

Photochemical processing of CH₄:O₂ ices

Yanan Ge,¹ Congcong Zhang,² Junfeng Zhen² and Yuming Wang¹

¹National Key Laboratory of Deep Space Exploration/School of Earth and Space Sciences, University of Science and Technology of China, Anhui, Hefei 230026, China

²Hunan Key Laboratory for Stellar and Interstellar Physics and School of Physics and Optoelectronics, Xiangtan University, Hunan, Xiangtan 411105, China

Accepted 2025 August 18. Received 2025 August 12; in original form 2025 May 19

ABSTRACT

During the star and planet formation, ultraviolet (UV) irradiation of ices on dust grain surfaces at low temperatures (\sim 10–20 K) is considered an efficient pathway for interstellar complex organic molecules (iCOMs) in the inter- and circumstellar medium (ISM/CSM). In this work, a series of laboratory experiments was performed to investigate the UV photoprocessing of binary ice mixtures (CH₄:O₂) under the simulated astrophysical environments. A variety of newly formed products, e.g. CH₂O, CH₃OH, O₃, CO, CO₂, H₂O, H₂O₂, HCOOH, CH₃CH₂OH, and CH₃CHO, are observed and identified after UV irradiation. In addition, the photoproduction rates of new species and the photodestruction cross-sections of CH₄/CD₄ are also obtained. These experimental results provide key information for understanding the photochemical processing of CH₄- and O₂-containing ices under astronomically relevant conditions. Furthermore, the observation of some organic compounds (e.g. CH₂O and CH₃OH) and non-organic compounds (e.g. O₃ and H₂O) demonstrates that the ices of CH₄ and O₂ may play an essential role in the production of complex organic compounds and the evolution of circulated oxygen in space. Importantly, the formation reaction scheme of new species obtained here provides insight into the possible reaction pathways towards complex molecules observed from the ISM/CSM.

Key words: astrochemistry – molecular processes – methods: laboratory: solid state – ISM: molecules.

1 INTRODUCTION

Ices are abundantly present in dense interstellar cloud regions (Whittet et al. 1988). Cold and dense molecular clouds, such as the Taurus Molecular Cloud (TMC-1) and Bernard 68, are the birth sites of low- and high-mass stars and their planetary systems (Ehrenfreund & Charnley 2000). In general, dense interstellar clouds are characterized by high number densities (\sim 10⁴–10⁵ cm^{−3}), low kinetic temperatures (\sim 10–20 K), and weak ultraviolet (UV) radiation fields ($A_V > 10$ mag; van Dishoeck, Herbst & Neufeld 2013; Boogert, Gerakines & Whittet 2015). In molecular clouds, the life-forming elements (C, H, O, N, and S) that make up life are locked up in the ice mantles that cover the surface of dust grains (Gibb, Whittet & Chiar 2001; McClure, Rocha & Pontoppidan 2023). Furthermore, the column densities of the major and minor ice species indicate that ice contributes between 2 per cent and 19 per cent to the bulk budgets of the key elements C, O, N, and S (McClure et al. 2023). Most importantly, photochemistry in icy grain mantles is suggested as an efficiency path for chemical complexity (Greenberg & Hong 1974).

Oxygen is the third most abundant element in the universe and, therefore, its molecular form in different regions is of considerable astronomical importance (Savage & Sembach 1996; Asplund et al. 2009). Earlier gas-phase chemical models predict that O₂ and CO are the primary forms of elemental oxygen in dense molecular

clouds (Herbst & Leung 1989; Millar & Herbst 1990; Wakelam, Herbst & Selsis 2006). So far, gaseous O₂ has been detected in two interstellar clouds with lower concentrations relative to H₂, namely, Orion (O₂/H₂ \approx (0.3–7.3) \times 10^{−6}, (Goldsmith et al. 2011; Chen et al. 2014)) and the star-forming region ρ Ophiuchi A (O₂/H₂ \approx 5 \times 10^{−8}; Larsson et al. 2007; Liseau et al. 2012; Larsson & Liseau 2017). In the dense protostellar envelope, the upper limits of O₂/H₂ abundance as low as 6 \times 10^{−9} (3 σ) have been reported (Yıldız et al. 2013). The isotopologue ¹⁶O¹⁸O, with a dipole moment, has been tentatively detected in the protostellar system IRAS 16293-2422 B (Taquet et al. 2018).

Solid O₂ has not yet been detected in interstellar grains or protoplanetary discs. Solid O₂ has been searched but has not been detected in dense clouds due to its weak feature at 6.45 μ m, and the derived results indicate that its abundance represents less than 6 per cent of the total oxygen budget in the ISM/CSM (Vandenbussche et al. 1999). The analysis for the solid ¹³CO line profiles in the low- and high-mass star formation regions demonstrates that solid O₂ concentrations of less than 10 per cent with respect to H₂O ice (Boogert, Blake & Tielens 2002; Pontoppidan et al. 2003).

CH₄ is among the simplest organic molecules and is an important reservoir for a large fraction of carbon on the grain surface (Garrod, Wakelam & Herbst 2007). Gas- and solid-phase CH₄ were first detected through its bending mode at 7.67 μ m towards NGC 7538 IRS9 and probably W 33A, NGC 7538 IRS1 (Lacy et al. 1991). In addition, interstellar CH₄ was also identified toward Orion Irc2 through the space-based Infrared Space Observatory (ISO; de Graauw et al. 1996; van Dishoeck et al. 1998) and SOFIA/EXES

* E-mail: zhangcongcong@mail.ustc.edu.cn (CZ); jfzhen@xtu.edu.cn (JZ)

(Nickerson et al. 2023). Later, ISO-SWS observations towards the deeply embedded protostellar objects W 33A and NGC 7538 IRS9 show a feature near $7.67\text{ }\mu\text{m}$ that is consistent with the absorption by solid CH_4 or the Q-branch of gaseous CH_4 , and the column density of methane ice is low (1–2 per cent of H_2O ice; $\sim 10^{-6}$ of atomic H; Boogert et al. 1996, 1997, 1998; Boogert, Blake & Öberg 2004; Barentine J. & Lacy 2012).

The solid CH_4 abundance toward a large sample of low-mass young stellar objects is determined by infrared spectra from the Spitzer Space Telescope, and these results indicate that the solid CH_4 abundance with respect to H_2O is centred at 5.8 per cent with a standard deviation of 2.7 per cent in these sources (Öberg & et 2008). In addition, CH_4 was also detected in the solid state in the Galactic centre (Chiar et al. 2000), an external galactic nucleus (Spoon et al. 2001), and comet C/2021 A1 (Leonard; Faggi et al. 2023). Relatively low-abundance methane has been proposed to be the starting point of rich interstellar chemistry, which leads to iCOMs in dense molecular clouds (Markwick, Millar & Charnley 2000; Dartois et al. 2005).

Research and reproduction of the process from simple ices to complex molecules is one of the most fundamental questions for the evolution of interstellar chemistry, especially grain surface chemistry (Gerakines P., Schutte W. & Ehrenfreund 1996; Öberg et al. 2009a, b; Öberg, van Dishoeck & Linnartz 2009c). Lamberts et al. (2017) focused on the quantum tunneling effects upon hydrogen abstraction in $\text{CH}_4 + \text{OH}$ in the solid state, where OH radicals are produced by hydrogenation of O_2 in the ice, for example, $\text{O}_2 + \text{H} \rightarrow \text{HO}_2$ and $\text{HO}_2 + \text{H} \rightarrow \text{OH} + \text{OH}$ (Lamberts, de Vries & Cuppen 2014). Bergner, Öberg & Rajappan (2017) used a deuterium UV lamp to selectively dissociate O_2 within a mixture of $\text{O}_2:\text{CH}_4$ ices or $\text{O}_2:\text{CH}_4:\text{CO}$ ices, and observed efficient production of CH_3OH via O (${}^1\text{D}$) insertion into CH_4 . Chou et al. (2020) explored the photochemical behaviour of $\text{CH}_4:\text{O}_2$ mixed ices with UV photons generated by synchrotron radiation. In addition, previous studies have reported the photochemistry evolution of pure methane ice (Bossa et al. 2015; Dupuy et al. 2017; Carrascosa et al. 2020) and molecular oxygen ice (Gerakines et al. 1996; Raut et al. 2011; Zhen & Linnartz 2014) after UV irradiation.

Although many experimental and theoretical results have been studied, the reaction mechanisms that produce complex molecules during UV irradiation of most mixed ices remain poorly understood. In the case of experimental work on mixed O_2 and CH_4 mixed ices, limited work is available, and the presented work is also motivated by observations of O_2 gas in the ISM/CSM (Larsson et al. 2007; Goldsmith et al. 2011). In this article, we explore the photochemical processes of $\text{CH}_4:\text{O}_2$ mixed ices upon UV irradiation in simulated astrophysical environments.

2 EXPERIMENTAL METHODS

The experiments were performed in the CRYOPAD set-up, which has been described in detail before (Öberg et al. 2008). All experiments are carried out in the main chamber in an ultra-high vacuum environment (a base pressure on the order of $\sim 10^{-10}$ mbar at room temperature). The Fourier Transform Infrared Spectrometer (FTIR) is used in reflection mode to detect the ice samples on the gold substrate. Table 1 summarizes the laboratory experiments carried out in this work.

In our experiments, CH_4 , CD_4 , and O_2 (Icon Isotopes, 99 per cent) samples are used. First, gas samples were continuously deposited on the gold substrate at 14–21 K by introducing gas-phase molecules into the chamber. For the gold substrate, the temperature was

controlled to 14 K, which was monitored by a cryogenic temperature controller with an absolute accuracy of 2 K and a relative precision of 0.5 K. The thicknesses of these ices range from 8 to 80 monolayers (ML, 1 ML = 10^{15} molecules cm^{-2}), mostly with 40 ML. It is close to the thicknesses of ice that cover the surface of interstellar dust grains in the dense and cold stages of star formation. Moreover, the ice is so thick that photodesorption will not significantly affect the bulk of the ice based on previous research (Öberg et al. 2009b, c).

Subsequently, the ice samples were exposed to UV photons generated by the microwave discharge hydrogen lamp, peaks around Ly- α wavelengths with an energy extending between 6.0 and 11.5 eV (Muñoz Caro & Schutte 2003). All ices were irradiated by the UV light source for about 3 h, resulting in a total fluence of $\sim 1.0 \times 10^{18}$ photons cm^{-2} , which is comparable to the UV fluence in which ice in a cloud core is exposed to cosmic-ray-induced UV photons at a rate of $10^4 \text{ cm}^{-2} \text{ s}^{-1}$ during 10^6 yrs (Shen et al. 2004).

The original ice compositions were changed during UV irradiation. Following UV irradiation, IR spectra were collected every 5 min. The relative strengths of the IR band are consistent with the relative strengths of the transmission band in the investigated ice thickness regime and thus with the uncertainty within 20 per cent. The results of the analysis on the formation rates of products and the photodestruction cross-sections of the initial ices have been obtained and shown in Table 1. The photodestruction cross-section is defined as the effective interaction area averaged over the incident UV spectrum per target molecule per absorbed photon during the photodestruction process.

3 EXPERIMENTAL RESULTS AND ANALYSIS

Fig. 1 shows the overall IR spectra of different ices before and after UV irradiation with a UV fluence of 1.0×10^{18} photons cm^{-2} . The pure ices are shown in left panels: (A1) 80 ML, 14 K, CH_4 ice; (A2) 40 ML, 14 K, CD_4 ice; (A3) 60 ML, 14 K, O_2 ice; The ice mixtures are shown in right panels: (B1) 80 ML, 14 K, $\text{CH}_4:\text{O}_2 = 1:1$ mixed ices; (B2) 50 ML, 14 K, $\text{CD}_4:\text{O}_2 = 1:1$ mixed ices; (B3) 80 ML, 14 K, $\text{CH}_4:\text{CD}_4:\text{O}_2 = 1:1:2$ mixed ices. In this figure, the coloured lines represent different ice samples exposed to UV irradiation, while the black lines represent ice without UV irradiation.

Upon irradiation, new absorption features are observed, indicating that new species are formed efficiently. As shown in Fig. 1, the IR characteristics of these ice species are mainly distributed between 900 and 2300 cm^{-1} . Thus, to better analyse the changes in the ice samples, we have plotted the IR spectra of typical ices with a UV fluence of 1.0×10^{18} photons cm^{-2} in the range of 900– 2300 cm^{-1} , and presented them in Fig. 2. In this figure, the ice mixtures are shown in upper panel: (A) 50 ML, 14 K, $\text{CD}_4:\text{O}_2 = 1:1$ mixed ices; (B) 80 ML, 14 K, $\text{CH}_4:\text{O}_2 = 1:1$ mixed ices; (C) 80 ML, 14 K, $\text{CH}_4:\text{CD}_4:\text{O}_2 = 1:1:2$ mixed ices; the pure ices are shown in lower panel: (D) 60 ML, 14 K, O_2 ice; (E) 80 ML, 14 K, CH_4 ice; (F) 40 ML, 14 K, CD_4 ice. The positions of IR bands for reactants and products are represented by the grey dashed lines and names. The spectral bands used for quantification are represented by a rectangular grey area.

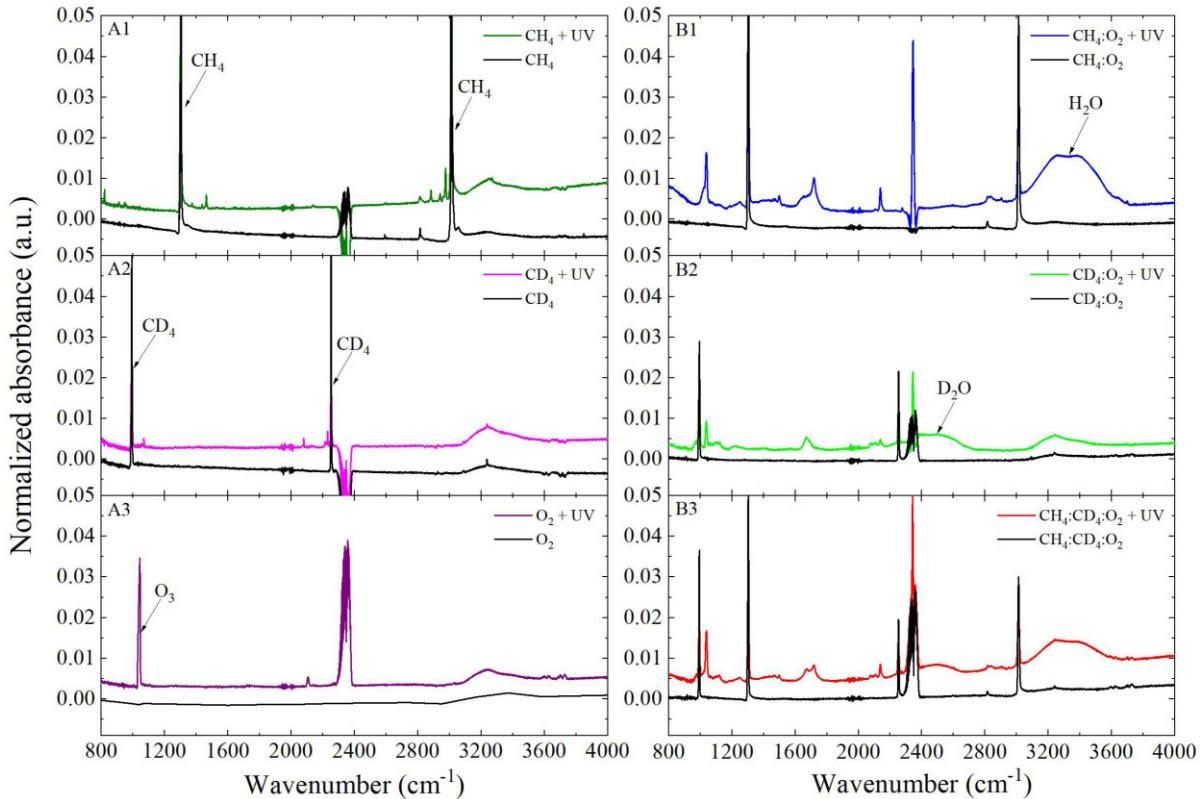

Moreover, the chemical composition of these ices has been identified and clearly labelled in Fig. 2. Clearly, the composition of these ice samples changed after UV irradiation. Therefore, each ice sample is illustrated in detail, and we will analyse the dissociation pathways of pure and mixed ices in the next subsection. The following subsections focus on: (3.1) pure CH_4 ice; (3.2) pure O_2 ice; and (3.3) $\text{CH}_4:\text{O}_2$ ice mixtures, respectively.

Table 1. List of ice samples. In addition, the quantification analysis data, such as the photoproduction rates of CH_2O , CH_3OH , CO , H_2O ($10^{-18} \text{ cm}^{-2}/\text{N}_{\text{CH}_4}(0)$), and O_3 ($10^{16} \text{ photon}^{-1} \text{ ML}^{-1}$) as well as the photodestruction cross-sections of CH_4 and CD_4 (10^{-19} cm^{-2}), is also presented after an UV fluence of $1.0 \times 10^{18} \text{ photons cm}^{-2}$. Different units for the formation rates of O_3 and other products are used due to different calculation methods.

No.	Ices	Ratio	Temp. (K)	Thick. (ML) ^a	CH_2O ^b	CH_3OH ^b	CO ^b	H_2O ^b	O_3 ^b	Cross-sections ^b
1	O_2	–	14	60	–	–	–	–	18(1.0)	–
2	CH_4	–	14	80	–	–	–	–	–	0.7(0.1)
3	CD_4	–	14	40	–	–	–	–	–	0.8(0.1)
4	$\text{CH}_4:\text{O}_2$	1:1	20	80	1.5(0.2)	0.8(0.1)	2.7(0.1)	8(2.0)	5.4(1.4)	0.8(0.1)
5	$\text{CH}_4:\text{O}_2$	1:1	17	40	2.8(0.2)	1.5(0.1)	4.9(0.1)	18(1.0)	3.7(1.4)	1.6(0.1)
6	$\text{CH}_4:\text{O}_2$	1:1	14	8	5.5(0.8)	1.8(0.1)	4.5(0.7)	42(2.0)	–	2.8(0.2)
7	$\text{CH}_4:\text{O}_2$	1:1	14	40	4.1(0.3)	1.8(0.1)	5.6(0.1)	20(1.0)	3.8(1.6)	2.1(0.1)
8	$\text{CH}_4:\text{O}_2$	1:1	14	80	4.7(0.2)	1.8(0.1)	4.4(0.1)	15(1.0)	5.1(1.4)	1.6(0.1)
9	$\text{CH}_4:\text{O}_2$	1:3	14	60	5.1(0.3)	1.6(0.1)	6.3(0.2)	18(1.0)	9.8(1.1)	3.3(0.1)
10	$\text{CH}_4:\text{O}_2$	3:1	14	100	3.0(0.1)	1.3(0.1)	3.1(0.1)	9(1.0)	4.1(2.4)	0.8(0.1)
11	$\text{CD}_4:\text{O}_2$	1:1	14	50	3.4(0.1)	1.5(0.1)	–	9(1.0)	4.3(0.5)	2.4(0.1)
12	$\text{CH}_4:\text{CD}_4:\text{O}_2$	1:1:2	14	80	–	–	–	–	–	1.7(0.1)(CH_4/CD_4)

Notes. ^a1 ML = 10^{15} molecules cm^{-2} .

^bAfter an UV fluence of $1.0 \times 10^{18} \text{ photons cm}^{-2}$. The values in parentheses represent the uncertainties, which are estimated to be of the order of 10 per cent.

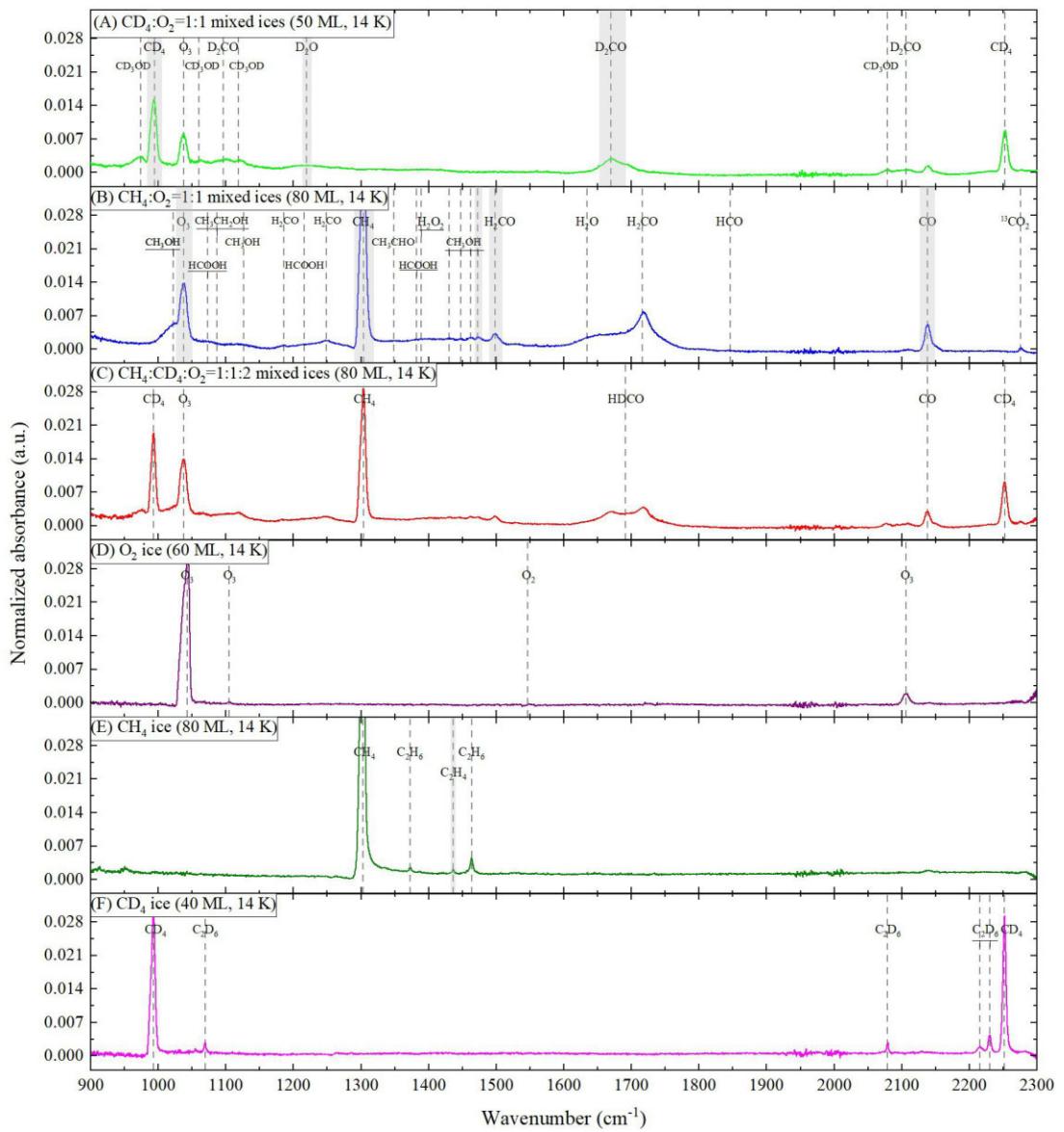


Figure 1. Overall IR spectra of pure ices (left panels) and mixed ices (right panels) before and after UV irradiation at the range of $800\text{--}4000 \text{ cm}^{-1}$. The total UV fluence is $1.0 \times 10^{18} \text{ photons cm}^{-2}$ for irradiated 3 h. Left panels: (A1) 80 ML, 14 K, CH_4 ice; (A2) 40 ML, 14 K, CD_4 ice; (A3) 60 ML, 14 K, O_2 ice; right panels: (B1) 80 ML, 14 K, $\text{CH}_4:\text{O}_2 = 1:1$ mixed ices; (B2) 50 ML, 14 K, $\text{CD}_4:\text{O}_2 = 1:1$ mixed ices; (B3) 80 ML, 14 K, $\text{CH}_4:\text{CD}_4:\text{O}_2 = 1:1:2$ mixed ices. The coloured lines represent ice samples exposed to UV irradiation, while the black lines represent the ice without UV irradiation.

3.1 Pure CH_4 ice

As we can see in Fig. 2(E), new products (i.e. C_2H_6 , C_3H_8 , and C_2H_4) are identified in pure irradiated CH_4 ice (Öberg et al. 2008). Fig. 3 presents IR spectra of pure CH_4 (80 ML, 14 K) ice as a function of UV irradiation time. The total UV fluence is $1.0 \times 10^{18} \text{ photons cm}^{-2}$ for irradiated 3 h. The inset zoom-in

IR spectra in Figs 3 (A) and 3 (B) reveal more details of the photoproducts (i.e. C_2H_4 , C_2H_6 , and C_3H_8). With increasing UV fluence, the absorbance of the CH_4 band (3010 cm^{-1}) gradually decreases, while the absorbance of C_2H_4 band (1436 cm^{-1}), C_2H_6 band (2941 and 2975 cm^{-1}), and C_3H_8 band (2959 cm^{-1}) gradually increases.

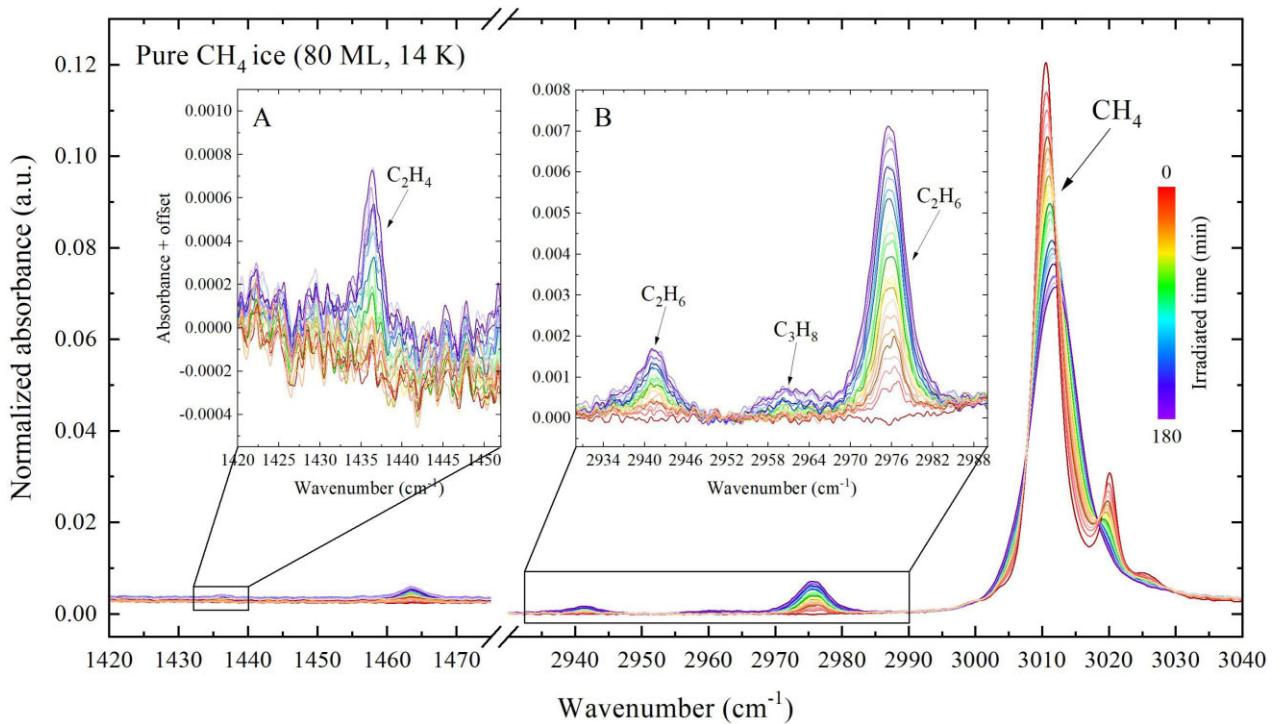
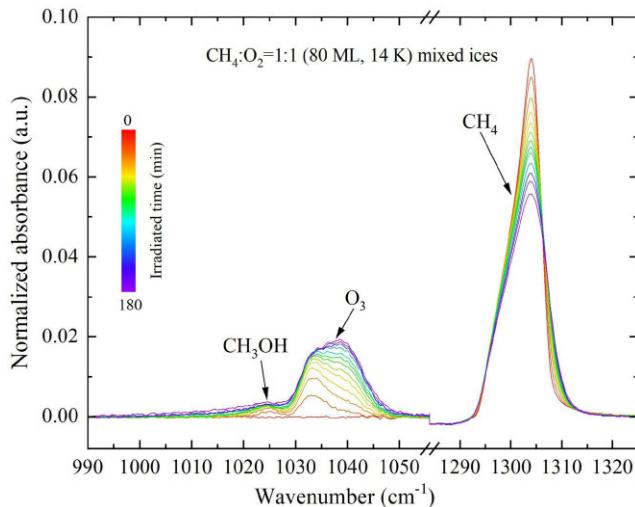


Figure 2. IR spectra of irradiated ices with an UV fluence of 1.0×10^{18} photons cm^{-2} at the range of $900\text{--}2300\text{ cm}^{-1}$: (A) 50 ML, 14 K, $\text{CD}_4:\text{O}_2 = 1:1$ mixed ices; (B) 80 ML, 14 K, $\text{CH}_4:\text{O}_2 = 1:1$ mixed ices; (C) 80 ML, 14 K, $\text{CH}_4:\text{CD}_4:\text{O}_2 = 1:1:2$ mixed ices; (D) 60 ML, 14 K, O_2 ice; (E) 80 ML, 14 K, CH_4 ice; (F) 40 ML, 14 K, CD_4 ice. The positions of IR bands for reactants and products are represented by the grey dash and names. The spectral bands used for quantification are represented by the grey rectangular area: in pure CH_4 ice, the CH_4 bands at 1300 and 3010 cm^{-1} was used to track destruction, while some spectral bands such as C_2H_6 bands at 2975 cm^{-1} and 2941 cm^{-1} , C_2H_4 band at 1436 cm^{-1} and C_3H_8 band at 2959 cm^{-1} were used to track formation. In the mixed ices, the CH_4 bands at 1300 and 3010 cm^{-1} and CD_4 band at 1039 cm^{-1} were used to track destruction, while some spectral bands such as H_2O band at 3280 cm^{-1} , CH_3OH band at 1474 cm^{-1} , CH_2O band at 1500 cm^{-1} , O_3 band at 2105 cm^{-1} , CO band at 2139 cm^{-1} , D_2O band at 1210 cm^{-1} , and CD_2O band at 1670 cm^{-1} , were used to track formation.


For pure irradiated CD_4 ice, only C_2D_6 is formed in Fig. 2(F), and no band feature can be labelled as C_2D_4 and other D-products (e.g. C_3D_8) (Shimanouchi 1972). This may be influenced by the isotope effects, meaning that the mass difference between isotope atoms (i.e. H and D atoms) affects the reaction rate of radicals involved in these isotope atoms and thus affects the formation of photoproducts. In other words, during the dissociation process of pure CD_4 ice, the rate at which the chemical bonds involved in the breakage of the D atom will be reduced due to the high mass of the D atom compared to the H atom, resulting in the inhibition of D-products (e.g. C_2D_4 and C_3D_8) formation.

3.2 Pure O_2 ice

As shown in Fig. 1(A3), before UV irradiation, O_2 without infrared activity cannot be detected. Furthermore, as the photoproduct of the O_2 ice, O_3 (1037 cm^{-1}) could be identified in Fig. 2(D). The photochemistry of pure O_2 ice has been studied (Zhen & Linnartz 2014). In pure O_2 ice, O_2 can be photodissociated into energetic O atoms, then they will form O_3 or recombine to O_2 . The O_3 produced on the irradiated O_2 ice can still be photodissociated into the energetic O atom and O_2 , or form complexes such as $\text{O}_3 \cdots \text{O}$ and $[\text{O}_3]_n$ by reacting with the surrounding O and O_3 , respectively. The ozone

Figure 3. IR spectra of pure CH_4 ice (80 ML, 14 K) as a function of UV irradiated time. The total UV fluence is 1.0×10^{18} photons cm^{-2} for irradiated 3 h. The inset zoom-in IR spectra reveal more details of the photoproducts (i.e. C_2H_4 , C_2H_6 , and C_3H_8).

Figure 4. IR spectra of CH_4 , O_3 , and CH_3OH in the $CH_4:O_2 = 1:1$ (80 ML, 14 K) mixed ices as a function of UV irradiated time. The total UV fluence is 1.0×10^{18} photons cm^{-2} for irradiated 3 h.

monomer at 1037 cm^{-1} and two close satellite peaks at 1032 and 1042 cm^{-1} could be seen in Fig. 4. For two satellite peaks, the former is attributable to the ozone-oxygen complex ($O_3 \cdots O$); the latter can be assigned to the ozone dimer ($O_3 \cdots O_3$) and ozone cluster (Zhen & Linnartz 2014).

3.3 $CH_4:O_2$ ice mixtures

Before irradiation, the IR spectra of mixed ices are similar to those of pure ices, except around 1550 cm^{-1} , which is a small peak assigned

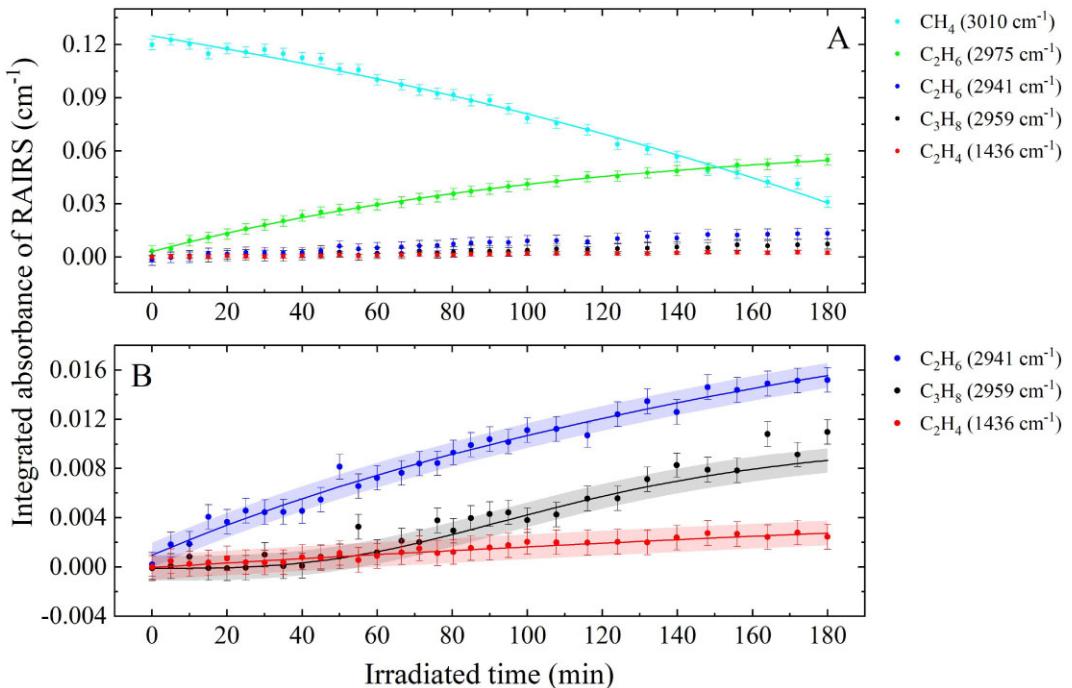
to the O-O stretching for ν_1 fundamental mode of O_2 (Freiman & Jodl 2004). In mixed ices, the local interactions with polar species or matrix-induced asymmetry can induce a transient dipole moment, making the O_2 stretch weakly IR-active. However, this effect for the transient dipole moment is not guaranteed, so the 1550 cm^{-1} peak may be absent in some ice mixtures, and its reason remains unclear. Upon irradiation, a series of new species are effectively formed. In addition, the absorption characteristics of these species are identified throughout the spectra and are listed in Table 2. In addition, we note that in Fig. 1, the spectra profile without and with UV irradiation reveals an absorption feature of gas-phase CO_2 . This occurs because our FTIR system operates under conditions that are not fully vacuum purged, so the MCT detector is continuously purged with dry air. In addition, the IR spectra presented represent the difference spectra by subtracting the initial background spectrum from the sample spectrum (signal + background). Due to a minor temporal drift in the background signal during experiments, a residual gas-phase CO_2 cannot be completely eliminated despite background subtraction.

With respect to irradiated $CH_4:O_2$ ice mixtures, we only focus on the ‘region of interest’ in the vicinity of 990 – 2300 cm^{-1} , as shown in Fig. 2(A–C). The molecular species associated with this region have been identified and labelled. In addition, the spectra of pure irradiated ices of O_2 , CH_4 , and CD_4 have been included in Fig. 2(D–F) for comparison with mixed irradiated ices. In Fig. 2(B), most of the spectral features that appear upon irradiation can be assigned to these molecules: CH_2O , CH_3OH , O_3 , CO , CO_2 , H_2O , H_2O_2 , $HCOOH$, CH_3CH_2OH , and CH_3CHO . Furthermore, we also identified the band feature of the HCO radical around 1842 cm^{-1} .

Fig. 4 presents IR spectra of $CH_4:O_2 = 1:1$ (80 ML, 14 K) mixed ices as a function of UV irradiated time in the range of 990 – 1325 cm^{-1} . In this figure, the change of CH_4 , O_3 , and CH_3OH could be observed in detail. As the irradiation time is longer, the

Table 2. IR spectral features and band strengths of ices.

Species	Assignment	Band	Band Strength
		cm^{-1}	$10^{-18} \text{ cm molecule}^{-1}$
CH ₄	CH deformation	1300	6.1
	CH stretch	3010	6.4
CD ₄	CD deformation	1039	3.0
	CD stretch	2254	3.6
C ₂ D ₆	$\nu_8 (e_\mu)$	1070	–
	$a_{2\mu}$	2080	–
C ₃ H ₈	CH ₃ symmetric stretch	2962	15.8
C ₂ H ₆ ·	$\nu_8 (e_\mu)$	1464	4.5
	CH ₃ symmetric stretch	2942	3.5
	CH ₃ degenerate stretch	2976	10.5
C ₂ H ₄	CH ₂ deformation	1436	2.9
¹³ CO ₂	¹³ CO stretch	2276	78
H ₂ O	OH stretch	3280	200
	OH bend	1670	12
CH ₂ O·	CH ₂ scissoring	1500	3.9
	CO stretching	1720	1.83
CH ₃ OH·	CH ₃ deformation	1474	^a 4.5
	CO stretching	1026	^a 18
HCOOH	OH bend	1223	^a 15
C ₂ H ₅ OH·		1044	^a 19
CH ₃ CHO	CH ₃ s-deform	1350	^a 4.5
CO	¹² CO stretch	2139	11
O ₃	Combination	2105	1.3
	OO asymmetric stretch	1037	15
HCO	CO stretch	1842	–
HDCO	CO stretching	1694	–
D ₂ O	OD bend	1210	6.0
	OD stretch	2484	140
D ₂ CO	CD ₂ scissoring	1101	5.3
	CO stretching	1670	13
CD ₃ OD	CO stretching	974	–
	CD ₃ asymmetry bend	1063	–
	CD ₃ symmetry bend	1120	–


Notes. ^aIn an H₂O ice matrix. ^bMoore & Hudson (1998). ^cShimanouchi (1972). ^dGerakines et al. (1995). ^eSchutte, Allamandola & Sandford (1993). ^fKerkhof, Schutte & Ehrenfreund (1999). ^gBrewer & Wang (1972). ^hHidaka et al. (2009). ⁱBennett et al. (2005). ^jBennett et al. (2006). ^kBennett et al. (2007). ^lde Barros et al. (2011). ^mde Barros et al. (2014). ⁿThe spectral features used for quantification analysis. ^oThe band strengths with an uncertainty of ∼20 per cent–30 per cent.

band absorbance of the reactant CH₄ gradually decreases, while photoproducts such as CH₃OH and O₃ are formed, and their band absorbance gradually increases. Interestingly, the ozone dimer (O₃ · · O₃) are also observed around 1042 cm⁻¹.

Upon UV irradiation, most CH₄:O₂ mixtures – regardless of the mixing ratio or temperature – produced similar products. However, some species with the least abundance are not detected under some experimental conditions. In addition, Figs 2 (A) and (C) show the IR spectra of irradiated CD₄:O₂ = 1:1 and CH₄:CD₄:O₂ = 1:1:2 mixed ices, and the following D products, such as CD₃OD, HDCO, D₂O, and CD₂O, are identified. For the identification of mid-IR absorption bands, isotopic labelling helps constrain the candidates for some absorption bands.

4 QUANTIFICATION ANALYSIS

As in the experiment results presented above, the photochemistry processes of the ices lead to complex photoproducts according to the radical–radical and radical–atom/molecule reaction schemes (Öberg et al. 2009a, b). In order to better understand their photoevolution mechanism, we have processed and analysed these experimental data further. In the following quantitative analysis, we only consider the dissociation and recombination of first-generation radicals from CH₄ and O₂ photodissociation and study the formation processes of O₃, H₂O, and CH₃OH. The following subsections focus on: (4.1) the photodestruction cross-sections of CH₄ and CD₄; (4.2) the quantification of O₃ formation; and (4.3) the quantification of H₂O and CH₃OH formation, respectively.

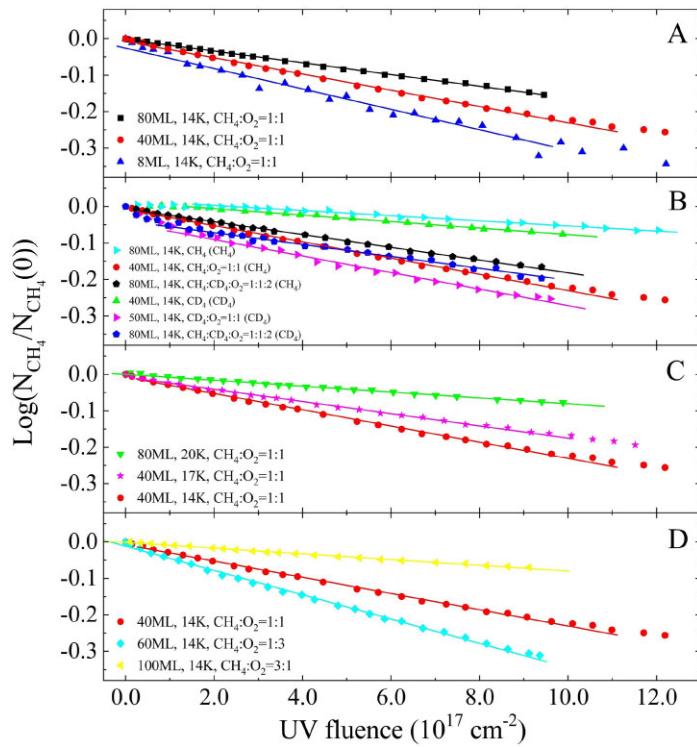
Figure 5. Quantified production of products in pure CH_4 ice (80 ML, 14 K) as a function of UV irradiated time. The total UV fluence is 1.0×10^{18} photons cm^{-2} for irradiated 3 h. Panel (A): The integrated RAIRS absorbance for CH_4 , C_2H_4 , C_2H_6 , and C_3H_8 ; Panel (B): The inset zoom-in scatter plots and fitting lines of C_3H_8 , C_2H_4 , and C_2H_6 (2941 cm^{-1}). In addition, the error bars of fitting lines in panel (B) are shown by a coloured rectangular area.

4.1 The photodestruction cross-sections of CH_4 and CD_4

The photodestruction rate of a species, averaged over the UV spectrum, is determined by the amount of available radicals for diffusion and subsequent reactions. It can be calculated from the measured loss of the intensity of the CH_4 and CD_4 bands with UV fluence on pure or mixed ices. These band positions and their strengths used for the quantification analysis are labelled with stars in Table 2. The band strengths have an uncertainty of ~ 20 per cent–30 per cent due to different references, ice compositions, and/or ice temperatures, but we assume that it does not affect the ice quantification analysis. The same band strengths are selected for each molecule for all different experimental conditions.

As shown in Fig. 5, quantified production of products is presented for pure irradiated CH_4 ice (80 ML, 14 K). In this figure, panel (A) shows the integrated RAIRS absorbance of CH_4 (3010 cm^{-1}), C_2H_6 (2975 cm^{-1} , 2941 cm^{-1}), C_3H_8 (2959 cm^{-1}), and C_2H_4 (1436 cm^{-1}); panel (B) shows the inset zoom-in scatter plots and fitting lines of C_3H_8 , C_2H_4 , and C_2H_6 (2941 cm^{-1}) in panel (A).

As shown in Fig. 5 (A), the CH_4 absorbance exhibits a monotonic decrease with increasing irradiation time, mainly due to the photofragmentation processes of CH_4 . The photofragmentation processes of CH_4 mainly depend on the flux of UV photons. According to that, the CH_4 absorbance decreases as an exponential function of the irradiation time.

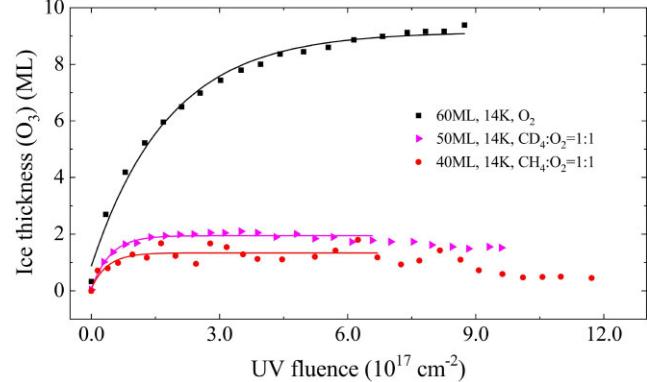

As the UV irradiation time increases, the integrated RAIRS absorbance of C_2H_6 (2975 cm^{-1}), C_3H_8 (2959 cm^{-1}), C_2H_6 (2941 cm^{-1}), and C_2H_4 (1436 cm^{-1}) gradually increases. In Fig. 5(B), we can clearly find that the integrated RAIRS absorbance of C_3H_8 increases slowly compared to C_2H_4 and C_2H_6 at the beginning of irradiation, but its integrated RAIRS absorbance increases rapidly after ~ 1 h of UV irradiation, which suggests that C_2H_6 and C_2H_4 are the second generation products that directly formed through

the recombination of the photofragments of CH_4 , and C_3H_8 is the third generation product that formed from the photofragments of C_2H_6 and CH_4 . In addition, the reaction scheme will be discussed in the next section.

Furthermore, we assume that the CH_4 destruction rate does not change throughout the irradiation period. However, the CH_4 destruction rate will be affected by other effects, such as the shelf-shielding effect. The newly formed species (e.g. C_2H_6 and C_2H_4) will prohibit UV penetration in the ice or at least limit its impact to the top layers only. In addition, as catalogued in Fig. 5, the primary photoproducts were identified spectroscopically. However, some secondary photoproducts were not detected by FTIR spectroscopy because of insufficient absorption cross-sections or spectral overlap. As a result, the formation rate of some primary products (e.g. C_2H_4 and C_2H_6) exhibited no significant increase over the experimental time-scale.

Fig. 6 shows the quantitative loss of CH_4 and CD_4 in the ice mixtures during UV irradiation and plots their normalized and logarithmically transformed loss as a function of the fluence of UV under different conditions. The results on the photodestruction cross-sections of CH_4 and CD_4 are listed in Table 1, and the uncertainties are estimated to be of the order of 10 per cent. The photodestruction cross-section of pure CH_4 ice is consistent with the previous report (Cottin, Moore & Bénilan 2003), and roughly in agreement with the estimate by Öberg et al. (2008). We only fitted the first part of the curves when they were still approximately linear, and the error may come from the fitting procedures. As shown in Fig. 6, the linear logarithmic transformation loss plot is obtained as a result of the exponential decay of CH_4 depletion.

According to the values obtained presented in Table 1 and Fig. 6, we can have: first, the photodestruction cross-sections of CH_4 decrease as the thicknesses of the mixed ices increase, for example, 2.8 ± 0.2 (N₆, 8 ML), 2.1 ± 0.1 (N₇, 40 ML), and 1.6 ± 0.1 (N₈,


Figure 6. Normalized and log-transformed loss of CH_4 . (A) Different thicknesses; (B) Pure and mixed ices; (C) Different temperatures; and (D) Different mixed ratios.

80 ML). The observed attenuation in photodestruction efficiency arises from four distinct mechanisms: (i) radiation attenuation via Beer–Lambert law decay; (ii) competitive absorption by accumulated photoproducts; (iii) diffusion-limited radical recombination enhancing backward reactions; and (iv) phase-transition-induced immobilization of reactants in crystalline lattices; second, within the experimental uncertainties, the isotope D compared to H has a minor effect on the photodestruction cross-section, e.g. for pure ices, 0.7 ± 0.1 (N_2, CH_4) and 0.8 ± 0.1 (N_3, CD_4), while for mixed ices, 2.1 ± 0.1 (N_7, CH_4), 2.4 ± 0.1 ($\text{N}_{11}, \text{CD}_4$), and 1.7 ± 0.1 ($\text{N}_{12}, \text{CH}_4/\text{CD}_4$);

Third, photodestruction cross-sections gradually decrease with increasing temperature, for example, 2.1 ± 0.1 ($\text{N}_7, 14\text{ K}$), 1.6 ± 0.1 ($\text{N}_5, 17\text{ K}$), and 0.8 ± 0.1 ($\text{N}_4, 20\text{ K}$), which indicates that there is no significant recombination reaction at low temperatures. This is consistent with the higher gas-phase CH_4 UV-absorption cross-section that the recombination can be ignored in the gas phase; fourth, the photodestruction cross-sections increase as the mixed ratio of $\text{CH}_4:\text{O}_2$ decreases, e.g. 0.8 ± 0.1 ($\text{N}_{10}, \text{CH}_4:\text{O}_2 = 3:1$), 2.1 ± 0.1 ($\text{N}_7, \text{CH}_4:\text{O}_2 = 1:1$), and 3.3 ± 0.1 ($\text{N}_9, \text{CH}_4:\text{O}_2 = 1:3$), which is due to the higher density of reactive O-related species formed on the gold surface; fifth, through comparing the photodestruction cross-sections in pure and mixed ices, it is obvious that more CH_4/CD_4 are destroyed in mixed ices than in pure ices during irradiation, e.g. 0.7 ± 0.1 (N_2, CH_4), 2.1 ± 0.1 (N_7, CH_4).

4.2 The quantification of O_3 formation

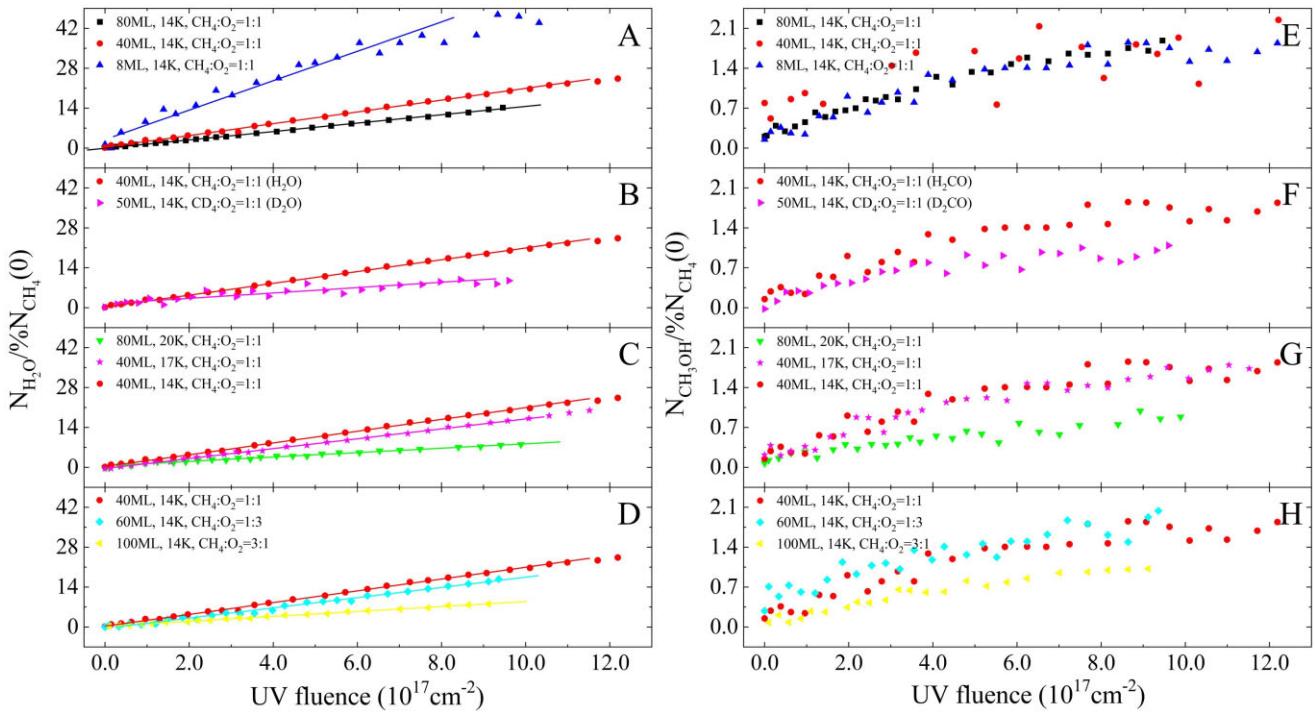

In pure O_2 ice or other O_2 -containing ices, O_3 is formed immediately upon UV irradiation, and the transformation between O_2 and O_3 reaches an equilibrium rapidly. As shown in Fig. 4, for the ice mixture $\text{CH}_4:\text{O}_2 = 1:1$ (80 ML, 14 K), the band absorbance intensity of O_3 gradually increases as a function of irradiation time. Soon after

Figure 7. The temporal thickness growth of ozone ($\text{O}_3, 2105\text{ cm}^{-1}$) as a function of UV fluence.

irradiation started, the top layer of the ices, such as CH_4 , O_2 , and O_3 , would be destroyed and transformed into other species. In Fig. 7, we have obtained the growth in temporal thickness of O_3 in pure O_2 ice, $\text{CH}_4:\text{O}_2$, and $\text{CD}_4:\text{O}_2$ mixed ices. Obviously, the thickness of the O_3 ice in pure O_2 ice increases at a higher rate in comparison with O_2 -containing mixed ices, which is because oxygen atoms in the mixed ices will still react with other radicals or molecules such as H and CH_3 .

In addition, Table 1 lists the formation rates of O_3 on different ices. We can clearly see that its formation rates in the mixed ices are significantly lower than in pure O_2 ice, e.g. 18 ± 1.0 (N_1, O_2) and 3.8 ± 1.6 ($\text{N}_7, \text{CH}_4:\text{O}_2 = 1:1$). The photoproduction rates of O_3 increase as the ratio of O_2 in the $\text{CH}_4:\text{O}_2$ mixed ices increases, e.g. 4.1 ± 2.4 ($\text{N}_{10}, \text{CH}_4:\text{O}_2 = 3:1$), 5.1 ± 1.4 ($\text{N}_8, \text{CH}_4:\text{O}_2 = 1:1$), and 9.8 ± 1.1 ($\text{N}_9, \text{CH}_4:\text{O}_2 = 1:3$). The decline in O_3 is rather slower, which means

Figure 8. Quantified production of H_2O and CH_3OH under different conditions as a function of UV fluence.

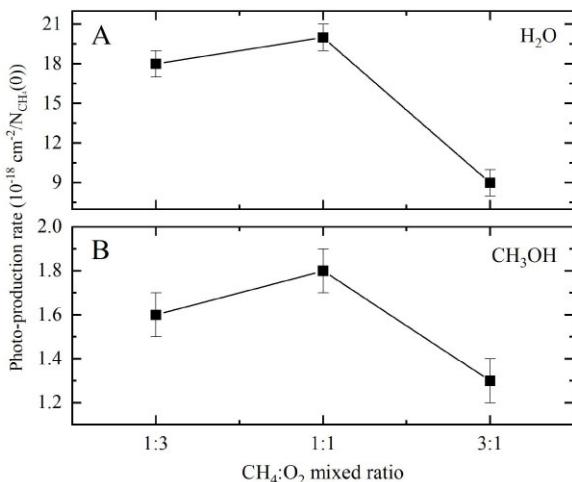
that the concentration of O-related radicals remains constant, as they are intermediates in the formation network of H_2O and/or organic molecules.

4.3 The quantification of H_2O and CH_3OH formation

In mixed ices, the dissociation pathways of CH_4 and CD_4 are similar to those in pure ices. However, the reaction network in the mixed ices is complex and diverse, and most reactions take place between CH_4 -related species (H and CH_3) and O_2 -related species (O , O_2 , and O_3). Surprisingly, there is no band characteristic that can be assigned to C_2H_6 and C_2H_4 in the ice mixtures. In the irradiated mixed ices, two of the most representative products are H_2O and CH_3OH , and below, we will discuss their production methods under different experimental conditions. Fig. 8 shows the quantified production of H_2O and CH_3OH as a function of UV fluence. In addition, the obtained photoproduction rates are listed in Table 1, and the uncertainties are estimated to be of the order of 10 per cent.

4.3.1 The quantification of H_2O formation

In the case of H_2O , from the values obtained in Table 1 and Fig. 8(A–D), we can find: First, the photoproduction rate of H_2O increases when the thickness of mixed ices decreases, e.g. 15 ± 1.0 (N_8 , 80 ML), 20 ± 1.0 (N_7 , 40 ML), and 42 ± 1.0 (N_6 , 8 ML), which suggests the reactions not only take place in the top layers; Second, taking the isotope effect into account, the photoproduction rate of water is significantly different, e.g. 20 ± 1.0 (N_7 , H_2O) and 9 ± 1.0 (N_{11} , D_2O). Since there is no diffusion barrier for H and D , these differences are mainly due to different behaviours of intermediate species (that is, OH , HO_2 , OD , and DO_2) in the formation pathways of H_2O and D_2O (Ioppolo et al. 2008).


Third, the photoproduction rate increases with decreasing temperature, e.g. 8 ± 2.0 (N_4 , 20 K), 18 ± 1.0 (N_5 , 17 K), and 20 ± 1.0 (N_7 ,

14 K), meaning negative correlation between the photoproduction rate of H_2O and temperature. The main production pathway of H_2O is the reaction between OH and H , so the quantity and diffusion rates of H and OH greatly affect the production of H_2O . Furthermore, their diffusion rates are mainly affected by the temperature of the ice, but in the range of 14–21 K, the diffusion rates of the H and OH radicals could be treated as the same. When the ice temperature decreases, on the one hand, more radicals can be trapped in the ice, but the recombination rate between radicals decreases due to reduced reactivity; on the other hand, the number of radicals increases so that the chance of collision of OH with H becomes higher. As a result, in general, the photoproduction rate of H_2O is higher at a lower temperature.

Fourth, the photoproduction rate gradually decreases with increasing ratios of $CH_4:O_2$ mixed ices, for example, 18 ± 1.0 (N_9 , $CH_4:O_2 = 1:3$), 20 ± 1.0 (N_7 , $CH_4:O_2 = 1:1$), and 9 ± 1.0 (N_{10} , $CH_4:O_2 = 3:1$). As shown in Fig. 9, the photoproduction rates of H_2O and CH_3OH under different mixed ratios are presented. Among the above three mixed ratios, $CH_4:O_2 = 1:1$ is the most productive ratio for H_2O . One possible reason is the lower density of O atoms affecting the quantity of OH radicals in the ice ratio of $CH_4:O_2 = 3:1$ and the lower density of H radicals in the ice ratio of $CH_4:O_2 = 1:3$.

4.3.2 The quantification of CH_3OH formation

As shown in Fig. 4, CH_3OH , as one of the representative organic compounds, has a band absorbance intensity that increases rapidly in the beginning and soon reaches equilibrium. Fig. 8(E–H) shows the quantified production of CH_3OH in the different ice mixtures as a function of UV fluence. The mechanism of CH_3OH production is mainly the reaction of CH_3 with OH radicals, which is similar to the formation pathway of H_2O . However, for CH_3OH or other organic compounds, their formation reactions are in a chain reaction, so these compounds will continue to be photodissociated upon UV

Figure 9. The photoproduction rates of H_2O and CH_3OH after an UV fluence of 1.0×10^{18} photons cm^{-2} under different mixed ratios of $\text{CH}_4:\text{O}_2$ ices (14 K).

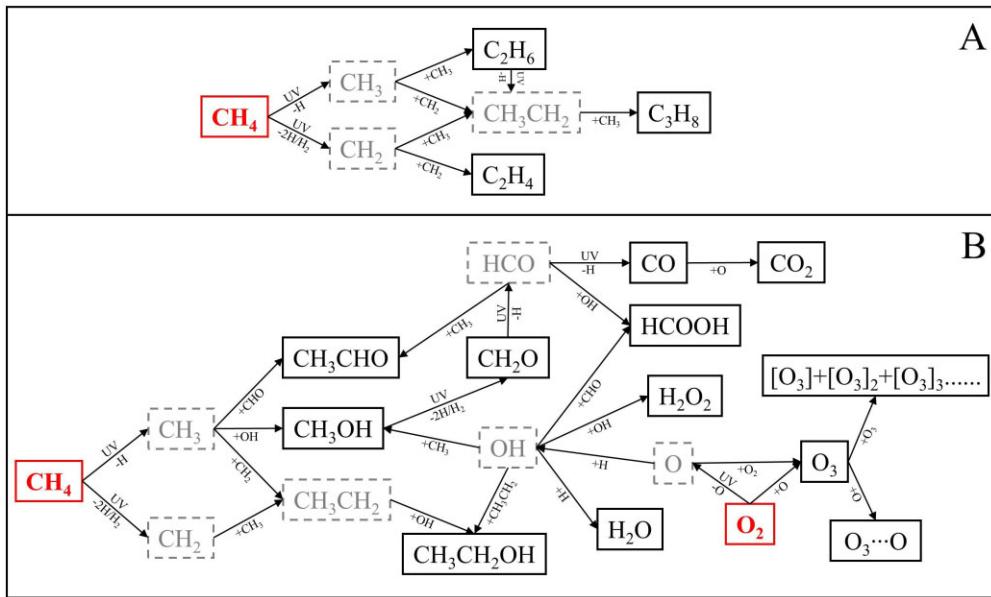
irradiation and form more complex organic compounds through the recombination of radicals.

According to the values obtained shown in Table 1 and Fig. 8(E–H), we can find: first, for the photoproduction rate, the thickness dependence is not observed, e.g. 1.8 ± 0.1 (N_8 , 80 ML), 1.8 ± 0.1 (N_7 , 40 ML), and 1.8 ± 0.1 (N_6 , 8 ML). Therefore, it applies to the top layers reaction model, indicating that the diffuse rate of CH_3 radicals is higher; second, given the isotope effect, there is no significant difference, e.g. 1.8 ± 0.1 (N_7 , CH_3OH) and 1.5 ± 0.1 (N_{11} , CD_3OD), meaning that the diffusion rates of H-radical (i.e. CH_3 and OH) and D-radical (i.e. CD_3 and OD) are similar; Third, the photoproduction rate decreases with increasing temperature, e.g. 1.8 ± 0.1 (N_7 , 14 K), 1.5 ± 0.1 (N_5 , 17 K), and 0.8 ± 0.1 (N_4 , 20 K). In other words, like H_2O , the photoproduction rate of CH_3OH has a negative temperature dependence effect; fourth, the photoproduction rate is also affected by the ratio of mixed ices, e.g. 1.6 ± 0.1 (N_9 , $\text{CH}_4:\text{O}_2 = 1:3$), 1.8 ± 0.1 (N_7 , $\text{CH}_4:\text{O}_2 = 1:1$), and 1.3 ± 0.1 (N_{10} , $\text{CH}_4:\text{O}_2 = 3:1$). As shown in Fig. 9(B), CH_3OH is the most abundant in the $\text{CH}_4:\text{O}_2 = 1:1$ mixed ices, which maybe because both CH_3 and the OH radicals have a higher density. In addition, the quantity of CH_3 and OH radicals depends on the photodissociation efficiency of CH_4 and O_2 , respectively.

5 DISCUSSION

Fig. 10 presents the reaction scheme of pure CH_4 and $\text{CH}_4:\text{O}_2$ ice processing after UV irradiation in this work. The red and black words with solid boxes represent reactants and products, respectively, while the grey words with dotted boxes represent radicals. The UV denotes UV irradiation or UV irradiation analogues. Moreover, the reaction energies have been calculated for all pathways in Fig. 10, and are summarized in Table 3. Theoretical calculations were performed in the Gaussian 16 programme (Frisch et al. 2016) by combining density functional theory and the hybrid density functional B3LYP (Lee, Yang & Parr 1988; Becke 1992). The 6-311++G(d,p) basis set was used for this system. The geometries of all species were optimized at the local minimum of their potential energy surface. Furthermore, the zero-point energy and thermal corrections obtained from the frequency calculations were used to correct the molecular energy.

Fig. 10 (A), after UV irradiation, CH_4 ice is converted into CH_3 through H-stripping and CH_2 through the loss of two H atoms or a H_2 molecule, that is, $\text{CH}_4 + \text{h}\nu \rightarrow \text{CH}_3 + \text{H}$; $\text{CH}_4 + \text{h}\nu \rightarrow \text{CH}_2 + 2\text{H}/\text{H}_2$. Similarly, pure CD_4 ice is converted into CD_3 through D-stripping during irradiation, i.e. $\text{CD}_4 + \text{h}\nu \rightarrow \text{CD}_3 + \text{D}$. The H/D atoms produced from our experiments are ‘hot’ compared to the ‘cold’ H/D atoms (Ioppolo et al. 2008). And these ‘hot’ H/D atoms will further react with O-related species. Compared to other radicals, the diffusion barrier of ‘hot’ H/D atoms can be treated as zero, and their reactions with other radicals are extremely efficient.


In pure irradiated CH_4 ice, there are three photoproducts (C_2H_6 , C_2H_4 , and C_3H_8) with different reaction pathways. (1) C_2H_6 is formed by the reaction between the CH_3 radicals, i.e. $\text{CH}_3 + \text{CH}_3 \rightarrow \text{C}_2\text{H}_6$. (2) C_2H_4 has two possible formation ways: one is through the reaction between CH_2 radicals, i.e. $\text{CH}_2 + \text{CH}_2 \rightarrow \text{C}_2\text{H}_4$; the other is the dehydrogenation of C_2H_6 , i.e. $\text{C}_2\text{H}_6 + \text{h}\nu \rightarrow \text{C}_2\text{H}_4 + 2\text{H}/\text{H}_2$. (3) C_3H_8 has two possible formation ways: one is formed by the recombination between CH_3 and CH_2 radicals, i.e. $\text{CH}_3 + \text{CH}_2 \rightarrow \text{CH}_3\text{CH}_2$, and then $\text{CH}_3\text{CH}_2 + \text{CH}_3 \rightarrow \text{C}_3\text{H}_8$; the other is formed by the dehydrogenation of C_2H_6 and the recombination of radicals, i.e. $\text{C}_2\text{H}_6 + \text{h}\nu \rightarrow \text{CH}_3\text{CH}_2 + \text{H}$, and then $\text{CH}_3\text{CH}_2 + \text{CH}_3 \rightarrow \text{C}_3\text{H}_8$. In the irradiated pure CD_4 ice, only C_2D_6 is observed. Similarly, C_2D_6 is formed by the reaction between CD_3 radicals, i.e. $\text{CD}_3 + \text{CD}_3 \rightarrow \text{C}_2\text{D}_6$.

In Fig. 10(B), similar to Zhen & Linnartz (2014), upon UV photolysis, O atoms and O_3 are the first generation products for pure O_2 ice, that is, $\text{O}_2 + \text{h}\nu \rightarrow 2\text{O}$, $\text{O}_2 + \text{O} \rightleftharpoons \text{O}_3$, and O and O_3 can transform into each other. Moreover, $\text{O}_3 \cdots \text{O}$ and $[\text{O}_3]_n$ ($n \geq 2$; e.g. $[\text{O}_3]_2$, $[\text{O}_3]_3$, ...) could be produced by the reaction of O_3 with O and O_3 , respectively, i.e. $\text{O}_3 + \text{O} \rightarrow \text{O}_3 \cdots \text{O}$; $n\text{O}_3 \rightarrow [\text{O}_3]_n$, $n \geq 2$.

In Fig. 10(B), there are a series of photoproducts when $\text{CH}_4:\text{O}_2$ ice mixtures are exposed to UV photons, such as H_2O , H_2O_2 , CH_3OH , CH_2O , CO , CO_2 , HCOOH , $\text{CH}_3\text{CH}_2\text{OH}$, CH_3CHO , O_3 , $\text{O}_3 \cdots \text{O}$, and $[\text{O}_3]_n$ ($n \geq 2$). In the irradiated mixed ices, there are two sources of radicals: (1) the CH_3 radicals and the hot ‘H’ atoms produced during the photodissociation process of the CH_4 ice are the first generation, and these hot ‘H’ atoms can diffuse freely in the ices; (2) energetic O-related radicals such as O atoms produced in the O_2 photodissociation are involved in further reactions. Subsequently, these atoms/radicals recombine with each other, and then new products are formed.

The formation reaction of each product shown in Fig. 10(B) is described in detail below. (1) H_2O is formed by the reaction between the H atom and the OH radical, that is, $\text{O} + \text{H} \rightarrow \text{OH}$, $\text{OH} + \text{H} \rightarrow \text{H}_2\text{O}$. (2) H_2O_2 is formed by the combination of OH radicals, i.e. $2\text{OH} \rightarrow \text{H}_2\text{O}_2$. (3) CH_3OH is formed by the reaction between CH_3 and OH radicals, that is, $\text{CH}_3 + \text{OH} \rightarrow \text{CH}_3\text{OH}$. (4) CH_2O is formed by the dehydrogenation of CH_3OH , i.e. $\text{CH}_3\text{OH} + \text{h}\nu \rightarrow \text{CH}_2\text{O} + 2\text{H}/\text{H}_2$. Among the two reaction pathways, the reaction that produces H_2 is dominant. (5) CO is formed through the continuous dehydrogenation of CH_2O , i.e. $\text{CH}_2\text{O} + \text{h}\nu \rightarrow \text{HCO} + \text{H}$, $\text{HCO} + \text{h}\nu \rightarrow \text{CO} + \text{H}$. In this process, HCO radicals appear, react with other radicals, and form more complex species. (6) CO_2 is formed by the reaction between the O atom and CO, i.e. $\text{CO} + \text{O} \rightarrow \text{CO}_2$. (7) HCOOH is formed by the reaction between OH and the HCO radicals, that is, $\text{HCO} + \text{OH} \rightarrow \text{HCOOH}$. (8) $\text{CH}_3\text{CH}_2\text{OH}$ is formed by the reaction between CH_3CH_2 and OH radicals, i.e. $\text{CH}_3\text{CH}_2 + \text{OH} \rightarrow \text{CH}_3\text{CH}_2\text{OH}$. (9) CH_3CHO is formed by the reaction between CH_3 and the HCO radicals, that is, $\text{CH}_3 + \text{CHO} \rightarrow \text{CH}_3\text{CHO}$.

Bergner et al. (2017) has studied the process of methanol formation through oxygen insertion chemistry in CH_4 ice. In their reaction

Figure 10. Reaction scheme of ice processing upon UV irradiation. (A) Pure CH_4 ice; (B) $CH_4:O_2$ ice mixtures. The solid boxes represent reactants and products, respectively, while the dotted boxes represent radicals.

Table 3. All reaction pathways and their reaction energies for the $CH_4:O_2$ system.

No.	Reaction pathways	Reaction energy (eV)
1	$CH_4 \rightarrow CH_3 + H$	4.05
2	$CH_4 \rightarrow CH_2 + 2H$	8.99
3	$CH_4 \rightarrow CH_2 + H_2$	4.76
4	$CH_3 + CH_3 \rightarrow C_2H_6$	-3.30
5	$CH_2 + CH_2 \rightarrow C_2H_4$	-7.93
6	$CH_3 + CH_2 \rightarrow CH_3CH_2$	-4.40
7	$CH_3CH_2 + CH_3 \rightarrow C_3H_8$	-3.23
8	$O_2 \rightarrow 2O$	3.34
9	$O_2 + O \rightarrow O_3$	-2.16
10	$nO_3 \rightarrow [O_3] + [O_3]_2 + [O_3]_3 \dots$	-
11	$O_3 + O \rightarrow O_3 \dots O$	-
12	$O + H \rightarrow OH$	-4.19
13	$OH + H \rightarrow H_2O$	-4.61
14	$OH + OH \rightarrow H_2O_2$	-1.65
15	$CH_3 + OH \rightarrow CH_3OH$	-3.40
16	$CH_3OH \rightarrow CH_2O + 2H$	4.71
17	$CH_3OH \rightarrow CH_2O + H_2$	0.48
18	$CH_2O \rightarrow HCO + H$	3.35
19	$HCO + OH \rightarrow HCOOH$	-3.99
20	$HCO \rightarrow CO + H$	0.70
21	$CO + O \rightarrow CO_2$	-5.35
22	$CH_3 + CHO \rightarrow CH_3CHO$	-3.14
23	$CH_3CH_2 + OH \rightarrow CH_3CH_2OH$	-3.47

network, O_2 is selectively dissociated through the channel $O_2 \rightarrow O(^1D) + O(^3P)$, and then excited $O(^1D)$ atoms are inserted into the methane, leading to the formation of methanol, i.e. $O(^1D) + CH_4 \rightarrow CH_3OH$. Subsequently, the CH_3 and OH radicals are produced by the energetic processing of CH_3OH . Obviously, the formation mechanism of CH_3OH is completely different from our analysis results. According to our analysis, the reason for this may be energetic processing; that is to say, different energetic processing for initial materials leads to the appearance of the same species with different production pathways.

Öberg et al. (2009a) quantifies the UV-induced production rates of complex organics in CH_3OH -rich ices (e.g. pure CH_3OH ice or $CH_3OH:CH_4/CO$ ice mixtures). C_2H_6 , CH_3CHO , CH_3CH_2OH , CH_3OCH_3 , $HCOOCH_3$, $HOCH_2CHO$, and $(CH_2OH)_2$ are detected in their experiments. Mejía et al. (2013) has studied the radiolysis of pure methane ice with 6–606 MeV heavy ions (i.e. O, Fe, and Zn) at 15 K, leading to the formation of C_nH_m molecules ($n = 2–4$ and $m = 2(n-1)$ to $2(n+1)$) and some radicals CH_3 , C_2H_3 , and C_2H_5 . More complex molecules are obtained under cosmic-ray radiation, while only C_2H_4 , C_2H_6 , and C_3H_8 molecules are formed through interaction between pure CH_4 ice and UV photons in our experiments. This indicates that radiation sources with different energies affect the types of photoproducts. In addition, physico-chemical modification of $CH_4:H_2O$ ice mixtures irradiated by 40 MeV $^{58}Ni^{11+}$ ions are analysed (Mejía et al. 2020). New molecules appear in the irradiated $CH_4:H_2O$ ices, such as HCO , H_2CO , CO , CO_2 , H_2O_2 , $HCOOH$, CH_3OH , C_2H_5OH , and CH_3CHO , which are also observed in this work. More importantly, these products have a similar formation mechanism under different radiation sources. These similarities indicate that UV photolysis can produce a rich chemistry comparable to ion-induced radiolysis.

Qualitatively, the relative production rates of CH_3OH , CH_2O , H_2O , O_3 , CO , and CO_2 agree well with the normalized formation rates observed according to the prediction of their reaction scheme. Within this framework, it is assumed that most reactions consist of radical recombination without breaking chemical bonds. This scheme reproduces the true and complex chemistry in interstellar ice in the star-formation regions as well.

6 ASTROPHYSICAL IMPLICATION

The prospect of reactive species such as ozone in cold and dense molecular clouds is particularly interesting because the O atom is a key starting point for multiple routes of molecular synthesis. As our experimental results are presented here, $CH_4:O_2$ ice mixtures upon UV irradiation result in a series of complex organic molecules. During the different stages of star formation, the relative importance

of these production pathways strongly depends on the relative abundances of CH_4 and O_2 ice on the surface of dust grains, as well as what they are mixed with, e.g. other ice compounds, UV photons, and cosmic ray particles. Therefore, both the H_2O - and $\text{CO}/\text{CH}_3\text{OH}$ -rich ice phases can be accurately modelled and thus predict the formation rates of complex C- and/or O-containing molecules from interstellar space.

The ice lifetime in the radiation field could easily be estimated through the photodestruction cross-section of volatile species (e.g. CH_4). The photodestruction time-scales of CH_4 in mixed ices subject to a weak UV field induced by cosmic rays ($10^4 \text{ cm}^{-2} \text{ s}^{-1}$): $\sim 1.0 \times 10^7$ yrs, the interstellar radiation field ($10^8 \text{ cm}^{-2} \text{ s}^{-1}$): $\sim 1.0 \times 10^3$ yrs, and the 1000 times higher UV flux inferred toward the L1527 outflow ($10^{11} \text{ cm}^{-2} \text{ s}^{-1}$): ~ 1 yr (Spaans et al. 1995). Inside a cloud core with low temperatures and lots of molecular hydrogen, CH_4 ices are well protected so that they can survive thermal desorption and irradiation around some protostars and drive warm-carbon-chain chemistry (Sakai et al. 2008). This may be a reason for the low number of chemical observations on protostellar evolution.

O_2 condensed in the dust grains can be partially converted into ozone by energetic cosmic rays or UV radiation. So far, though the observation results have been negated for the presence of O_3 on the surface of dust grains, the ozone absorption band at $9.6 \mu\text{m}$ may be obscured by a broad absorption characteristic attributed to silicates or other carbonaceous materials at $10.0 \mu\text{m}$. Photodissociation of ozone could produce O atoms that could react with other molecules, such as CO , to produce CO_2 , possibly assisted by localized energy deposition. If the above process is relevant, it could help resolve the problem of accounting for the observed abundance of solid CO_2 in interstellar clouds. Throughout protostars, the potential importance of producing complex organics from simple ices containing O_2 and/or CH_4 should therefore be taken into account in the simulation of ice chemistry.

Given the low temperatures in dense molecular clouds, interstellar ice processing is mainly driven by non-thermal processes such as energetic processing caused by UV photons. For the astrophysically relevant ice analogues, CH_4 is at the beginning of a rich chemistry network. Furthermore, O is also one of the essential elements of life. Therefore, the research about $\text{CH}_4:\text{O}_2$ ice mixtures plays an important role in the development of iCOMs, amino acids, and even life. Laboratory experiments about photochemistry behaviour induced by UV irradiation help explain the astronomical observations of molecule abundances in the gas and solid phases and to accurately model the chemical evolution in the regions of the ISM/CSM concerned.

7 CONCLUSION

In total, UV-induced photochemical processes for $\text{CH}_4:\text{O}_2$ ice mixtures have been studied by experimental simulation and quantitative analysis. The results reveal an efficient way to form complex organic species under astronomically relevant conditions.

The main conclusions we obtained are summarized below: (1) After UV irradiation, all new species formed in the mixed ices are identified through mid-IR spectra. These species, including CH_2O , CH_3OH , O_3 , CO , CO_2 , H_2O , H_2O_2 , HCOOH , $\text{CH}_3\text{CH}_2\text{OH}$, and CH_3CHO , and the D-products CD_3OD , HDCO , D_2O , and CD_2O , play a crucial role in the formation of complex organic species.

(2) The photodestruction cross-sections of CH_4 and CD_4 in pure and mixed ices are obtained under different experimental and astronomically relevant conditions;

(3) The formation rates of O_3 , H_2O , CH_3OH , CH_2O , and CO are quantified, and thus they can be used directly for theoretical models, such as those related to the chemical evolution of the interstellar medium, under astronomically relevant conditions.

(4) Together with the experiments and quantitative analysis, we have derived the reaction scheme of $\text{CH}_4:\text{O}_2$ ice mixtures upon UV irradiation and provided the expected main reaction pathways under simulated astrophysical environmental conditions.

Our results also indicate that organic molecules can form and accumulate on the surface of small dust grains in the ISM/CSM, which helps to understand the formation of large organic molecules through the photochemical evolution of simple ices in the ISM/CSM.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (NSFC, grant no. 12333005). Theoretical calculations were performed at the Super Computing Center of the University of Science and Technology of China.

DATA AVAILABILITY

All data generated and analysed during this work are included in this article.

REFERENCES

Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, *ARA&A*, 47, 481
 Barentine J. C., Lacy J. H., 2012, *ApJ*, 757, 111
 Becke A. D., 1992, *J. Chem. Phys.*, 96, 2155
 Bennett C. J., Jamieson C. S., Osamura Y., Kaiser R. I., 2005, *ApJ*, 624, 1097
 Bennett C. J., Jamieson C. S., Osamura Y., Kaiser R. I., 2006, *ApJ*, 653, 792
 Bennett C. J., Chen S. H., Sun B. J., Chang A. H., Kaiser R. I., 2007, *ApJ*, 660, 1588
 Bergner J. B., Öberg K. I., Rajappan K. I., 2017, *ApJ*, 845, 29
 Boogert A. C. A. et al., 1996, *A&A*, 315, L377
 Boogert A. C., Schutte W. A., Helmich F. P., Tielens A. G., Wooden D. H., 1997, *A&A*, 317, 929
 Boogert A. C., Helmich F. P., Dishoeck E. F. V., Schutte W. A., Tielens A. G. M., Whittet D. C. B., 1998, *A&A*, 336, 352
 Boogert A. C. A., Blake G. A., Tielens A. G. G. M., 2002, *ApJ*, 577, 271
 Boogert A. C. A., Blake G. A., Öberg K., 2004, *ApJ*, 615, 344
 Boogert A. C. A., Gerakines P. A., Whittet D. C. B., 2015, *ARA&A*, 53, 541
 Bossa J. B., Paardekooper D. M., Isokoski K., Linnartz H., 2015, *Phys. Chem. Chem. Phys.*, 17, 17346
 Brewer L., Wang J. L., 1972, *J. Chem. Phys.*, 56, 759
 Carrascosa H., Cruz-Díaz G. A., Muñoz Caro G. M., Dartois E., Chen Y., 2020, *MNRAS*, 493, 821
 Chen J. H. et al., 2014, *ApJ*, 793, 111
 Chiar J. E., Tielens A. G. G. M., Whittet D. C. B., Schutte W. A., Boogert A. C. A., Lutz D., van Dishoeck E. F., Bernstein M. P., 2000, *ApJ*, 537, 749
 Chou S., Lin M., Huang T., Wu Y., 2020, *J. Mol. Struct.*, 1209, 127954
 Cottin H., Moore M. H., Bénilan Y., 2003, *ApJ*, 590, 874
 Dartois E., Muñoz Caro G. M., Deboffe D., Montagnac G., d’Hedecourt L., 2005, *A&A*, 432, 895
 de Barros A. L. F., Domaracka A., Andrade D. P. P., Boduch P., Rothard H., da Silveira E. F., 2011, *MNRAS*, 418, 1363
 de Barros A. L. F., da Silveira E. F., Pilling S., Domaracka A., Rothard H., Boduch P., 2014, *MNRAS*, 438, 2026
 de Graauw T. D. et al., 1996, *A&A*, 315, L49
 Dupuy R. et al., 2017, *A&A*, 603, A61
 Ehrenfreund P., Charnley S. B., 2000, *ARA&A*, 38, 427
 Fagi S., Lippi M., Mumma M. J., Villanueva G. L., 2023, *Planet. Sci. J.*, 4, 8
 Freiman Y. A., Jodl H. J., 2004, *Phys. Rep.*, 401, 1

Frisch M. J. et al., 2016, Gaussian 16, Revision e. 01. Gaussian, Inc., Wallingford, CT

Garrod R. T., Wakelam V., Herbst E., 2007, *A&A*, 467, 1103

Gerakines P. A., Schutte W. A., Greenberg J. M., van Dishoeck E. F., 1995, *A&A*, 296, 810

Gerakines P. A., Schutte W. A., Ehrenfreund P., 1996, *A&A*, 312, 289

Gibb E. L., Whittet D. C. B., Chiar J. E., 2001, *ApJ*, 558, 702

Goldsmith P. F. et al., 2011, *ApJ*, 737, 96

Greenberg J. M., Hong S. S., 1974, Proc. IAU Symp. 60, Galactic Radio Astronomy. Cambridge Univ. Press, Cambridge, p. 155

Herbst E., Leung C. M., 1989, *ApJS*, 69, 271

Hidaka H., Watanabe M., Kouchi A., Watanabe N., 2009, *ApJ*, 702, 291

Ioppolo S., Cuppen H. M., Romanzin C., van Dishoeck E. F., Linnartz H., 2008, *ApJ*, 686, 1474

Kerkhof O., Schutte W. A., Ehrenfreund P., 1999, *A&A*, 346, 990

Lacy J. H., Carr J. S., Evans Neal J., II, Baas F., Achtermann J. M., Arens J. F., 1991, *ApJ*, 376, 556

Lamberts T., de Vries X., Cuppen H. M., 2014, *Faraday Discuss.*, 168, 327

Lamberts T., Fedoseev G., Kästner J., Ioppolo S., Linnartz H., 2017, *A&A*, 599, A132

Larsson B., Liseau R., 2017, *A&A*, 608, A133

Larsson B. et al., 2007, *A&A*, 466, 999

Lee C., Yang W., Parr R. G., 1988, *Phys. Rev. B*, 37, 785

Liseau R. et al., 2012, *A&A*, 541, A73

Markwick A. J., Millar T. J., Charnley S. B., 2000, *ApJ*, 535, 256

McClure M. K. et al., 2023, *Nat. Astron.*, 7, 431

Mejía C. F., de Barros A. L. F., Bordalo V., da Silveira E. F., Boduch P., Domaracka A., Rothard H., 2013, *MNRAS*, 433, 2368

Mejía C. F., de Barros A. L. F., Rothard H., Boduch P., da Silveira E. F., 2020, *ApJ*, 894, 132

Millar T. J., Herbst E., 1990, *MNRAS*, 242, 92

Moore M. H., Hudson R. L., 1998, *Icarus*, 135, 518

Muñoz Caro G. M., Schutte W. A., 2003, *A&A*, 412, 121

Nickerson S. et al., 2023, *ApJ*, 945, 26

Öberg K. I. et al., 2008, *ApJ*, 678, 1032

Öberg K. I., Garrod R. T., van Dishoeck E. F., Linnartz H., 2009a, *A&A*, 504, 891

Öberg K. I., Linnartz H., Visser R., van Dishoeck E. F., 2009b, *ApJ*, 693, 1209

Öberg K. I., van Dishoeck E. F., Linnartz H., 2009c, *A&A*, 496, 281

Pontoppidan K. M. et al., 2003, *A&A*, 408, 981

Raut U., Loeffler M. J., Fama M., Baragiola R. A., 2011, *J. Chem. Phys.*, 134, 194501

Sakai N., Sakai T., Hirota T., Yamamoto S., 2008, *ApJ*, 672, 371

Savage B. D., Sembach K. R., 1996, *ARA&A*, 34, 279

Schutte W. A., Allamandola L. J., Sandford S. A., 1993, *Icarus*, 104, 118

Shen C. J., Greenberg J. M., Schutte W. A., van Dishoeck E. F., 2004, *A&A*, 415, 203

Shimanouchi T., 1972, Tables of Molecular Vibrational Frequencies, Consolidated Volume I, National Bureau of Standards. NSRDS-NBS, US, p. 164

Spaans M., Hogerheijde M. R., Mundy L. G., van Dishoeck E. F., 1995, *ApJ*, 455, L167

Spoon H. W. W., Keane J. V., Tielens A. G. G. M., Lutz D., Moorwood A. F. M., 2001, *A&A*, 365, L353

Taquet V. et al., 2018, *A&A*, 618, A11

Table A1. The corresponding parameters of fitting lines in Fig. 5(B).

C_2H_6 (2941 cm $^{-1}$)	
Fitting model	Exponential decay
Functional equation	$y = A_1 \times \exp(-x/t_1) + y_0$
y_0	0.02471 ± 0.00328
A_1	-0.0237 ± 0.00309
t_1	190.0166 ± 40.25831
Reduced chi-sqr	0.39686
R^2 (COD)	0.98039
Adjusted R^2	0.97899
C_2H_4 (1436 cm $^{-1}$)	
Fitting model	Exponential decay
Functional equation	$y = A_1 \times \exp(-x/t_1) + y_0$
y_0	0.00907 ± 0.0073
A_1	-0.00902 ± 0.00723
t_1	490.90089 ± 472.64426
Reduced chi-sqr	0.04667
R^2 (COD)	0.93898
Adjusted R^2	0.93463
C_3H_8 (2959 cm $^{-1}$)	
Fitting model	Logistic function
Functional equation	$y = A_2 + (A_1 - A_2) / (1 + (x/x_0)^p)$
A_1	$-7.84891E-5 \pm 3.56745E-4$
A_2	0.03892 ± 0.0519
x_0	305.47495 ± 343.30285
p	1.824 ± 0.53356
Reduced chi-sqr	0.50735
R^2 (COD)	0.96084
Adjusted R^2	0.95649

van Dishoeck E. F., Wright C. M., Cernicharo J., González-Alfonso E., de Graauw T., Helmich F. P., Vandenbussche B., 1998, *ApJ*, 502, L173

van Dishoeck E. F., Herbst E., Neufeld D. A., 2013, *Chem. Rev.*, 113, 9043

Vandenbussche B. et al., 1999, *A&A*, 346, L57

Wakelam V., Herbst E., Selsis F., 2006, *A&A*, 451, 551

Whittet D. C. B., Bode M. F., Longmore A. J., Adamson A. J., McFadzean A. D., Aitken D. K., Roche P. F., 1988, *MNRAS*, 233, 321

Yıldız U. A. et al., 2013, *A&A*, 558, A58

Zhen J., Linnartz H., 2014, *MNRAS*, 437, 3190

APPENDIX: FITTING MODELS

Non-linear regression models were applied to all scatter plots in Figs 5(B) and 7. In Fig. 5(B), C_3H_8 (2959 cm $^{-1}$) data were modelled using a logistic function, with the functional form of $y = A_2 + (A_1 - A_2) / (1 + (x/x_0)^p)$. Except for C_3H_8 , other data sets in Fig. 5(B) were modelled using an exponential decay model, with the functional form of $y = A_1 \times \exp(-x/t_1) + y_0$. In Fig. 7, all the data sets were modelled using an exponential growth model, with the functional form of $y = A_1 \times \exp(x/t_1) + y_0$. The corresponding best-fitting parameters are shown in Table A1 and A2.

Table A2. The corresponding parameters of fitting lines in Fig. 7.

60 ML, 14 K, O ₂	
Fitting model	Exponential growth
Functional equation	$y = A_1 \times \exp(x/t_1) + y_0$
y_0	9.14875 ± 0.1121
A_1	-8.2639 ± 0.19845
t_1	$-1.80333E17 \pm 1.04155E16$
Reduced chi-sqr	0.06166
R^2 (COD)	0.99108
Adjusted R^2	0.98996
50 ML, 14 K, CD ₄ :O ₂ = 1:1	
Fitting model	Exponential growth
Functional equation	$y = A_1 \times \exp(x/t_1) + y_0$
y_0	1.82732 ± 0.04056
A_1	-1.80093 ± 0.18406
t_1	$-3.55564E16 \pm 7.35532E15$
Reduced chi-sqr	0.03409
R^2 (COD)	0.82448
Adjusted R^2	0.80922
40 ML, 14 K, CH ₄ :O ₂ = 1:1	
Fitting model	Exponential growth
Functional equation	$y = A_1 \times \exp(x/t_1) + y_0$
y_0	1.09504 ± 0.07807
A_1	-1.06116 ± 0.38338
t_1	$-1.91557E16 \pm 1.68524E16$
Reduced chi-sqr	0.14828
R^2 (COD)	0.25796
Adjusted R^2	0.1986

This paper has been typeset from a $\text{\TeX}/\text{\LaTeX}$ file prepared by the author.