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Abstract—Real-time frequency readout of time-dependent
pulsed signals with a high-sensitivity are key elements in many
applications using atomic devices, such as free-induction-decay
(FID) atomic magnetometers. In this article, we propose a
frequency measurement algorithm based on the Hilbert trans-
form and implement such a scheme in a field-programmable
gate array (FPGA)-based frequency counter. By testing pulsed
exponential-decay oscillation signals in the frequency range of
10-500 kHz, this frequency counter shows a frequency sensitivity
better than 100 yHz/ YHz at 10 Hz, with an output rate of
200 Hz. When the output rate is increased to 1000 Hz, the
sensitivity remains better than 400 yHz/ YHz at 10 Hz. The
performance on frequency sensitivity is comparable with results
obtained by off-line nonlinear fitting processes. In addition, this
frequency counter does not require the preknowledge of the
analytic expression of the input signals. The realization of such a
device paves the way for practical applications of highly sensitive
FID atomic magnetometers.

Index Terms—Free-induction-decay (FID) magnetometer, fre-
quency counter, high bandwidth, high-sensitivity, Hilbert trans-
form.

I. INTRODUCTION

A TOMIC devices use atomic transitions for measurements
of observables, and an important application of atomic
devices is to measure magnetic fields [1], [2]. In recent years,
atomic magnetometers have undergone rapid developments,
with the sensitivity for geomagnetic measurements surpassing
traditional fluxgate magnetometers [3]. The principle of
these magnetometers involves converting magnetic field
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measurements into frequency measurements by utilizing
the Larmor precession of polarized atoms in an external
magnetic field [4]. For example, in a rubidium atomic
magnetometer, the dynamic range within the geomagnetic
field is approximately 65 000 nT, with corresponding output
frequencies less than 500 kHz. Therefore, the resolution of
the frequency measurement of the sensor directly affects
the precision of magnetic field measurement. For atomic
magnetometers working in the closed-loop mode [5], the
signals are continuous oscillations with constant amplitudes.
To achieve better accuracy, a pulsed working mode, which is
often referred to as the free-induction-decay (FID) mode, is
developed, where the amplitude of the signals is time-varying.
For most geophysics applications, the detection bandwidth
of the magnetometer is normally required to be as large as
possible. Therefore, it is necessary to develop a high-precision
and high-bandwidth frequency measurement method.

In previous research with FID magnetometers [6], the most
reliable method of data analysis involves fitting the signal with
a known function to obtain its frequency parameters. However,
nonlinear fittings are computationally expensive. For instance,
applying the Levenberg—Marquardt (LM) [7] algorithm to a
segment of damped oscillating signal data with a size of 1000
points on a personal computer with a CPU of 17-6700 may
requires over 0.1 s for fitting. Considering the computational
speed and hardware limitations for miniaturized devices, it is
desired to find frequency processing algorithms with lower
computational loads. Another commonly used method relies
on the pulse-counting method, including a measuring-cycle
method in relatively low-frequency bands and a measuring-
frequency method in relatively high-frequency bands [8].
However, such methods have intrinsic problems as quantiza-
tion errors. This quantization error is practically limited by the
hardware (the clock frequency and sampling rate) and the sen-
sor bandwidth (measurement time). To address this problem,
various optimization schemes have been proposed. For exam-
ple, the equal-precision method reduces quantization errors
during signal counting [9], while the multichannel method
uses multiple counting channels to average quantization errors
and enhance the measurement accuracy [10]. The multiphase
clock method suppresses quantization errors by utilizing mul-
tiple reference clocks with different phases simultaneously
[11]. The relative-frequency-difference method employs high-
precision time-to-digital converters (TDCs) to directly measure
tiny time intervals to reduce the quantization errors [12], and
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the Q-counter represents the state-of-the-art optimization of
this approach, leveraging continuous timestamp registration
and linear regression algorithms to extract frequency param-
eters with minimal computational bias [13]. However, these
optimization methods either marginally improve measurement
accuracy or consume excessive hardware resources. In addi-
tion, another widely used fast frequency counting method
is based on spectrum analysis, such as the discrete Fourier
transform [14]. The accuracy of spectral analysis depends
on the sampling rate and data volume, it has been found in
practice that the sensitivity based on this method is two times
worse than that using the nonlinear fitting method [15].

In this article, we present a frequency measurement
algorithm based on the Hilbert transform. This algorithm
converts nonlinear frequency fitting to linear phase fitting
without sacrificing computational accuracy, therefore
simultaneously satisfies the requirements on extracting
the signal oscillation frequency with a high precision and
bandwidth. Schemes based on similar algorithms have been
demonstrated to work in principle [16], [17]. In this work,
we show that the algorithm needs to be modified for fast
and precise real-time analysis applications. Furthermore, we
develop a hardware system to implement this algorithm,
and test its performance using pulsed signals from arbitrary
function generators. The algorithm and hardware system
developed in this work is not only important for atomic
devices, but also can be applied in any field that requires a
reliable real-time frequency extraction from pulsed oscillation
signals, such as underwater acoustic signal processing [18].
The structure of the remainder of this article is as follows.
Section II provides working principle of the algorithm and the
hardware design, Section III presents the test results of this
algorithm and hardware, and Section IV concludes this article.

II. ALGORITHM AND HARDWARE DESIGN

The Hilbert transform is widely used in signal process-
ing, with a physical interpretation of delaying the signal
by 90° in all frequency components. For a continuous-
time signal x(7), its Hilbert transform is denoted as y(f) =
(1/m) ff:o(x(r)/(t — 1))dr. If the original signal can be repre-
sented as x(t) = fooo A(w) cos(wt + ¢p(w))dw, then its Hilbert
transform results in y(¢) = foDo A(w) sin(wt+¢(w))dw. By using
the original signal as the real part and its Hilbert transform as
the imaginary part, a complex analytic signal z(f) = x(¢)+iy(t)
can be constructed. For the signal z(f), its instantaneous
amplitude A(f) = (x*(f) + y?(¢))'/? and instantaneous phase
@(f) = tan~ ! (y(r)/x(¢)) at any given moment can be constructed,
where the derivative of the instantaneous phase with respect to
time yields the instantaneous frequency. In practice, signals are
discrete, and the corresponding discrete-time Hilbert transform
is represented as [19]

y[n] = 7_2r 3 x[”k_ K Gn2 (%”) . kezZ (1)

Suppose the discrete signal takes the form x[n] =
Aln] sin[wn/ fi], where f; is the sampling rate, the correspond-
ing y[n] can be expressed as

2 Aln — k] sinfw(n — k)/ f;]
yinl==3" .
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Considering the practical range of signal amplitudes where
A[n] < Amax, the expression for y[n] converges for each n.
Therefore, when calculating the discrete-time Hilbert trans-
form, it is feasible to truncate at a suitable value of k to reduce
computational complexity. The algorithm developed in this
work, which is named as Hilbert-transform linear-regression
(HT-LR) algorithm, is outlined below.

1) Utilize (1) to transform the acquired signal x[n]
into y[n].

2) Calculate the instantaneous phase ¢[n] =
tan~'(y[n]/x[n]) and derive the cumulative phase
®[n] = ¢[n] + 27N to make phase value continuous.

3) Perform a weighted linear regression fit on ®(¢) with
the amplitude z[n] = +/x[n]? + y[n]? as the weight
where ¢t = n/f;, and the extracted slope represents the
oscillation frequency of the signal.

The HT-LR algorithm is implemented in a field-
programmable gate array (FPGA)-based frequency counter.
The hardware of this frequency counter consists of four
main parts: an analog-to-digital converter (ADC) module, a
communication interface, a frequency reference, and the main
control chip, as shown in Fig. 1. In addition, we use a 16-bit
signal generator to generate signals to test the performance of
the frequency counter. In this hardware, we use 18-bit ADCs
with a maximum sampling rate of 2 MSa/s. The frequency
reference is an oven-controlled crystal oscillator (OCXO,
40 MHz, 50 ppb accuracy), which provides the reference clock
for the frequency counter. The main control chip (ZYNQ-
XC7Z020) consists of two parts: the processing system (PS)
and the programmable logic (PL). The signal acquisition
module is implemented on the PL side, controlling ADC signal
acquisition of the test signal using a reference clock and trigger
signal. The data processing module is implemented on the
PS side, processing the acquired data, and mainly consists of
three calculation units: discrete Hilbert transform, arctangent
operation for cumulative phase calculation, and least squares
linear fitting. The ZYNQ chip’s PS system integrates two
ARM Cortex-A9 processors, and each core can independently
run different tasks. At the beginning of each acquisition
processing cycle, one processor receives data from the PL side
and stores it in the ZYNQ’s on-chip memory (OCM). Once all
data is stored, another processor retrieves the data from OCM
for processing.

The hardware architecture was designed with the following
considerations.

1) The ZYNQ-XC7Z020 was chosen over conventional
microprocessors such as STM32 due to its hybrid
architecture combining PL and dual ARM Cortex-A9
processors (PS), while general-purpose microprocessors
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Fig. 1. (a) Schematic of the frequency counter. (b) Picture of the hardware.
The circuit board includes an additional ADC interface reserved for the
differential configuration of future atomic magnetometers, which was not
utilized in the tests described in this work.

struggle to meet real-time processing requirements for
Hilbert transforms at high sampling rate.

2) Standalone 18-bit ADCs were adopted because their
simultaneous low noise and 2 MSa/s sampling rate
exceed the performance of embedded ADC blocks in
typical FPGA platforms.

3) Partitioning data acquisition (ARM Core 1) and signal
processing (ARM Core 2) across two CPU cores pro-
vides a 50% temporal margin for computational tasks.

4) The integrated ARM cores provide a mature soft-
ware ecosystem for algorithm implementation, while
the FPGA enables hardware acceleration. This PS-PL
co-processing framework allows seamless software-
hardware co-design: complex signal processing chains
can be initially prototyped on the ARM cores and later
gradual migration to PL.

III. TEST RESULTS

The simulated signals take the form of damped oscillating
pulses Ae”"/7sin(27ft), where signal amplitude A = 2.5 V,
relaxation time 7 = 2.5 ms, f is in the range of 10-500 kHz,
and the repetition rate of the signal is 200 Hz with a duty
cycle of 50%. The upper frequency limit of the test signals
was constrained by the ADC’s maximum sampling rate,
while this frequency range also corresponds to the operational
bandwidth of atomic magnetometers within geomagnetic field
environments. These test signals were generated by a RIGOL
DG2052 function generator, which simultaneously provided a
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synchronized 200 Hz square-wave trigger signal. The trigger
signal synchronizes ADC acquisition with the pulsed FID
signal. For the application of magnetometers, it ensuring
alignment between data segments and the probe/pumping cycle
of the magnetometer. To be specific, the trigger signal was
held at a low-level during the output of damped oscillation
pulses and switched to high-level during the quiescent periods,
thereby controlling the timing sequence in our frequency
counter. The ADC sampling rate of the frequency counter is
set to 1.53846 MSa/s (sampling interval of 650 ns). While
processing data using the HT-LR algorithm, the ADC module
simultaneously stores the acquired data on a memory card so
that off-line nonlinear fitting of the same data can be performed
for comparisons.

In practice, the infinite series sum in the discrete Hilbert
transform [see (2)] needs to be truncated. This leads to the
sum over k in (1) with a maximum value of K

2 o xfn—k]
y[n]—n_XK: T k=ELE3 35, (3)

The precision of extracted frequency increases with the
value of K, but this also increases computation time. In this
work, we use the noise spectral density (NSD) value at 10 Hz
(averaged between 8-12 Hz) of the extracted frequency as
a main parameter to characterize the performance of the
frequency counter.

Fig. 2(a) shows that the computation time for pulsed signals
with a duration of 2.5 ms changes with different values of K.
A horizontal line at 4.92 ms represents the time required for
the same data processed by running the LM fitting function in
MATLAB on a computer with a CPU of 19-13900. It can be
observed that when K is less than 40, the signal processing
speed of our frequency counter exceeds that of the nonlinear
fitting algorithm running on a high-performance computer.
Considering the hardware limitations and performance opti-
mizations, performing nonlinear fitting on home-made data
acquisition systems would require an even longer time.

To systematically characterize the measurement perfor-
mance, we experimentally quantified the NSD and Af of our
frequency counter. While the mathematical theory of Hilbert-
transform-based methods for FID signal processing has been
rigorously established in prior works [20], this study focuses
on error analysis under practical operating conditions. As
shown in Fig. 2(b) and (c), as K increases, the sensitivity
of the HT-LR algorithm gradually converges, so does the
difference between the extracted frequencies by the HT-LR
and LM algorithms. Notably, the A f induced by the truncation
parameter K constitutes the primary source of systematic error
in this algorithm, though such error is one order of magnitude
smaller than the typical intrinsic heading errors of the FID
magnetometers used in geomagnetic fields [21]. We choose
K = 20 in the rest of the tests, which strikes a balance between
computational efficiency and precision.

The stability of crystal oscillators affects the sensitivity of
frequency measurements because it determines the stability of
the sampling frequency f;. We compare the performance of the
frequency counter when the time reference of the FPGA is its
onboard crystal oscillator (50 ppm accuracy) with the cases
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Fig. 2. (a) Computation time of the HT-LR algorithm for different K values,
with the horizontal line refers to the time required for the same data processed
oft-line by nonlinear fitting using MATLAB on a computer with a CPU of
19-139000. To benchmark efficiency, we implemented the HT-LR algorithm in
MATLAB and observed its execution time on the same workstation (19-13900
CPU) to be merely 1/20 of that on the FPGA platform. (b) NSD value (at
10 Hz) of the frequency counter output for different K values. (c) Difference
Af between the frequency extracted with different K values with the value of
extracted by off-line fitting using the LM algorithm.
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Fig. 3. Comparison of frequency counter results at different signal frequencies
using oscillators with varying stability, with K = 20 in the HT-LR algorithm.

where the frequency references are based on two different
OCXOs (50 and 5 ppb accuracy, respectively), as shown in
Fig. 3. It can be concluded that for the tested signal frequency
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different signal frequencies, with K = 20 in the HT-LR algorithm. (b) NSD
spectrum curve of the signal (using 200 kHz as an example).

range (10-500 kHz) and relaxation time (7 = 2.5 ms), once the
stability of the crystal oscillator exceeds 50 ppb, the sensitivity
of the frequency counter is no longer limited by the clock
stability.

Fig. 4 shows that the NSD value of real-time readout of
oscillation frequencies of the pulsed input signals using our
frequency counter is always better than 100 uHz/VHz at
10 Hz, which is very close to the off-line fitting results using
the LM algorithm. It needs to be emphasized that the increase
of NSD value at both low and high frequencies is not due to
the limitations from the frequency counter or LM algorithm,
but rather due to the reduced signal-to-noise ratio (SNR) at
these frequencies of the specific signal generator (RIGOL
DG2052) used in tests. We have tried to perform the same tests
using a higher precision signal generator (Zurich Instruments
HDAWG), and within the frequency range of 10-500 kHz,
the NSD value of the extracted frequencies from the updated
device is constantly between 10 yHz/ VHz to 30 uHz/ VHz
at 10 Hz.

We have also tested the influence of the detection bandwidth
on the device sensitivity. Although increasing the output rate
leads to a reduced processing time available for each data
segment, the number of sample points per segment of data
also decreases. Therefore, with K = 20, the total computation
time remains constant for different pulse repetition rates.

Fig. 5 shows that, as the output rate increases with all
other parameters kept the same in the tests, the amount of
data involved in the computation decreases, leading to a
corresponding decline in detection sensitivity. However, even
at an output rate of 1000 Hz, the frequency sensitivity of our
frequency counter remains below 400 yHz/ VHz at 10 Hz.

To increase the robustness of the HT-LR algorithm, we
modify the linear fit part in the algorithm to a weighted fit,
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where the weights are determined by the amplitude of the
analytic function A(¥) mentioned in Section II. Since the SNR
of the input pulsed signal decreases with time, reducing the
fitting weight of the later parts of the signal can improve the
quality of the fitting. We test the performance of the weighted
fitting procedure using simulated data. First, we generated a
batch of 3000 datasets on the computer. The data takes the
form

VInl = Asignue” = SinQxf - n/f;) + Anoisetandnln] (4

where 7 = 2.5 ms, and f; = 1.53846 MSa/s. The frequency of
the simulated data is set to 250 kHz, and randn[n] represents a
set of standard normal distribution random numbers. We then
process this data using both weighted and nonweighted HT-LR
algorithms, as well as the LM fitting algorithms, comparisons
of the resulted NSD are plotted in Fig. 6, and the result indi-
cates that the weighted fitting procedure reduces the NSD by
reducing the weight of low-SNR segments, with the improve-
ment proportional to the gate time duration. Specifically, this
improvement factor reaches approximately 15% at 7 = 2.5 ms,
and escalates to 40% when T is extended to 5 ms. Fur-
thermore, the results from the weighted HT-LR algorithm
are almost identical to those obtained using the LM fitting
algorithm. Importantly, frequency deviations caused by SNR
variations exhibit no significant correlation with SNR levels
and are negligible compared to aforementioned truncation-
induced deviations from parameter K. This further validates
the robustness of the weighted HT-LR algorithm in handling
noise-contaminated signals.

According to theoretical analysis in [22], for a particular
frequency f, the fundamental sensitivity limit of TDC-based
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Q-counters is governed by

213 f

of = =5 oT (5)

where 67 denotes the TDC timing resolution. Assuming
6T = 20 ps, a typical value in common commercial fre-
quency counters, such as Keysight 53230A [23], and adopting
our experimental gate time 7 = 2.5 ms, the Q-counter’s
theoretical sensitivity calculates to be 20 uHz/VHz with
the signal oscillation frequency at 250 kHz, whereas our
implementation achieves an NSD between 10 to 30 uHz/ VHz
across the entire frequency band (10-500 kHz) when using the
high-precision Zurich Instruments HDAWG signal generator.
Notably, this comparison assumes ideal conditions for the
Q-counter: exhaustive timestamp recording for every signal
cycle. We therefore conclude that the HT-LR scheme provides
similar sensitivity to Q-counters within our target frequency
band, while costing less hardware resources.

IV. CONCLUSION

In conclusion, we have developed an algorithm based on
the Hilbert transform to extract the oscillation frequency of
a pulsed signal, and also implemented this algorithm in an
FPGA-based frequency counter. The real-time measurement
results of this device demonstrate comparable sensitivity of
extracted frequency with the commonly used off-line nonlinear
fitting method. With an output rate of 200 Hz, the measure-
ment sensitivity is less than 100 uHz/ VHz at 10 Hz, which
corresponds to a background noise level of 10 fT/+VHz for
87Rb magnetometers. And even at an output rate of 1000 Hz,
the measurement sensitivity is below 400 xHz/ VHz at 10 Hz.
Applications of such an algorithm and device are not limited
in the field of atomic magnetometry, they can be applied to
other scenarios requiring high-precision, real-time processing
of pulse frequency signals. Following this work, we will focus
on extending the algorithm to extract multiple frequencies and
further optimizing the computational speed.
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