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ABSTRACT

Context. Vortices have been observed at various heights within the solar atmosphere and are suggested to play a significant role
in heating the solar upper atmosphere. Multiple automated vortex detection methods have been developed and applied to identify
vortices.
Aims. We aim to improve the Γ-functions method for vortex identification by optimizing the value of Γ1min and the approach to
calculate Γ1 and Γ2, used to determine the center and edge of the vortex. This optimization enhances detection accuracy and enables
statistical studies to improve our understanding of vortex generation and evolution in the solar atmosphere.
Methods. We applied the automated swirl detection algorithm (ASDA, a representative of the Γ-functions method) with different
parameters to various synthetic datasets, each containing 1000 Lamb-Oseen vortices, to identify the optimal Γ1min and kernel size
when calculating Γ1 and Γ2. We also compared another detection method using simulation and observational data to validate the
results obtained from the synthetic datasets.
Results. We achieve the best performance with the Optimized ASDA, which combines different kernel sizes (5, 7, 9, and 11) to
calculate Γ1 and Γ2 with Γ1min fixed at 0.63 for vortex center detection. We find that more vortices can be detected by the optimized
ASDA with improved accuracy in location, radius, and rotation speed. These results are further confirmed by comparing vortices
detected by the Optimized ASDA and the SWirl Identification by Rotation-centers Localization (SWIRL) method on CO5BOLD
numerical simulation data and Swedish 1-m Solar Telescope observational data.
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1. Introduction

Rotational motions, spanning a wide range of spatial scales,
have been widely observed at various heights in the solar
atmosphere (e.g., Wang et al. 1995, 2016; Li et al. 2012;
Liu et al. 2012; Su et al. 2012; Wedemeyer-Böhm et al. 2012;
Panesar et al. 2013; Liu et al. 2019b,c; Tziotziou et al. 2023).
Numerous studies have highlighted their potentially signifi-
cant role in channeling energy to the upper solar atmosphere.
It is widely accepted that various modes of magnetohydrody-
namic (MHD) waves, particularly Alfvén waves and pulses, are
associated with various vortices, as demonstrated by numer-
ical simulations (e.g., Shelyag et al. 2013; Chmielewski et al.
2014; Mumford et al. 2015; Mumford & Erdélyi 2015; Liu et al.
2019c; Battaglia et al. 2021; Kesri et al. 2024). Observa-
tional evidence also supports this connection. For example,
Wedemeyer-Böhm et al. (2012) reported that magnetic torna-
does act as energy channels into the solar corona, based on
the manual detection of chromospheric vortices. Additionally,
Liu et al. (2019c) used an automated algorithm to detect small-
scale vortices, providing evidence that ubiquitous Alfvén pulses,
triggered by photospheric vortices, transport energy to the upper
chromosphere. Tziotziou et al. (2019) performed spectral anal-
? Corresponding author: jiajialiu@ustc.edu.cn

ysis of a 1.7-hour vortex flow characterized by multiple inter-
mittent chromospheric swirls and found dominant oscillations
around four minutes, with both swaying (200–220 s) and rota-
tional motions, as well as significant oscillatory power up to
ten minutes, indicating the presence of various MHD wave
modes at different heights. Tziotziou et al. (2020) further pro-
vide observational evidence of fast kinks and localized torsional
waves associated with small chromospheric swirls and sway-
ing motions within a persistent vortex flow. Small-scale vortices
in the photosphere are also believed to contribute to energizing
the upper atmosphere (e.g., Parker 1983; Velli & Liewer 1999;
Shelyag et al. 2013). Furthermore, theoretical studies suggest
that rotational motions can generate upward mass and momen-
tum transfer, thereby leading to the generation of small-scale jets
(spicules, e.g., Scalisi et al. 2021, 2023).

Over time, vortex motions in the solar atmosphere have been
classified into several types based on their dynamic character-
istics and formation mechanisms. The term “tornado” in the
solar context was first introduced by Pettit (1932) to describe
vortex motions, particularly those associated with prominences.
This category includes solar tornadoes (Pike & Mason 1998),
giant tornadoes (Li et al. 2012; Su et al. 2012), magnetic tor-
nadoes (Wedemeyer-Böhm et al. 2012), and small-scale tor-
nadoes (Tziotziou et al. 2018). Smaller vortical phenomena
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have been called “swirls”, which include chromospheric swirls
(Wedemeyer-Böhm & van der Voort 2009), small-scale swirls
(Shetye et al. 2019), magnetic swirls (e.g., Chmielewski et al.
2014; Murawski et al. 2018), and downdraft swirls (Moll et al.
2011). Additionally, the term “vortex” is often used in theo-
retical contexts derived from simulations, such as vortex tubes
(Muthsam et al. 2010), horizontal vortex tubes (Steiner et al.
2010), magnetized vortex tubes (Kitiashvili et al. 2013), and
kinetic (K-) and magnetic (M-) vortices (e.g., Silva et al. 2020,
2021). One notable exception is the “photospheric intensity vor-
tex,” which, unlike the others, originates from observational
data and is often called “swirls” (e.g., Giagkiozis et al. 2018;
Liu et al. 2019b,c). In this work, we focus on the automated
detection of small-scale vortices (also referred to as “swirls”).

Accurately and efficiently detecting small-scale vortices
from observations has long been a key challenge. The first
step in identifying numerous small-scale vortices from obser-
vational images is to reconstruct the horizontal velocity field
for each image. Techniques such as local correlation track-
ing (LCT; November & Simon 1988), Fourier local correlation
tracking (FLCT; Fisher & Welsch 2008), and coherent structure
tracking (CST; Rieutord et al. 2007) use two consecutive inten-
sity images to estimate the velocity field at the photosphere.
DeepVel (Ramos et al. 2017) and its U-Net version, DeepVelU
(Tremblay & Attie 2020), are deep, fully convolutional neural
networks that serve as end-to-end approaches for estimating the
velocity field also from two consecutive images. Tremblay et al.
(2018) compared DeepVel, LCT, FLCT, and CST, and found that
FLCT performs adequately at subgranular and granular scales
(although it is outperformed by DeepVel), but is the most effec-
tive at mesogranular and supergranular scales. DeepVel, how-
ever, could potentially outperform the other methods if it is
trained with data at the corresponding spatial resolution. We note
that LCT-based methods (e.g., LCT and FLCT) are not always
reliable for reconstructing the horizontal velocity field, as they
usually underestimate the actual speed (e.g., Verma et al. 2013;
Liu et al. 2019b,c; Xie et al. 2025; Liu et al. 2025). This point
will also be discussed in detail later.

Based on the estimated velocity fields, and due to the
biases and limitations inherent in manual detection, various auto-
mated methods have been proposed. For example, Strawn et al.
(1999) introduced the maximum vorticity method, which iden-
tifies overlapping vortex centers with the same sense of rota-
tion when the overall velocity field outlines a single rota-
tional center. Furthermore, Jiang et al. (2005) developed an
algorithm based on the maximum vorticity method. Another
widely adopted approach is the Γ-functions method, proposed by
Graftieaux et al. (2001), which accurately identifies vortex cen-
ters and boundaries. This method has led to further automated
algorithms, such as the automated swirl detection algorithm
(ASDA), developed by Liu et al. (2019b), and the advanced
gamma method (AGM) proposed by Yuan et al. (2023). More-
over, based on the velocity gradient tensor, the Rortex crite-
rion was introduced by Tian et al. (2018) and Liu et al. (2018)
to measure the strength of pure local rotation without con-
tamination from shear. This makes Rortex a reliable quan-
tity for inferring rotational flow properties. Building on this,
Cuissa & Steiner (2022) developed the SWirl Identification
by Rotation-centers Localization (SWIRL) algorithm, which
applies the Rortex criterion for detecting swirls.

Although the detection methods mentioned above have over-
come certain limitations and achieved notable progress, they still
exhibit some shortcomings. For instance, the Γ-functions method
identifies vortex centers and boundaries using the Γ1 and Γ2 cri-

teria, respectively. Graftieaux et al. (2001) proposed that regions
where |Γ2| > 2/π are predominantly governed by rotation, and
points where |Γ2| = 2/π are classified as the boundaries of vor-
tices. However, for center identification, they only suggested that
|Γ1| reaches values between 0.9 and 1 near the vortex center.
A strict and universally accepted threshold for Γ1 (denoted as
Γ1min hereafter) to precisely identify vortex centers is still lack-
ing. In practice, a point is considered the center of a vortex if |Γ1|

exceeds Γ1min. For instance, Liu et al. (2019b) defined a point
where |Γ1| ≥ 0.89 as a vortex center, whereas Yuan et al. (2023)
used a lower threshold of 0.75 for Γ1min. Additionally, the selec-
tion of kernel size (ks) used to calculate Γ1 and Γ2 is also unclear.
Liu et al. (2019b) used a fixed kernel size of ks = 7 in ASDA,
while Yuan et al. (2023) proposed an adaptive method, which is
illustrated in detail in Sect. 3.2. Which approach is more suit-
able, and whether there is a more accurate method to calculate
the Γ functions, still requires further exploration.

In this study, we improve the Γ-functions method by search-
ing for an appropriate Γ1min and an optimal method to calculate
Γ1 and Γ2. The paper is organized as follows. First, in Sect. 2,
we introduce the Γ-functions method and other methods utilized
in the study. Sect. 3 describes the details of the experiments con-
ducted and the corresponding results. We present our conclu-
sions and discussion in Sect. 4.

2. Methods

2.1. Γ-functions method

The main principles of the Γ-functions method are two func-
tions, Γ1 and Γ2, which are used to identify vortex centers and
boundaries, respectively. Graftieaux et al. (2001) defined these
two functions as follows:

Γ1(P) =
1
N

∑
S

(PM ∧ UM) · z
||PM|| · ||UM ||

=
1
N

∑
S

sin(θM),

Γ2(P) =
1
N

∑
S

[PM ∧ (UM − ŨP)] · z
||PM|| · ||UM − ŨP||

.

(1)

Here, P is a target point in the measurement domain and S is a
two-dimensional region surrounding it, containing N pixels. In
other words, S is the region used to calculate Γ1 and Γ2, and
therefore N is equal to the square of the kernel size. M is a ran-
dom point in S and z represents the unit vector perpendicular to
the observational surface. The angle between UM (the velocity
vector of point M) and PM (the vector from point P to point
M) is denoted by θM . The symbols ∧, ·, and ‖ · ‖ represent the
vector cross product, dot product, and norm, respectively. The
local convection velocity around P is given by ŨP = 1

S

∫
S U dS .

Graftieaux et al. (2001) reported that |Γ1| reaches values ranging
from 0.9 to 1 near the vortex center, while |Γ2| is equal to 2/π at
the vortex boundaries. Based on these two parameters, the center
and boundaries of each vortex can be decided.

2.2. Automated swirl detection algorithm

ASDA is an automated vortex identification algorithm based on
the Γ-functions method. The algorithm consists of two essen-
tial steps for performing vortex identifications on a dataset from
observations or simulations. The first step is to estimate the
velocity field using FLCT (Welsch et al. 2004; Fisher & Welsch
2008). Liu et al. (2019b) developed an integrated Python wrap-
per for the FLCT code, which is available in their GitHub
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Fig. 1. An example vortex V with its center P. A point M is randomly
chosen within the vortex V , with rotation speed vrM , expansion speed
veM , and speed vector vM. The region S is used to calculate Γ1 and Γ2
values at the center P. The average rotation speed vr, expansion speed
ve, and speed vector u of all points in S , centered on point P, are also
shown. The quantity sin θ̄ is defined as the average value of sin(θM) for
all points M within the region S .

repository1. Specifically, the pixel width of the Gaussian fil-
ter (sigma) is set to ten, and the low-pass spatial filtering
(kr) and skip are set to None. Fisher & Welsch (2008) pro-
vided a more detailed explanation of other parameters not men-
tioned here. The next step is to apply the Γ-functions method
(Graftieaux et al. 2001) to the velocity field estimated by FLCT.

Liu et al. (2019b) made some minor adjustments to the Γ1
and Γ2 functions. For each pixel P, they defined the two param-
eters as follows:

Γ1(P) = ẑ ·
1
N

∑
S

nPM × uM
|uM |

,

Γ2(P) = ẑ ·
1
N

∑
S

nPM ×
(
uM − u

)
|uM − u|

.

(2)

The symbols and vectors in Eq. (2) are similar to those in
Eq. (1). More detailed interpretations of these functions can be
found in previous studies (e.g., Liu et al. 2019a,b,c; Xie et al.
2025).

Figure 1 shows an example of a vortex V with its center P,
rotation speed vrM , expansion speed veM , and speed vector vM at
any point M in region S , which is used to calculate the Γ1 and
Γ2 values at its central point P. We note that when ve is negative,
it becomes the contraction speed vc. The quantities vr, ve, and u
represent the average rotation speed, expansion speed, and speed
vector of all points in S , centered on point P. The quantity sin θ̄
is defined as the average value of sin(θM) for all points M within
the region S .

The quantity Γ1(P) is expressed as:

Γ1(P) =
1
N

∑
S

sin(θM) := sin θ̄, (3)

1 https://github.com/PyDL/pyflct

where θ̄ = sin−1 Γ1. Furthermore,
ve

vr
= cot θ̄ = cot(sin−1 Γ1),

Γ1 = sin
(
cot−1 ve

vr

)
.

(4)

Therefore, if 0.89 is set as Γ1min, correspondingly, ve
vr

=

cot(sin−1 0.89) = 0.5. For a vortex whose ve
vr
> 0.5, |Γ1| at its

center will be less than 0.89, and thus it will not be detected as
a vortex by ASDA. For different values of Γ1min, we can ana-
lyze their implications and identify the values of ve

vr
of vortices

that may be excluded. This analysis contributes to subsequent
sections of the paper.

2.3. Validation with synthetic data

To determine the optimal parameters of ASDA to detect vortices
with more accuracy, we needed to compare the detection results
with exact known results. Therefore, we applied ASDA to syn-
thetic data for comparison, rather than to numerical simulation or
observational data. In this study, we used Lamb-Oseen vortices
(Saffman 1995) as the synthetic vortices.

Assuming the maximum rotation speed vmax and radius rmax
of a Lamb-Oseen vortex, a point at a distance r away from the
center has a rotation speed:

vr = vmax

(
1 +

1
2α

)
rmax

r

[
1 − exp

(
− α

r2

r2
max

)]
, (5)

where α ≈ 1.256. The expansion or contraction speed ve of
the vortex can be arbitrarily assigned. For example, Liu et al.
(2019b) set ve = 0.2vr in their synthetic data. In this way, we can
intuitively associate a Lamb-Oseen vortex with the Γ1 value at
the center. Figure 2 shows an example Lamb-Oseen vortex. The
center of the Lamb-Oseen vortex C with coordinate (x, y) and
the detected center Cd with coordinate (xd, yd) are located at the
same pixel in panels (a) and (b) of Figure 2. Following Liu et al.
(2019b), the location accuracy (Al), radius accuracy (Ar), and
rotation speed accuracy (As) of the detected vortex are defined
as

Al =

(
1 −
|(x, y) − (xd, yd)|

r

)
× 100%,

Ar =

(
1 −
|rd − r|

r

)
× 100%,

As =

(
1 −
|vrd − vr |

|vr |

)
× 100%.

(6)

Here, vr and vrd represent the actual and calculated rotation
speeds of the Lamb-Oseen vortex.

3. Experiments and results

3.1. Optimal Γ1min

As mentioned in the introduction, there are discrepancies and
uncertainties when choosing the value of Γ1min to determine
whether a detected feature is a vortex or not. First, we refer to
the approach of testing ASDA (with a kernel size of 7) using a
series of synthetic data, as described in Liu et al. (2019b). We
generated 1000 Lamb-Oseen vortices whose radii rmax and rota-
tion speeds vmax follow the following Gaussian distribution:

f (x) =
1
√

2πσ
exp

(
−

(x − µ)2

2σ2

)
. (7)
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Fig. 2. Example of a synthetic vortex and the corresponding detected
vortex by ASDA. (a) Velocity field of the region (green arrows) and
the synthetic vortex edge (black dashed circle) with center C (black
text) and radius r (black arrow and text). The edge and center of the
detected vortex are shown as blue solid curves and a blue point (Cd),
respectively, with effective radius rd (blue text and arrow). The effective
edge (blue dashed circle) is determined by the effective radius rd. The
background shows the distribution of Γ1. (b) Same as panel (a) but with
the background showing the distribution of Γ2.

Here, f (x) is the probability density of the variable x, µ is its
expected value, and σ is the standard deviation. Based on the
statistical results of detected photospheric vortices in Liu et al.
(2019b), we set the expected radius of the vortices to µr = 7.2
pixels, with a standard deviation σr = 1.5 pixels. Similarly, the
expected rotation speed was defined as µv = 0.17 pixels per
frame with a standard deviation σv = 0.07 pixels per frame.
For the expansion speed ve of each vortex, we set ve = κ · vr.
Here, κ is a parameter that also follows a Gaussian distribution,
with an expected value set to µκ = 0.9 and a standard deviation
σκ = 0.2. Thus, according to the 3σ rule for Gaussian distri-
butions, approximately 99.7% of data points fall within ±3σ of
the mean, indicating that nearly all values of κ are concentrated
between 0.3 and 1.5. This range is wide enough to represent most
vortices. The generated vortices were then randomly divided into

Table 1. Detection results of SD1 with a velocity noise level of 0.

Γ1min
Detection False Detection Location Radius Rotation Speed

Rate Rate Accuracy Accuracy Accuracy
% % % % %

0.45 90.7 0.0 100.0 83.6 92.8
0.50 90.7 0.0 100.0 83.6 92.8
0.55 90.7 0.0 100.0 83.6 92.8
0.60 90.7 0.0 100.0 83.6 92.8
0.65 87.1 0.0 100.0 85.3 94.3
0.70 65.1 0.0 100.0 90.2 96.6
0.75 37.9 0.0 100.0 93.4 97.7
0.80 16.6 0.0 100.0 95.8 98.3
0.85 5.1 0.0 100.0 97.1 98.8
0.89 1.3 0.0 100.0 97.4 99.1

Notes. Average detection rate, false detection rate, location accuracy,
radius accuracy, and rotation speed accuracy of detections on all 1000
inserted vortices in SD1 with a velocity noise level of 0.

Table 2. Detection results of SD1 with a velocity noise level of 20%.

Γ1min
Detection False Detection Location Radius Rotation Speed

Rate Rate Accuracy Accuracy Accuracy
% % % % %

0.45 92.7 0.0 98.6 72.7 86.9
0.50 91.2 0.0 99.1 73.5 87.3
0.55 90.3 0.0 99.3 74.1 87.6
0.60 88.0 0.0 99.6 75.3 88.5
0.65 80.8 0.0 99.8 78.5 90.9
0.70 57.6 0.0 99.9 84.0 94.4
0.75 31.6 0.0 99.9 88.1 96.2
0.80 12.8 0.0 100.0 91.5 97.3
0.85 3.4 0.0 100.0 94.3 97.9
0.89 0.8 0.0 100.0 96.1 98.3

Notes. Same as Table 1 but with a noise level of 20%.

two equal groups: one rotating counterclockwise (positive rota-
tion) and the other clockwise (negative rotation). A background
noise map of 5000× 5000 pixel2 was generated, with each pixel
assigned a velocity with a random direction and a random mag-
nitude between 0% and 20% of µv. Next, the 1000 vortices were
randomly placed within this background noise map, ensuring no
overlap among them. This process resulted in a synthetic veloc-
ity map, named synthetic data 1 (SD1), which closely resembles
observational data. Next, we applied ASDA to SD1 using differ-
ent values of Γ1min from 0.45 to 0.89 to detect vortices. This pro-
cess was repeated 100 times. The detection results for vortices
from SD1 with noise levels of 0 and 20% are shown in Tables 1
and 2.

Tables 1 and 2 list the detection rate, false detection rate,
location accuracy, radius accuracy and rotation speed accuracy
of all detected vortices at velocity noise levels of 0 and 20% from
SD1. There is little difference in results with Γ1min from 0.45 to
0.60: the detection rates and accuracies for the location, radius,
and rotation speed all remain high. However, for both noise lev-
els, the detection rates decrease slightly (3.4% in Table 1 and
8% in Table 2) when Γ1min increases from 0.60 to 0.65, and
both detection rates drop rapidly when Γ1min exceeds 0.65. Note
that the false detection rate is consistently zero with increasing
Γ1min and the accuracies of location, radius, and rotation speed all
remain high. This finding further supports the result of Liu et al.
(2019b) that ASDA is unlikely to detect a vortex at a location
where none exists.

As mentioned above, κ obeys the Gaussian distribution
N(0.9, 0.22) for all vortices in SD1, and nearly all values of κ are
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Table 3. Detection results of SD3 with a velocity noise level of 20%.

Γ1min
Detection False Detection Location Radius Rotation Speed

Rate Rate Accuracy Accuracy Accuracy
% % % % %

0.45 50.2 0.0 95.9 52.6 73.0
0.50 47.6 0.0 97.1 54.4 73.8
0.55 45.9 0.0 97.7 55.6 74.6
0.60 41.4 0.0 99.0 59.2 76.8
0.65 29.2 0.0 99.9 68.3 84.4
0.70 10.3 0.0 100.0 80.3 93.3
0.75 2.0 0.0 100.0 87.0 96.1
0.80 0.5 0.0 100.0 91.9 97.5
0.85 0.1 0.0 100.0 96.4 99.4
0.89 0.0

Notes. Similar to Table 1 but showing detection results for SD3 with a
noise level of 20%.

between 0.3 and 1.5. This means that theoretically, |Γ1| values
at vortex centers should be distributed from 0.55 (sin(cot−1 1.5))
to 0.96 (sin(cot−1 0.3)). Therefore, approximately 99.7% of vor-
tices could be detected by ASDA with Γ1min = 0.55, and for
any Γ1min ≤ 0.55, the detection rates should be very similar. This
is consistent with the observations of Tables 1 and 2. It should
also be noted that the detection rates only drop significantly
when Γ1min exceeds 0.65, which may indicate that the optimal
value for Γ1min is around 0.60 to 0.65. Moreover, to avoid ran-
domness, we conducted two additional experiments by setting
µr = 14.4 pixels withσr = 2.4 pixels, and µr = 3.6 withσr = 0.8
pixels, respectively. The results of these experiments are similar
to those for SD1, suggesting that ASDA performs well in identi-
fying vortices with different radii.

After considering the radii of the vortices, we varied the val-
ues of κ and conducted new experiments to explore how the
ratio between expansion and rotation speeds affects the results.
A new synthetic dataset, SD2, similar to SD1, was generated
that also contains 1000 Lamb-Oseen vortices. The expected
radius and standard deviation were set to µr = 7.2 pixels and
σr = 1.5 pixels, respectively, and the expected rotation speed
was defined as µr = 0.17 pixels with a standard deviation of
σv = 0.07 pixels. However, for ve = κ · vr, κ was set to obey
the Gaussian distribution N(0.5, 0.12) for all 1000 vortices in
SD2 (compared to κ obeying N(0.9, 0.22) in SD1). Similarly,
approximately 99.7% of values of κ are between 0.2 and 0.8,
indicating that values of |Γ1| at vortex centers are mostly con-
centrated between 0.78 (sin(cot−1 0.8)) and 0.98 (sin(cot−1 0.2)).
As expected, there is little difference between the detection
rates with Γ1min ≤ 0.78, however, an obvious decrease occurs
when Γ1min increases from 0.75 to 0.80. To further validate
these observations, a further experiment was conducted with a
larger κ, obeying the Gaussian distribution N(1.2, 0.22), with
all other conditions being kept the same as in SD2, gener-
ating the synthetic data SD3. The detection results for SD3
with different Γ1min under the noise level of 20% are shown in
Table 3.

There is some commonality between the detection results
under different conditions, as shown in Table 1, Table 2, and
Table 3. The detection rates all exhibit the first “quick” decrease
from Γ1min = 0.60 to Γ1min = 0.65. The detection rates decrease
by 3.4% in Table 1, 8% in Table 2, and 12.2% in Table 3.
According to Eq. (4), values of |Γ1| at the vortex centers in SD3
are mostly concentrated between 0.49 (sin(cot−1 1.8)) and 0.86
(sin(cot−1 0.6)). However, the detection rate is only 50.2% with
Γ1min = 0.45, significantly less than 99.7%. This indicates that

some vortices are detected as candidate vortices by the criterion
Γ1min but are rejected by other criteria. Based on the methodol-
ogy of ASDA described in Sect. 2.2, we speculate that the cri-
terion on Γ2 may have also excluded some candidate vortices.
To verify this, we sampled a small region (200× 200 pixels2) of
SD3 to compare the location distribution of vortices with the
value distribution of Γ1 and Γ2.

There are a total of ten synthetic vortices in the
200× 200 pixel2 region, which are marked using black numbers
in the four panels of Figure 3. As shown in Figure 3a and c, vor-
tices Nr. 1, 4, 5, 6, 7, 8 and 10 are not identified as vortices with
Γ1min = 0.60 and 0.65, among which Nr. 1, 4, 6, 7 and 8 are also
rejected by Γ2 (Fig. 3b and d). However, Nr. 5 and Nr. 10 sat-
isfy the condition |Γ1| ≥ 0.60 although they are not identified by
|Γ1| ≥ 0.65 and |Γ2| ≥ 2/π. This indicates that if Γ1min is set at
0.60 or less, some vortices will be accepted by the Γ1 condition
but rejected by the Γ2 condition. Although this has little influ-
ence on the detection results, it may cause a significant waste of
computing resources for a large dataset.

Secondly, vortices Nr. 2 and 3 are detected as a positive vor-
tex and a negative vortex, respectively, with Γ1min = 0.60. How-
ever, they are not detected by ASDA with Γ1min = 0.65, because
the |Γ1| values of the points in vortices Nr. 2 and 3 are all less than
0.65, and no points are identified as their centers. Their bound-
aries are both detected successfully (see black dots of Nr. 2 and 3
in Fig. 3b and d) according to the Γ2 criterion (i.e., |Γ2| = 2/π at
the vortex boundaries Graftieaux et al. 2001). Thus, vortices Nr.
2 and 3 are genuine vortices, but when Γ1min = 0.65 or larger,
they would not be detected as vortices. In other words, setting
Γ1min too high (0.65 or greater), results in missed detection of
real vortices by ASDA, leading to an underestimation of their
total number.

In conclusion, we can first determine whether a rotational
structure is a real vortex based on the Γ2 criterion. If its bound-
aries where |Γ2| = 2/π are identified, an optimal Γ1min should
be used to determine whether the candidate is a vortex or not.
The above experiments with different vortex distributions and
noise levels suggest that the optimal Γ1min should be between
0.60 and 0.65. To find the exact value of the optimal Γ1min, we
applied ASDA with Γ1min = 0.45 (sufficiently small) to SD1
(ve = N(0.9, 0.22) · vr) and SD3 (ve = N(1.2, 0.22) · vr) with
noise levels of 0 for both. This makes the value range of ve/vr
(0.3∼ 1.8) wide enough to cover most of the distributions of
ve/vr. Statistically, the minimum values of |Γ1| at vortex centers
detected in SD1 and SD3 are 0.638 and 0.637, respectively. The
values are both between 0.60 and 0.65, which can explain the
rapid decreases from Γ1min = 0.60 to Γ1min = 0.65 in Tables 1,
2 and 3. Therefore, we suggest that the optimal value of Γ1min is
0.63, and we can detect almost all vortices by applying ASDA
with Γ1min = 0.63. This optimal value of Γ1min is further tested
and validated with numerical simulation and observational data
in the remainder of this section.

3.2. Influence of the kernel size

After determining the optimal value of Γ1min as 0.63, in this sub-
section, we explore the influence of the kernel size (ks) in cal-
culating Γ1 and Γ2. Liu et al. (2019b) specified N (ks2) as 49,
indicating a kernel size of 7, and calculated Γ1 and Γ2 in a region
of 7× 7 pixel2 surrounding each target point. The above specifi-
cation weakens vortices with radii smaller than four pixels, indi-
cating that ASDA may fail to identify some small-scale vortices
(radii smaller than four pixels) and so would underestimate the
number of vortices.
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(c) Di tribution of Γ1
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Fig. 3. Comparisons of detected results by ASDA under different criteria. Panels (a) and (b) show the distributions of Γ1 and Γ2 (backgrounds) in
a 200× 200 pixel2 region of SD2. Green arrows indicate the velocity field, and the numbers label the ten synthetic Lamb-Oseen vortices. Black
dots in panel (a) mark points where |Γ1| ≥ 0.60, while black dots in panel (b) correspond to points where |Γ2| ≥ 2/π. Panels (c) and (d) are similar
to (a) and (b), respectively, but the black dots show points where |Γ1| ≥ 0.65 and |Γ2| ≥ 2/π, respectively. Blue and red curves in these four panels
represent the boundaries of vortices rotating counterclockwise and clockwise, respectively.

Yuan et al. (2023) proposed the Advanced Γ Method (AGM)
to identify vortices and used an adaptive version to optimize
AGM for vortex identification. This adaptive version is based
on a sequence of different kernel sizes, such as 3, 5, 7, 9, 11 and
so forth. Yuan et al. (2023) noted that there are different values
of Γ1 and Γ2 for the same point when using different kernel sizes
for the calculation. For example, if |Γ1| of a point is calculated as

less than Γ1min using ks = 7 but greater than Γ1min using ks = 9,
then this point may be a potential vortex center and should not
be omitted immediately. Therefore, Yuan et al. (2023) calculated
the values of Γ1 with several kernel sizes (3, 5, 7, 9, and 11)
and used the maximum |Γ1| in each pixel with different kernel
sizes. Yuan et al. (2023) also suggest that varying the kernel size
for each vortex provides better identification and leads to more
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Table 4. Detection results of SD2 using VGCM-o with Γ1min = 0.63.

Noise Detection False Detection Location Radius Rotation Speed
Level Rate Rate Accuracy Accuracy Accuracy

% % % % %

0 100.0 0.0 100.0 97.0 99.7
5% 113.9 12.6 −31.3 86.3 86.6
10% 116.2 14.5 −86.9 84.8 84.3
15% 113.8 13.1 −47.9 85.5 85.2
20% 114.1 13.8 −50.5 84.4 83.0

Notes. Average detection rate, false detection rate, location accuracy,
radius accuracy, and rotation speed accuracy for all 1000 inserted vor-
tices in SD2 using VGCM-o with Γ1min = 0.63, at velocity noise levels
ranging from 0 to 20%.

accurate statistical results for the vortex parameters. However,
experiments carried out by Yuan et al. (2023) used an arbitrary
Γ1min = 0.75, and the influence of different kernel sizes on detec-
tion results with the optimal Γ1min = 0.63 requires further exam-
ination.

Next, we calculated Γ1 and Γ2 with kernel sizes = 3, 5, 7,
9, and 11. At each pixel, only the maximal values of |Γ1| and
|Γ2| with different kernel sizes were combined. Vortex detection
based on ASDA was then applied to these combined Γ1 and Γ2
values. We named this version variable Γ calculating method-
origin (VGCM-o) and tested it with synthetic data using Γ1min =
0.63. According to Eq. (4), Γ1min = 0.63 corresponds to κ =
ve/vr = 1.23, which means that vortices whose κ > 1.23 will not
be detected by ASDA. Therefore, to avoid the potential influence
of Γ1min, SD2 was the most suitable dataset to test VGCM-o with
Γ1min = 0.63, because κ values of vortices in SD2 are mostly
located between 0.2 and 0.8. The detection results for SD2 with
noise levels ranging from 0 to 20% are shown in Table 4.

Table 4 shows that the detection maintains high accuracy for
the location, radius, and rotation speed of vortices at a noise level
of 0. However, when noise is present, even with a noise level of
only 5%, the detection rate exceeds 100% and false detections
occur. The location accuracy becomes negative, indicating that
the detected vortex center is outside the synthetic vortex. The
radius accuracy and the rotation speed accuracy remain high. To
confirm these findings, we also varied the radii of vortices in
SD2 to larger and smaller values and obtained similar detection
results. This suggests that VGCM-o performs well in identify-
ing vortices when there is no noise, but detects false vortices
and yields unreliable vortex centers when noise is present in the
dataset, a situation that is very common in observational data.

To investigate the reasons for the poor behavior of VGCM-o
with noisy data and to search for a better method to calculate Γ1
and Γ2, we recalculated the values of Γ1 and Γ2 in SD2 using
different single kernel sizes (ranging from 3 to 15) and applied
the detection steps of ASDA to these Γ1 and Γ2 values, also with
Γ1min = 0.63.

The detection results are shown in Table 5. We find that the
detection rate is highest when ks = 9 and the detection rate
decreases if ks increases (11, 13, and 15) or decreases (5 and
7). Moreover, only when ks = 3, does the detection rate exceed
100%, and false vortices are detected, with very poor location,
radius, and rotation speed accuracies. It is clear that the detection
results with VGCM-o and ks = 3 are similar, and therefore the
poor detection results with VGCM-o are attributable to ks = 3.
To verify this, we revised VGCM-o by removing ks=3 when cal-
culating Γ1 and Γ2.

Table 5. Detection results of SD2 with a velocity noise level of 20%
using different kernel sizes.

Kernel Detection False Detection Location Radius Rotation Speed
Size Rate Rate Accuracy Accuracy Accuracy

% % % % %

3 105.5 11.8 −26.8 70.3 77.3
5 96.0 0.0 99.6 88.7 95.9
7 97.2 0.0 99.8 91.3 96.7
9 98.0 0.0 99.8 90.0 95.9
11 97.9 0.0 99.8 85.0 93.1
13 96.4 0.0 99.6 77.7 89.0
15 93.4 0.0 99.3 70.0 84.3
VGCM-o 114.1 13.8 −50.5 84.4 83.0
VGCM-1 98.1 0.0 99.8 94.3 97.7
VGCM 98.4 0.0 99.9 95.0 97.8
VGCM-2 98.4 0.0 99.9 95.3 98.0

Notes. Average detection rate, false detection rate, and accuracies of
location, radius, and rotation speed for 1000 inserted vortices in SD2,
applying various kernel sizes and VGCM versions at Γ1min = 0.63 and
level of 20% velocity noise.

In Table 5, VGCM-1 uses kernel sizes of 5, 7, and 9; VGCM
uses kernel sizes of 5, 7, 9, and 11; and VGCM-2 uses kernel
sizes of 5, 7, 9, 11, and 13. For these three combinations of ker-
nel sizes, the detection rates are all at high and reasonable levels
(<100%), with high location, radius and rotation speed accura-
cies. False vortices are not detected, indicating that the detec-
tion results are improved after excluding ks = 3. Moreover, the
results of VGCM, VGCM-1, and VGCM-2 are all better than
the results of using any single kernel size, demonstrating that the
variable Γ-functions method contributes to more accurate detec-
tion of vortices. Considering that the detection rates of VGCM
and VGCM-2 are the same and both 0.3% higher than the detec-
tion rate of VGCM-1, VGCM (with kernel sizes of 5, 7, 9, and
11, and costing less computation power compared to VGCM-2)
is found to be the best for SD2, whose vortex radii follow the
Gaussian distribution of N(7.2, 1.62).

Next, we varied the radii of the vortices in SD2 to smaller and
larger values following N(3.6, 0.82) and N(14.4, 2.42), respec-
tively, and repeated the above experiments. Both results support
our findings that the poor detection results with VGCM-o result
from ks = 3. When using only a single kernel size, ks = 5 is
the best choice for smaller vortices, whereas ks = 19 is the best
for larger vortices. This suggests that the best single kernel size
is always close to the average radius of vortices in the dataset.
Although we also find that a VGCM containing this best sin-
gle kernel size performs better, the improvement compared to
VGCM (kernel sizes = 5, 7, 9, and 11) is very little (∼1%) but
requires significantly more computational resources. Moreover,
because it is impossible to know the average radius of vortices
in observational data, we cannot adjust the VGCM by select-
ing specific kernel sizes. Therefore, in practice, VGCM (kernel
sizes = 5, 7, 9, and 11) is most suitable for accurate vortex detec-
tion while avoiding false detections.

3.3. Validation with numerical simulation data

3.3.1. Photosphere

In Sects. 3.1 and 3.2, we concluded that the VGCM is a suit-
able approach to calculate Γ1 and Γ2, and Γ1min = 0.63 is a more
practical choice than 0.89 (Liu et al. 2019b) or 0.75 (Yuan et al.
2023). We name this version of the improved ASDA, which
calculates Γ1 and Γ2 using a VGCM and detects vortices with
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Fig. 4. Example frames and the detected vortices of CO5BOLD simulation data and SST observational data. Panels (a) and (c) show the first frames
of the CO5BOLD simulation and SST observational data, displaying the Bz from CO5BOLD and the photospheric intensity from SST, respectively.
In panel (a), cyan and black curves denote boundaries of counterclockwise and clockwise vortices detected by SWIRL, while in panel (c), blue
and red curves indicate the corresponding vortices detected by ASDA. Panels (b) and (d) show close-up views of the purple box in (a) and the
yellow box in (c), respectively. Green arrows in (b) and (d) represent the velocity field.

Γ1min = 0.63, the Optimized ASDA. We note that the above
results are obtained by experiments with various synthetic data,
and whether the Optimized ASDA can be applied to observa-
tional data remains to be studied. Therefore, before applying the
Optimized ASDA to observational data, we firstly tested it with
advanced numerical simulation obtained with the CO5BOLD
code (Freytag et al. 2012). This code has been widely used to
model stellar atmospheres, such as those of the Sun, solar-
type stars, red giants, and white and brown dwarfs (Straus et al.

2017). Different solvers, such as a hydrodynamic module or a
magnetohydrodynamic module, and radiative transfer schemes,
can be chosen to simulate variable situations, due to a modular
construction of the code (Straus et al. 2017).

In this subsection, we use data from the radiative MHD
code to simulate the surface layers of the Sun. The simula-
tion was based on a relaxed, purely hydrodynamical model with
an initial vertical and homogeneous magnetic field of 50 G.
The HLLMHD solver (Harten et al. 1983; Schaffenberger et al.
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Fig. 5. Comparisons between the detection results obtained from the Optimized ASDA and SWIRL with numerical simulations. Panels (a), (b),
and (c) show detection results from the photospheric simulation data. In panel (a), the blue curve and red horizontal line show the average numbers
of vortices per frame detected by the Optimized ASDA and SWIRL, respectively. The purple curve shows the number of overlapping vortices
detected by the Optimized ASDA and SWIRL, while the green curve indicates the corresponding overlapping rate. Panel (b) depicts the slope
of each point of the green curve in panel (a). Panel (c) presents histograms of the radius distributions for overlapping vortices detected by the
Optimized ASDA and SWIRL. Panels (d), (e), and (f) provide similar information for chromospheric simulation data.

2005, 2006) was used to ensure the positivity of the gas pres-
sure. The magnetic and plasma boundary conditions were both
periodic at the sides, while the magnetic field was enforced to be
vertical at the top and bottom of the box. The Cartesian simula-
tion box had a grid spacing of 960× 960× 280 grid cell3, with a
cell size of 10 km in each spatial direction, representing a total
size of 9.6× 9.6× 2.8 Mm3. The height of the box (labeled as z)
ranged from −1240 km to 1560 km, with z = 0 km represent-
ing the average optical depth τ500 = 1. Therefore, the simula-
tion domain encompassed layers near the solar surface, including
the convection zone, photosphere, and up to the middle chromo-
sphere (Cuissa & Steiner 2024). This simulation started at t = 0 s
and ran for about 7680 s (i.e., about 2.1 h), with a cadence of
240 s. Discarding the first 1600 s of the simulation (typically the
time for the initial magnetic field to relax), 26 data cubes were
obtained, from t = 1680 s to t = 7680 s.

Cuissa & Steiner (2022) proposed an innovative and auto-
mated method for vortex identification, named SWIRL. This
algorithm mainly involves two steps: (1) estimating the vortex
center map for each image and (2) clustering the estimated cen-
ters and identifying the vortices. For a point with coordinate
(x, y) and velocity (vx, vy), the vorticity ω, the velocity gradi-
ent tensor U, the real eigenvector ur, the swirling strength λ,
and the Rortex R can be computed based on the definitions
in Cuissa & Steiner (2022). The radial direction and curvature
radius of this point can then be calculated, which determine its
estimated vortex center (EVC).

Applying this method, one obtains the EVC map for each
image. Furthermore, based on the EVC maps, the number of EVCs

in each grid cell (EVC density) can be counted using the clustering
by fast search and finding of density peaks (CFSFDP) algorithm
proposed by Rodriguez & Laio (2014). Clustered EVCs are then
obtained based on specific criteria (see details in Cuissa & Steiner
2022), and candidate vortices are identified. After noise removal,
identified vortices and noisy grid cells are distinguished. Sev-
eral properties of each vortex can then be obtained, including its
center coordinate, effective radius defined by Cuissa & Steiner
(2022), and rotational direction (counterclockwise or clock-
wise). More details about the SWIRL method can be found in
Cuissa & Steiner (2022). Cuissa & Steiner (2024) recommended
a set of SWIRL algorithm parameters for detecting vortices in
the above simulation data cubes. Next, we compared the vortex
detection results from the Optimized ASDA and SWIRL applied
to the photospheric velocity field of the numerical simulation by
Cuissa & Steiner (2022).

Panels (a) and (b) in Figure 4 show an example Bz from the
first frame of the CO5BOLD simulations at the photosphere.
Here, when applying the Optimized ASDA, we continued to
use the VGCM to calculate Γ1 and Γ2 but varied the value of
Γ1min from 0.45 to 0.89 to explore how vortex detection would
be affected with different Γ1min criteria. Detection results from
the Optimized ASDA and SWIRL are shown in Figure 5.

In Figure 5(a), the blue curve shows the average number
of photospheric vortices per frame detected by the Optimized
ASDA for different Γ1min values from the 26 photospheric simu-
lation data cubes. The number decreases almost linearly as Γ1min
increases. The number of vortices detected by SWIRL is indi-
cated by the horizontal red line. The purple curve shows the
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number of vortices detected by both the Optimized ASDA and
SWIRL. It is evident that when Γ1min is less than 0.5, almost all
vortices detected by SWIRL are also detected by the Optimized
ASDA. However, the number of overlapping vortices decreases
slowly with increasing Γ1min when Γ1min is less than 0.65, above
which, the overlapping number decreases rapidly. To clarify the
decreasing trend in the number of overlapping vortices, we cal-
culated the overlap rates, defined as the percentage of over-
lapping vortices over the total number of vortices detected by
SWIRL (green curve in Fig. 5a). Figure 5(b) shows the slope at
each point along the green curve in Figure 5(a). The slopes of the
overlap rate at Γ1min = 0.45, 0.63, and 0.80 are −0.07, −0.53, and
−3.56, respectively. The two bright teal dotted vertical lines in
panels (a) and (b) both correspond to Γ1min = 0.63. The overlap
rate decreases more sharply (panel a) and more rapidly (panel b)
from Γ1min = 0.63 to 0.80 than from Γ1min = 0.45 to 0.63.
This suggests that most vortices detected by SWIRL can also
be identified by the Optimized ASDA with Γ1min = 0.63 or less.
However, as Γ1 increases further, the Optimized ASDA misses a
significant number of vortices, and thus underestimates the num-
ber of vortices in the data. These results are consistent with those
obtained from the synthetic data in Sect. 3.1 and Sect. 3.2, fur-
ther supporting that 0.63 is an optimal choice for Γ1min.

We also note that Liu et al. (2019b) and Cuissa & Steiner
(2022) computed the effective radius of vortices using the same
method, which is defined as the radius of a circle having the same
area as the vortex:

Reff =

√
Aeff

π
. (8)

Here, Aeff is the effective area of a vortex, determined by the num-
ber of grid cells within the vortex and the cell size. Therefore, we
focus on the distributions of the radii of vortices detected by both
the Optimized ASDA and SWIRL. These distributions are shown
in Figure 5(c), which reveals little difference between the radii
distributions of vortices detected by the Optimized ASDA and
SWIRL. The expected values of the vortex radius detected by the
Optimized ASDA and SWIRL are 71.05 km and 61.37 km, with
corresponding standard deviations of 19.88 km and 21.90 km,
respectively. These results suggest that the Optimized ASDA with
Γ1min = 0.63 can not only detects most vortices identified by
SWIRL (and additional vortices not detected by SWIRL) but also
performs very well in determining the radii of the detected vor-
tices. These findings further support our previous findings regard-
ing the Optimized ASDA from synthetic data.

3.3.2. Chromosphere

In this subsection, we explore the performance of the Optimized
ASDA by applying it to chromospheric data from the previously
described numerical simulation. The chromospheric simulation
data cubes cover the same horizontal domain and were sampled
at the same time as those chosen in Sect. 3.3.1. However, the
height corresponding to the bottom of the chromosphere is at
z = 700 km, higher than the height (z = 100 km) of photospheric
data cubes in Sect. 3.3.1.

The results are similar to those obtained from the photo-
spheric simulation data cubes, and are shown in Figure 5(d)–(f).
In panel (d), the blue curve, representing the number of vortices
detected by the Optimized ASDA, also shows an almost linear
decrease with increasing values of Γ1min. The purple and green
curves closely resemble the corresponding curves in panel (a),
although more vortices are detected by both the Optimized
ASDA and SWIRL in the chromospheric data. Panel (e), anal-
ogous to panel (d), depicts the slope of each point along the
green curve in panel (d), and the slope of overlap rates are −0.07,

−0.53, and −3.70 at Γ1min = 0.45, 0.63, and 0.80, respectively.
The difference between the slopes from Γ1min = 0.45 to 0.63
is negligible compared to the variation from Γ1min from 0.63 to
0.80. This suggests that the chromospheric detection results are
consistent with those from the photospheric simulation data and
further supports the conclusion that 0.63 is an optimal value for
Γ1min. Moreover, the radii of overlapping vortices detected by
the Optimized ASDA appear to be slightly smaller than those
detected by SWIRL, as shown in Figure 5(f). The expected val-
ues of the radii detected by the Optimized ASDA and SWIRL are
98.17 km and 92.97 km, with corresponding standard deviations
of 37.78 km and 18.02 km, respectively.

Comparing vortices detected from the photosphere and chro-
mosphere suggests that there are more vortices in the solar chro-
mosphere than in the photosphere in the numerical simulation.
This is consistent with the observational fact that ASDA detects
more vortices in the chromospheric observations than in photo-
spheric observations (Liu et al. 2019c). Cuissa & Steiner (2024)
suggests that the growth of vortex radii could be explained by the
steep decrease in mass density from the photosphere to the chro-
mosphere, which results in expansion of the plasma ascending
into the chromosphere (Nordlund et al. 1997).

In summary, based on the above results and comparisons
using data from the CO5BOLD numerical simulation, we con-
clude that 0.63 for Γ1min is also an optimal choice for detecting
vortices in numerical simulation data.

3.4. Validation with observational data

The data analyzed in this subsection consists of high-resolution
photospheric images centered on the Fe I 630.25 nm spectral
line, with a spectral window width of 0.45 nm. These observa-
tions were acquired using the CRisp Imaging SpectroPolarimeter
(CRISP; Scharmer 2006; Scharmer et al. 2008) on the Swedish
1-meter Solar Telescope (SST; Scharmer et al. 2003). Conducted
on July 7, 2019, between 08:23:36 UT and 08:39:18 UT, the
observations targeted a quiet-Sun region near the central merid-
ian. The field of view (FOV), centered at (xc = 0′′, yc = −300′′),
covered an area of 56.5′′ × 57.5′′. The pixel size of the data is
0.059′′ (∼43.6 km), with a spatial resolution estimated to be at
least 87.2 km, corresponding to twice the pixel size. The images
were taken with an average cadence of 4.2 seconds, and the FOV
was rotated 70 degrees clockwise relative to the Sun’s north pole.

Figure 4 also presents an example photospheric intensity
map from SST observations in panel (c). Blue and red curves
outline the boundaries of vortices detected by ASDA. Panel (d)
shows a close-up view of the yellow box in panel (c).

Similar to Figure 5, Figure 6 shows the comparison between
vortices detected by ASDA and SWIRL from the SST observa-
tions. Figure 6(b) shows the slope at each point along the green
curve in panel (a), with slopes at Γ1min = 0.45, 0.63, and 0.80
as −0.03, −0.48, and −4.44, respectively. The rapid drop in slope
from Γ1min = 0.63 to 0.80 is also observed, similar to Figure 5(b)
and (e) for the numerical simulation data. Additionally, the radii
detected by the Optimized ASDA and SWIRL exhibit nearly iden-
tical distributions, with similar expected values (322.24 km vs.
300.46 km) and standard deviations (67.54 km vs. 52.29 km), as
shown in Figure 6(c). These results are highly consistent with
the vortex detection results from numerical simulation data in
Sect. 3.3, indicating that the Optimized ASDA with Γ1min = 0.63
also performs well in detecting vortices from solar observational
data.

We also explored the influence of kernel size on vortex detec-
tion using both numerical simulation data and observational
data. We detect vortices from Γ1 and Γ2 calculated with VGCM,
VGCM-o, and a single kernel size 7, all using the optimal Γ1min =
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Fig. 6. Comparisons between the detection results obtained from the Optimized ASDA and SWIRL using observational data. Similar to Fig. 5 but
applied to observational datasets.

0.63. The results are similar; here, we take the results from the
photospheric simulation data as an example. There are approxi-
mately 9% more vortices detected with VGCM and VGCM-o than
with a single kernel size of 7, and correspondingly, more vortices
detected by SWIRL overlap with those detected with VGCM and
VGCM-o. These findings support the results in Sect. 3.2, indicat-
ing that the Variable Γ Calculating Method is more suitable than
using a single kernel size for calculating Γ1 and Γ2. Furthermore,
the number of vortices detected with VGCM-o is slightly higher
(∼2%) than with VGCM, but the number of overlapping vortices
with SWIRL is identical. This indicates that it is very likely that
the additional vortices detected with VGCM-o are false detec-
tions, supporting our previous conclusions that VGCM is more
accurate in detecting vortices than VGCM-o.

4. Conclusions and discussion

In this paper, we employed the automated swirl detection algo-
rithm (ASDA), an automated algorithm based on the Γ-functions
method, to detect vortices from synthetic data generated under
diverse conditions. We also aimed to improve the Γ-functions
method for vortex identification. We analyzed the effect of vary-
ing the values of Γ1min, which determines the centers of vor-
tices, and tested various approaches for calculating Γ1 and Γ2
to identify both the optimal value of Γ1min and the most effective
method to calculate Γ1 and Γ2. The improved version of ASDA
is referred to as the Optimized ASDA. In this section, we briefly
summarize our results and discuss the potential implications of
Optimized ASDA.

In the first stage of this work, we fixed the kernel size at
ks = 7 to calculate Γ1 and Γ2 and applied ASDA with different
values of Γ1min to synthetic data 1 (SD1). Regardless of whether
the velocity noise was 0 or 20%, the detection rates showed lit-
tle difference when Γ1min ≤ 0.60, but decreased rapidly once
Γ1min > 0.60. For SD1, κ, defined as κ = ve/vr in Sect. 3.1,
was set to follow the Gaussian distribution N(0.9, 0.22). Theoret-
ically, about 99.7% of vortices could be detected by ASDA with
Γ1min equal to 0.55 or less, based on the deductions in the third
paragraph of Sect. 2, which was confirmed by the experimen-
tal results shown in Tables 1 and 2. By exploring the variation
of vortex radii (both larger and smaller) in SD1 and repeating
the experiments, we found similar results, indicating that ASDA
performs well in detecting vortices with different radii.

By changing κ to smaller (N(0.5, 0.12)) and larger
(N(1.2, 0.22)) values, we constructed two new datasets, SD2 and
SD3. Similar results were found: when Γ1min is less than 0.60, the

detection rate by ASDA is almost invariable. It is worth noting
that the detection rate (∼50%) of vortices at Γ1min = 0.45 on SD3
with a noise level of 20% is lower than expected (99.7%). By
studying an example region in SD3 with ten synthetic vortices,
we found that some candidates were excluded by the Γ2 criterion
when Γ1min was set too low. These results suggest that negative
impacts on the performance of ASDA would be introduced
with excessively large or small values of Γ1min. Further tests on
additional synthetic data revealed an optimal value of 0.63 for
Γ1min.

Next, we fixed the Γ1min at 0.63 and searched for an appropri-
ate method to calculate Γ1 and Γ2. Motivated by the adaptive ver-
sion of the Advanced Γ Method proposed by Yuan et al. (2023),
we presented the Variable Γ Calculating Method (VGCM) to cal-
culate the two Γ functions. To determine the best method, we
conducted comparative experiments on SD2 using different cal-
culation method: single kernel sizes (ranging from 3 to 15) and
several versions of the Variable Γ Calculating Method (VGCM-
o, VGCM-1, VGCM, and VGCM-2), with results shown in
Table 4. False vortices were detected only when using a sin-
gle kernel size of ks = 3 and VGCM-o (kernel sizes = 3, 5,
7, 9, and 11), indicating that ks = 3 resulted in poor detection
results. Moreover, by comparing the detection results with other
methods, as shown in Table 4, we found that the Variable Γ Cal-
culating Method performed better than single kernel size, and
VGCM (with kernel sizes = 5, 7, 9, and 11) required less comput-
ing resources than VGCM-1 and VGCM-2, while still achieving
similar performance in detecting vortices in SD2. Similar results
were obtained when varying the radii of vortices in SD2 to larger
and smaller values. These results suggest that VGCM is the most
suitable method for calculating Γ1 and Γ2.

After establishing that 0.63 is the optimal value of Γ1min
and VGCM (kernel sizes = 5, 7, 9, and 11) is more appropri-
ate for calculating Γ1 and Γ2, ASDA can be optimized for more
accurate vortex identification, referred to as Optimized ASDA.
To validate the reliability of Optimized ASDA, we applied it
to detect small-scale vortices in both numerical simulation data
of the solar atmosphere from the radiative MHD CO5BOLD
code and observational photospheric data from SST. The com-
parison results are all similar and consistent with the conclu-
sions in Sect. 3.1 and Sect. 3.2, confirming that the choice
0.63 of Γ1min and the application of the VGCM to calculate Γ1
and Γ2 are both more suitable than the original ASDA. How-
ever, we noted that the numbers of vortices detected by the
Optimized ASDA were consistently higher than those detected
by SWIRL, showing 39.8%, 80%, and 91.3% more vortices
for the photospheric and chromospheric simulations, and the
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SST photospheric observations, respectively (see Fig. 5a, d and
Fig. 6a). A possible reason is that SWIRL missed some vortices.
Cuissa & Steiner (2022) and Cuissa & Steiner (2024) note two
drawbacks of SWIRL: (1) the detection is not strictly Galilean
invariant, meaning some vortices with rotation speeds compara-
ble to the flow speeds could be missed by SWIRL. They also note
that this shortcoming should not affect photospheric vortices
because they are predominantly rooted in intergranular lanes and
move slowly relative to the vortical flow speed (Tziotziou et al.
2023). (2) The parameters for clustering and detection in SWIRL
require adjustments when applied to different data.

The two aforementioned drawbacks of SWIRL could result
in the underestimation of vortex counts, but whether the addi-
tional vortices detected by the Optimized ASDA in Figure 5(a),
(d) and Figure 6(a) are true vortices requires further exploration.
Because the optimized ASDA may overestimate vortex numbers,
this could explain why it detects more vortices overall.

The top panel of Figure 7 shows a 2× 2 Mm2 region of the pho-
tospheric numerical simulation domain from CO5BOLD. Most
vortices are identified by both methods, with similar effective
radii, consistent with the similar vortex radius distributions in
Figure 5(c). However, regions labeled R1, R2, and R4 (outlined in
gray) contain vortices detected only by the Optimized ASDA. The
middle and bottom panels of Figure 7 provide close-up views of
the three regions. In R1, the positive vortex identified by the Opti-
mized ASDA appeared to be an actual vortex, yet it was not identi-
fied by SWIRL. Similar omissions occur in R2 and R4, suggesting
that SWIRL overlooks some true vortices detected by the Opti-
mized ASDA, explaining the number gaps in Figure 5(a), (d), and
Figure 6(a). However, the counterclockwise vortex in R2 appears
questionable based on the streamline plot, while the other clock-
wise vortex is genuine. This result further supports earlier con-
cerns that the Optimized ASDA could detect some false vortices.

The boundary of the vortex detected by the Optimized ASDA
in panel R4 does not conform closely to the velocity field (the
red dotted circle seems more suitable). This suggests that the
algorithm for determining vortex boundaries by the Optimized
ASDA still requires improvement. In addition, a vortex iden-
tified by SWIRL (outlined by the black circle in Fig. 7 R3)
is detected as two separate vortices by the Optimized ASDA.
However, examination of the velocity field reveals that the vor-
tex identified by SWIRL is not genuine. The oval vortex at the
top left and another at the bottom right, detected by the Opti-
mized ASDA, are more consistent with the actual velocity field.
These observations suggest that the Optimized ASDA outper-
forms SWIRL in detecting nonstandard-shaped vortices and in
estimating the number of vortices in the solar atmosphere. It is
worth noting that, noise was inserted into the velocity map to
generate the synthetic data in this study. However, whether such
synthetic data are well suited for generating nonstandard vor-
tices (e.g., vortices detected by the Optimized ASDA in Fig. 7
R3) remains unclear. Future work focusing on a more detailed
analysis of nonstandard vortices could lead to further improve-
ment of ASDA and other vortex identification methods.

Liu et al. (2019c) found that abundant photospheric vortices
excite Alfvén pulses, which propagate upward and carry energy
flux into the upper chromosphere. They noted that the energy
flux (FA) carried into the upper chromosphere by a single Alfvén
pulse is estimated to be 1.9–7.7 kW m−2. The average energy flux
(FA) is defined as

FA =
FANπR

2

S FOV
, (9)

where N and R are the average number of vortices in each
frame and vortex effective radius. The area of the FOV of the

Fig. 7. Example vortices detected by the Optimized ASDA and SWIRL.
Top panel: A small region of the CO5BOLD photospheric simulation
domain. Green arrows represent the velocity field. Vortices detected
by the Optimized ASDA and SWIRL that rotate counterclockwise are
shown in blue and cyan, respectively. Clock-wise rotating vortices are
shown in red (Optimized ASDA) and black (SWIRL). Bottom panel:
Close-up views of four rectangular regions outlined by grey squares in
the top panel.

observation is represented by S FOV. We employed the orig-
inal ASDA with Γ1min = 0.89 and the Optimized ASDA
with Γ1min = 0.63 to the SST observations described in
Sect. 3.4. On average, 39.6 and 308 vortices were detected by
the original ASDA and the Optimized ASDA, respectively, with
corresponding average vortex radii of 308 km and 271 km. There-
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fore, using Eq. (9), the resulting FA is approximately 12.6–
51.2 W m−2 and 75.9–308.3 W m−2 for the original ASDA and
the Optimized ASDA, respectively. The former value is insuffi-
cient to balance the local radiative energy losses (∼100 W m−2)
(Withbroe & Noyes 1977) in quiet-Sun regions. As previously
noted, the Optimized ASDA may overestimate the number of
vortices, while SWIRL may underestimate it. Thus, the energy
flux (75.9–308.3 W m−2) estimated using the Optimized ASDA
can be viewed as an upper limit of the flux supplied by the
photospheric vortices. A lower limit of approximately 39.4–
160.2 W m−2 is provided based on the number (160) of vortices
identified by SWIRL. These results from the Optimized ASDA
and SWIRL suggest that the average energy flux related to pho-
tospheric vortices is very likely sufficient to balance the energy
losses. This further supports the conclusion that prevalent photo-
spheric vortices could play significant roles in heating the upper
atmosphere (e.g., Shelyag et al. 2013; Chmielewski et al. 2014;
Mumford et al. 2015; Mumford & Erdélyi 2015; Liu et al. 2019c;
Battaglia et al. 2021).

The Γ-functions method (and related automated algorithms,
such as ASDA) for vortex identification depends heavily on the
estimated horizontal velocity field. All methods used to calculate
horizontal velocity fields all have their drawbacks. For exam-
ple, the most common technique, FLCT, which we used in this
work, should be applied with caution when estimating granular
and subgranular flows (Tremblay et al. 2018; Cuissa & Steiner
2024). Moreover, Verma et al. (2013) and Liu et al. (2019b,c)
showed that FLCT underestimates the horizontal velocity field
by a factor of approximately three and influences the character-
istics of detected vortices, such as the rotation and expansion
speeds. In this study, synthetic data were used to improve the
Γ-functions method. Therefore, our results are general and inde-
pendent of the velocity estimation method.

Given the significant influence of the reconstructed velocity
fields, a key direction of future work is to evaluate the reliabil-
ity of different velocity estimation methods and to identify more
reliable approaches for different observations.

One of our recent studies (Liu et al. 2025) used a neural net-
work technique trained on high-resolution data (with a pixel size
of ∼12 km, comparable to the diffraction limit of the Daniel K.
Inouye Solar Telescope, DKIST, Rimmele et al. 2020) from real-
istic radiative numerical simulations of the solar photosphere.
The built neural network model performs significantly better
than FLCT at these small scales. Further investigation is war-
ranted to determine how these different methods of estimat-
ing the photospheric horizontal velocity fields influence vortex
detection by the Optimized ASDA.
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