equivalent extrapolation
boundary condition of /0a = 0. The computational domain of electron kinetic energy E is [0.2 MeV, 5.0 MeV],
with the fixed boundary condition at E, = 0.2 MeV and the equivalent extrapolation boundary condition at
E, = 5.0 MeV. The initial condition is specified as (Albert & Young, 2005)

1 E.—E
f= —zexp<— k 0) sin a, 31
p

with Ey = 0.2 MeV and AE = 0.1 MeV.

In line with the previous study (Albert & Young, 2005), our numerical tests are conducted at L = 4.5 for whistler-
mode chorus waves (Horne, Thorne, Glauert, et al., 2005). As shown in Figure 3, the diffusion rates used here are
generally consistent with those in previous works (Albert & Young, 2005; Peng et al., 2024; Tao et al., 2008,
2016). The following presents the numerical tests with uniform grids along both the a and £ directions for the two
types of precipitation loss treatments mentioned above.

Figures 4 and 5 show the electron fluxes j = p?f at t = 0 and 1.0 days from the numerical tests using
the boundary condition df/da = 0 at a = 0°. These tests enable us to compare the SILL and HFD
schemes in terms of time step dependency, grid size dependency, and their ability to preserve positivity.
Because both SILL and HFD are essentially implicit schemes, their time steps are not strictly bounded by
the Courant-Friedrichs—Lewy condition. For the SILL scheme with this particular set of diffusion co-
efficients, the upper limit of the time step, which is inversely related to the number of grid points, is around
tens of seconds. Numerical dissipation is positively correlated with the time step. With 90 X 80 grids,
increasing the time step At from 1 to 20 s results in no observable variations in the electron fluxes
(Figures 5a and 5c), indicating that the numerical dissipation induced by the SILL scheme is negligible
compared to the physical diffusion. Reducing the number of grid points leads to a limited underestimation
of the electron fluxes. In practical applications, it is necessary to balance the improvement in computa-
tional efficiency by reducing grid points with the minimization of calculation errors. In contrast to the SILL
scheme, the HFD scheme cannot maintain the positivity of numerical results. However, as demonstrated
in the previous work (Camporeale et al., 2013b), the nonphysical negative fluxes occur in a quite
limited region inside the loss cone or near the high-energy end, where the actual fluxes are at a rela-
tively low level. In the remaining region, the HFD scheme gives generally consistent results with the SILL
scheme.

Figure 6a shows the electron flux ratio jypp/jsip at ¢ = 1.0 day between the HFD and SILL schemes with
90 X 80 grids and a Ar = 1 s time step. Near the loss cone and above 2.0 MeV, this ratio can reach 2 or higher.
Compared to HFD, which involves finite differences in f, SILL, which involves finite differences in In f, is more
capable of accurately capturing the steep variations in f. When the loss term —f /7 is removed (Figure 6b), the
sharp variations of f near the loss cone boundary disappear, and due to more significant acceleration, the energy
dependence of f becomes smoother. Consequently, the results from the HFD scheme become closer to those from
the SILL scheme. When only the loss term —f/7;_ is included and other diffusion terms are excluded (Figure 6c¢),
relative to the exact solution

o t
J=Jli=o €xp (_7)’ (32)
L

the SILL scheme provides accurate results, while the HFD scheme yields results with continuously accumulating
errors. These results once again demonstrate that the SILL scheme surpasses the HFD scheme in terms of
accuracy.

Figure 7 shows the results from the SILL scheme with the fixed precipitation boundary condition f|,_, =0,

in comparison to those with the equivalent extrapolation precipitation boundary condition. Note that the
boundary condition fl,_, = 0 is implemented similarly to the method described in Equations 24 and 27.
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Figure 4. Numerical solutions of the chorus-driven diffusion problem with the equivalent extrapolation precipitation
boundary condition. The left and right columns show the electron fluxes from the Semi-Implicit Logarithmic Linearization
and Hybrid Finite Difference schemes, respectively. The first row shows the initial electron fluxes, and the other rows show
the electron fluxes at # = 1.0 day with the indicated time steps and grids.

Because the pitch-angle diffusion rates near the loss cone are quite weak, the two types of boundary conditions
essentially lead to the same results. However, because of the shift in the left pitch-angle boundary from 0° to
oy, and the absence of sharp changes in f from the inside to the outside of the loss cone, the allowed time step
of the SILL scheme can reach several hundreds of seconds. With 85 X 80 grids, increasing the time step At
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Figure 5. Comparison among the electron flux profiles at # = 1.0 day from simulations with the same equivalent
extrapolation precipitation boundary condition but with different numerical schemes, grids, or time steps.

from 1 to 150 s results in no observable variations in the electron fluxes, reinforcing the conclusion that
numerical dissipation is negligible compared to physical diffusion. Further reducing the number of grid points
to 28 X 40 and increasing the time step to 300 s causes a limited underestimation of the electron fluxes,
indicating once again the necessity to balance the improvement in computational efficiency by reducing grid
points with the minimization of calculation errors.
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Figure 6. Comparison of accuracy between the Semi-Implicit Logarithmic Linearization (SILL) and Hybrid Finite Difference
(HFD) schemes. (a) Electron flux ratio between the HFD and SILL solutions of the chorus-driven diffusion problem with the
loss term. (b) Electron flux ratio between the HFD and SILL solutions of the chorus-driven diffusion problem without the
loss term. (c) Electron flux ratio between the numerical and analytical solutions to the equation with only the loss term. The
blue and yellow lines represent the results from the SILL and HFD schemes, respectively.

3.4. Two-Dimensional Diffusion Tests Under Extreme Conditions

We continue to focus on Equation 28, with the diffusion rates shown in Figure 3. We modify the initial condition
as follows

2
f= I%exp(— (%) ) sin a + f,, (33)

where Ey = 1.0 MeV, AE = 0.1 MeV, and f|, is a free parameter controlling the orders of magnitude spanned by
the PSD. All four boundary conditions are modified to equivalent extrapolation conditions.

When f, = 107%, the intial PSD decreases approximately 300 orders of magnitude from 1 to 5 MeV. As shown
in Figure 8, while the HFD scheme produces a series of negative stripes, the SILL scheme preserves the positivity
of the solution. However, the ability of the SILL scheme to capture extremely subtle changes in PSD comes at the
cost of requiring a reduced time step to Az = 1.0 s. If one does not care about such subtle variations in PSDs, the
oversensitivity limitation of the SILL scheme may be partially avoided by increasing f,,. For example, when
fo = 10714, the allowed time step for the SILL scheme increases to Az = 10 s. Meanwhile, the increase of f;
results in a significant reduction of the domain where negative values occur in the HFD solution.

4. Summary

We have proposed an efficient positivity-preserving finite difference scheme, SILL, for solving the Fokker-
Planck diffusion equation. The expected positivity of the PSD is achieved by solving the equation of the natu-
ral logarithmic PSD. An additional advantage of logarithmization is the high accuracy in capturing the steep
spatial variations in PSD, while an additional disadvantage is the introduction of nonlinearity. This multi-
dimensional nonlinear problem is decomposed into one-dimensional sub-problems. Each sub-problem is
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Figure 7. Numerical solutions of the chorus-driven diffusion problem using the Semi-Implicit Logarithmic Linearization
scheme with different boundary conditions, grids or time steps.

solved using a semi-implicit finite difference method, where the partial derivatives multiplied by factors
depending on the diagonal diffusion coefficients are treated implicitly, while the partial derivatives multiplied by
factors depending on the cross diffusion coefficients are treated explicitly. The inherent nonlinearity is eliminated
by replacing the traditional arithmetic mean with the geometric mean. At each time step, the SILL scheme in-
volves solving tridiagonal systems of linear equations, which are computationally inexpensive, and the number of
such systems solved is equal to the dimension of the problem, which is half that for the non-positivity-preserving
HFD scheme (Xiao et al., 2009). Because of the implicit nature of the SILL scheme, its time step is not limited by
the Courant—Friedrichs—Lewy condition. In general, this scheme balances positivity-preservation, ease of
implementation, efficiency, and accuracy, which may be useful for the radiation belt modeling community. For
the typical chorus wave-driven diffusion of radiation belt electrons, the time step can reach hundreds of seconds,
which is approximately one order of magnitude higher than that for the positivity-preserving finite volume
method (Gao & Wu, 2015; Peng et al., 2024) but one order of magnitude lower than that for the non-positivity-
preserving FI finite difference method (D. Subbotin et al., 2010). Our computational model (Su, 2025) can
simulate the two-dimensional evolution of the radiation belt electrons over a full day in several seconds.
Nonetheless, like any numerical scheme, the SILL scheme has its limitations. While it is highly effective at
capturing extremely subtle changes in PSDs, this same sensitivity can become a drawback when dealing with
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Figure 8. Comparison between numerical solutions from the Semi-Implicit Logarithmic Linearization (left) and Hybrid
Finite Difference (right) schemes (a), (b) Initial phase space density distribution with f, = 1073%_ (c), (d) Numerical
solutions at t = 0.1 day with f, = 1073 and At = 1 s. (e), (f) Numerical solutions at t = 0.1 day with f; = 10~'* and
At =10s.
near-vanishing PSDs. Particularly when the PSD exhibits extremely large variations in orders of magnitude
between neighboring grid points, the performance of the SILL scheme may be compromised, necessitating a
sufficiently small time step to maintain numerical stability.
Data Availability Statement
A protype Julia code of the SILL scheme is available at Su (2025).
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