Message-Passing Computing with Java: Performance Evaluation and
Comparisons

Vladimir Getov!, Quanming Lu?, Marry Thomas?, Matthew Williams!
1 School of Computer Science, University of Westminster, Watford Road, London, UK
(e-mail: {getovv, williams} @wmin.ac.uk)
2 Institute of Information Sciences and Electronics, University of Tsukuba, Japan
(e-mail: gmlu@is.tsukuba.ac.jp)
3 Scientific Computing Department, San Diego Supercomputer Center, La Jolla, CA, USA
(e-mail: mthomas@sdsc.edu)

Abstract

The development of Java has seen increasing attention as
the most popular platform for distributed computing. How-
ever, despite Java’s advantages in the area of portability
and rapid prototyping, its efficiency is unavoidably com-
promised through its commitment to portability. In this pa-
per we present performance analysis and comparisons of
evaluation results for both Java and C/Fortran on three dif-
ferent message-passing parallel platforms - a shared mem-
ory multi-processor (Sun E4000), a Linux cluster, and a
distributed memory computer (IBM SP-2). The NAS Em-
barrassingly Parallel and Integer Sort benchmarks were
selected for this evaluation. Both the original Fortran/C
codes and Java versions of these two kernels were used
for obtaining the performance measurements as part of our
project. The evaluation results demonstrate the feasibility
of message-passing computing with Java on a wide range
of computer platforms. Depending on the system and the
software components installed, significant impact on the
message-passing performance will have the efficiency of the
native MPI library and the version of the Java platform.

1. Introduction

The computer platforms suitable for achieving high per-
formance have generally been thought of as in the realm
of “supercomputers”. Such high-end platforms usually
include fast vector computers, large shared memory ma-
chines, or distributed memory multi-processor systems with
high-speed interconnects. Cluster computers and massively
parallel processing systems have the same basic distributed
memory parallel architecture, but clusters generally have
slower communication interconnects between nodes. Re-

1066-6192/01 $10.00 © 2001 IEEE

¢

cent advances in networking technology, however, make
clusters a more feasible option for tackling the problems tra-
ditionally dealt by supercomputers. Of course, in order to
turn a network of workstations into something that behaves
more like a supercomputer additional message-passing soft-
ware must be layered on top of the conventional communi-
cation sub-system.

Actually, local area networks may not be the only com-
munication sub-systems suitable for the introduction of
faster interconnects. The growth of the Internet offers the
world of high performance computing massive computa-
tional power at very little cost. Programs may be writ-
ten to take advantage of resources based in logically and
geographically different locations without change to their
existing infrastructure. Problems arise, however, because
of the diversity of the operating systems, CPU’s and net-
works involved. To overcome these problems a paradigm
must be created which makes the heterogeneous environ-
ment opaque to the programmer. Ideally, the programmer
may want to create a software application which could run
on a cross-platform metacomputing environment. In this
case, the environment may be comprised of multi-processor
shared memory machines or a network of workstations or
both. Efforts to meet these ends must not only provide a ro-
bust framework within which to work but must also balance
preservation of efficiency.

The development of Java has seen the above possibility
brought a step closer — its platform independent bytecode
representation is ideal for distributed computation. How-
ever, despite Java’s advantages in the area of portability and
rapid prototyping the scientific community have been reluc-
tant to embrace Java. Its efficiency is unavoidably compro-
mised through its commitment to portability. This makes
Java unattractive as a programming language for achieving
high performance.

Over the last four years supporters of the Java Grande
Forum [7] have been working actively to address some of
the issues involved in overcoming this obstacle. The goal
of the forum has been to develop consensus and recommen-
dations on possible enhancements to the Java language and
associated Java standards, for large-scale (“Grande”) appli-
cations. There have been many active projects underway
whose aim s to analyze the feasibility of Java for computa-
tional tasks associated with High Performance Computing
(HPC).

One focus which has arisen from these pursuits has been
the concentrated effort toward bringing together Java and
the widely accepted Message Passing Interface (MPT) [11].
Within this endeavor are the developments of MPI-like Ap-
plication Programmer Interfaces (API) for Java that cur-
rently include mpiJava 3], JavaMPI [10], and MPIJ [8].
MPIJ is a pure Java implementation, while JavaMPI and
mpiJava use the Java Native Interface (JNI) [9] to access
the local native MPI libraries and emulate the functionality
of standard MP1.

Even if Java does not produce the levels of performance
needed for those parts of Grande problems that are compu-
tationally intensive and need to run on an HPC system, it
can still play a major role in the distributed and metacom-
puting aspects of these large projects. Thus, it is important
to push the development of this language as far as is possi-
ble. In this paper we provide recent performance evaluation
and comparisons results for different message-passing plat-
forms with Java.

2. Evaluation codes

The NAS parallel benchmarks are well understood, writ-
ten in Fortran or C, and are most often used to character-
ize the performance of parallel HPC systems [1]. The Em-
barrassingly Paralle] (EP) and the Integer Sort (IS) NAS
parallel benchmarks were used in our performance evalu-
ation. The IS routine evaluates integer operations and bi-
directional communications (the sorted keys are exchanged
between nodes), while the EP kernel tests floating point
operations performance but requires minimal communica-
tions. The NAS version of IS is written in C, while the EP
code is in Fortran.

Porting code from Fortran or C to Java is not straightfor-
ward. In porting the EP (Fortran) and IS (C) NAS bench-
marks to Java, every attempt was made to follow the logic,
design, and program flow to guarantee that the code tests
the same computational features as the original versions.
Since these experiments are designed to compare Java to
conventional languages, the focus here is on optimization,
rather then on object oriented programming design tech-
niques. Although not mutually exclusive, we found that the
class and method access costs were significant, and as a re-

174

sult, the Java class designs were kept to a simple set. Note
that although there are a few tools available that automati-
cally convert Fortran or C code to Java, these were not used
because they are not well understood and do not have opti-
mization features for parallelizing code.

Java, Fortran and C have some similar constructs such
as loops, variable declarations and conditional blocks. But
there are some key differences as well. For example, param-
eters are passed by value in Java, but are passed by reference
in Fortran, and can also be passed by reference in C when
using pointers. The only mechanism open in Java to address
this difference is to pass an object that contains a variable
that can be changed. The problem here is that there is added
overhead when passing an object as compared to passing a
basic datatype. However, this is unavoidable. These objects
tend to be simple container classes with public variables
so that the modification can be done without the overhead
of calling a method.

There is no Java equivalent to the include statements
used in C and Fortran or the common blocks in Fortran,
so array declarations and critical sections of the code were
kept inside a single class. Local methods were used in place
of subroutine or function calls. The classes were designed
so that the key blocks of MPI codes could be identified and
replaced by other test MPI libraries. In addition, we found
that by defining methods and variables internal to the class
as static, private, or £inal improves performance.
This is because the compiler can statically resolve methods
at compile time, avoiding the overhead of finding and load-
ing the method at run time.

3. Message-Passing Environment

For our parallel message-passing tests, we chose to use
the JavaMPI environment, which is based on wrapping up
the Local Area Multicomputer (LAM) MPI library devel-
oped in C at the Ohio Supercomputing Center [2]. The pur-
pose for the development of the JavaMPI binding has been
to provide Java programmers with the traditional functional-
ity of MPI through a Java interface to legacy MPI libraries.
The JavaMPI wrappers to LAM were created using JCI, the
Java-to-C interface generating tool [S]. This tool enables
communication to the underlying LAM MPI library by us-
ing the JNI API {9]. It allows Java code that runs inside
the Java Virtual Machine (JVM) to interoperate with native,
system-dependent code written in other languages. This JNI
binding of a native MPI library to Java offers several imme-
diate advantages, such as the rapid software development
associated with Java and the established performance of ex-
isting MPI implementations.

Creation of a native library from scratch allows the pro-
grammer to implement the native functions with the re-
quired JNI structure. This means that the functions may

be called directly from within Java code without any addi-
tional interfacing. This may be the case to perform some
machine specific task not possible from within the JVM.
However, the calling of an existing library function requires
an additional interface layer. This additional interface layer
is known as the wrapper or binding and is necessary to per-

form the required type conversions before the actual call to

the legacy library function is made. Another reason that the
YavaMPI wrapper is required is that the structure or proto-
types of the MPI library functions would not be compatible
with the INL. A pointer to the run-time environment and a
pointer to the Java object executing the native code must be
passed at each function call, these are used to make access
to data and methods inside the JVM. The JavaMP1 func-
tion call does not need to include these parameters and so
the binding closely follows the MPI 1.0 standard. It is the
JNI which inserts these parameters to every native function
call. JavaMPI uses these pointers to extract the necessary
data required for the MPI function call, and then to update
the necessary data stores with the values returned from the
actual MPI function call.

4. Experimental Results

A series of experiments were conducted with both the
IS and the EP NAS parallel benchmarks in order to evalu-
ate and compare the performance achievable on three differ-
ent platforms. The kernels were run in two versions — first
when using the standard codes in C or Fortran with the cor-
responding MPI libraries and then the Java translations of
these kernels with the JavaMPI bindings to the same MP1 1i-
braries. A distributed memory parallel computer such as the
IBM SP-2, a shared memory multi-processor — Sun E4000,
and a Linux cluster were selected for our experiments as
they cover relatively well the variety of currently available
message-passing paralle] platforms.

The JVM and the Java compiler used on the IBM SP-2
machine were part of the JDK for AIX, version 1.1.6. The
execution environment consisted of IBM’s Parallel Oper-
ating Environment (POE), which supports the loading and
execution of parallel processes across the nodes of the IBM
SP2. The machine is built of thin nodes POWER2 Su-
per Chip (P2SC) processors with 256 Mbytes of memory
on each processor. The communication subsystem of the
SP2 features a high-performance switch which was used
throughout the experiments. The NAS EP and IS bench-
marks were also run on a 200 MHz dual Pentium Pro pro-
cessor cluster running Linux Red Hat 6.0 on a 10baseT Eth-
ernet. The same experiments were performed on a 14x336
MHz Ultra Sparc II processor Sun E4000 running Solaris
2.6.

The LAM MPI library was used on the Linux cluster,
whilst both the SP-2 and the E4000 provided native MPI

®—¢ Sun E4000 Fortran
O—0 Sun E4000 Java :
v—v Linux cluster Fortran |
9~ Linux cluster Java |
u—4 IBM SP-2 Fortran

00 1BM SP-2 Java

Execution time (sec)

30

1 2 3 4 5 6 7 8910 20 40
Number of nodes
Sun E4000 Linux cluster IBM SP-2
No. ™F.77 | Java | ¥-77 | Java | F-77 | Java
2 135.4 | 236.0 | 673.7 | 1514 | 119.3 | 274.3
4 | 68.14 | 1214 | 3274 | 755.8 | 59.70 | 137.4
8 335215995 163.8 {3779 { 29.80 | 68.60
16 n.a. n.a. n.a. n.a. 15.00 | 34.30
32 n.a. n.a. n.a. n.a. 7.50 | 17.20

Figure 1. Execution time vs. number of nodes
for the NAS EP benchmark - class A

libraries for message passing. The JavaMPI wrapper soft-
ware, created by the JCI tool, was used for the Java bindings
to these libraries. The original NAS C and Fortran codes
were run on top of the corresponding MPT libraries, while
the Java kernels were run on top of the JavaMPI binding to
these libraries. Later versions of Java 1.1.x were installed
on all platforms.)

The NAS parallel benchmarks have several specified
problem sizes called “classes” in order to ensure compara-
tive results across different platforms and environments. In
our study, we have completed experiments for two problem
sizes of the EP kernel (class A and class B) and one prob-
lem size for the IS benchmark (class A). The corresponding
problem sizes in data points for the EP code are 2%® for class
A and 23° for class B, while the class A problem size for the
IS code corresponds to 222 data points [1].

The evaluation results for the EP kernel (class A) are

shown in Figure 1. The execution time statistics for class

175

B of the same kernel (Figure 2) does not show any signif-
icant differences as far as the relative performance is con-
cerned. In both cases the standard Fortran code using native
message-passing performs best on the IBM SP-2. The re-
sults on the Sun E4000 are slightly slower while the Linux
cluster delivers timings nearly a magnitude behind the other
two platforms. The programs run approximately 2.5 times
slower in Java than their corresponding Fortran counter
parts. In both cases, however, the codes demonstrate good

10000

®—e Sun E4000 Fortran
O—0 Sun E4000 Java
v—v Linux cluster Fortran
U= Linux cluster Java

m—a |BM SP-2 Fortran

#—& Sun E4000C

O—0O Sun E4000 Java |
v—v LinuxciusterC
—— Linux cluster Java |

T oty g e
§ §
5 2
& o &
1 2 3 4 5 6 7 8 910 20 30 40 1 2 3 4 5 6 7 8910 20 30 40
Number of nodes Number of nodes
Sun E4000 Linux cluster IBM SP-2 Sun E4000 Linux cluster IBM SP-2
No. "F77 T Java | F-77 | Java | ¥-77 | Java No. "€ T Java| C | Jdava| C | Java
2 | 535.4 | 931.3 | 2694 | 6056 | 477.3 | 1099 2 15.86 | 27.45] 39.98 | 185.3 | 16.60 | 25.40
4 | 2727 | 486.1 | 1310 | 3029 | 238.6 | 548.2 4 830 | 14.16 | 3520 | 112.8 { 8.50 | 12.80
8 134.0 | 239.2 | 654.7 | 1691 | 1293 | 2743 8 426 | 7.35 | 33.81 {7424 | 380 | 640
16 n.a. n.a. n.a. n.a. 59.70 | 1373 16 n.a. n.a. n.a. n.a. 1.80 3.80
32 n.a. n.a. n.a. n.a. 30.40 | 68.70 32 n.a. n.a. n.a. n.a. 1.00 1.80

Figure 2. Execution time vs. number of nodes
for the NAS EP benchmark ~ class B

scalability within the range allowed by the hardware config-
urations.

The Java implementation on the Sun Enterprise 4000
machine clearly outperforms the corresponding implemen-
tation for AIX on the IBM SP-2 for those two experiments.
Of course, this can only be attributed to the specific ver-
sions of the Java software installed on the two machines.
Newer software versions will almost certainly deliver dif-
ferent comparative performance results. Therefore, separate
measurements should be taken if necessary in each specific
case in order to evaluate this particular issue.

The benchmarking results obtained with the IS kernel
(class A) are shown in Figure 3. The IS code is a relatively
stronger test for the message-passing environment involving
a number of bi-directional communications. This changes
the computation/communication balance and therefore re-
duces the overhead introduced by Java for both the IBM
and the Sun machines. For the Linux cluster, however, the
more intensive communications appear to be a problem par-
ticularly when running the standard C code. The results for
different numbers of nodes are almost the same, because of
the relatively slow 10baseT Ethernet which obviously be-
comes a performance bottleneck in this case.

176

Figure 3. Execution time vs. number of nodes
for the NAS IS benchmark — class A

5. Discussion

The data reflected therein bring to bear several ques-
tions which need to be addressed. Foremost is the need
to identify the sources of the performance penalty of us-
ing the message passing paradigm from Java in comparison
to traditional message passing programming in C or Fortran.
Therefore, we have also focused on the performance penalty
introduced by the respective components of a JNI-Wrapped
MPI process. In such a process, there is a layer where exe-
cution of the Java bytecode takes place (in the JVM); a layer
where execution is entirely done inside of the MPI library;
and another JNI (C-based) layer which permits the transi-
tion of execution to and from the Java bytecode into the
MPI library calls. Further investigation into the breakdown
of time spent in each of these layers is needed in order to
understand the sources of the performance penalty of using
the JavaMPI environment.

The performance penalty introduced by the MPI libraries
is relatively very well studied and understood. In order
to gain a more detailed insight, we have instrumented the
JavaMPI binding, and gathered additional time measure-
ments. It turns out that the cumulative time spent in the
wrapper software layer is typically within 1us in all cases,
and thus has a negligible share in the breakdown of the to-
tal execution time. Therefore, the significant performance
difference in comparison to the corresponding C or Fortran

results should be attributed to JNI, and the extra data copies
in particular [6]. A detailed study of the JVM performance
and more precisely how the parameters of the JVM (heap
size, stack size, garbage collection mode, just-in-time com-
pilation, etc.) influence the performance on platforms such
as the ones used in our study is obviously a very interesting
one but beyond the scope of this paper.

6. Conclusion

The Message-Passing Working Group of the Java
Grande Forum was formed in the second half of 1998 as
a response to the organized collaborations within the Java
Grande Forum to develop a single MPI-like API specifi-
cation for the Java programming language. An immedi-
ate goal was to discuss a common API for MPI-like Java
libraries and an tnitial draft was distributed at Supercom-
puting’98. In addition to faster JVM/JNI implementations,
the communication performance improvements very much
depend on the efficient design of an MPI-like API in Java.
This has been an area of active research and development
during the last couple of years for both wrappers to existing
MPI libraries and pure Java designs. To avoid confusion
with standards published by the original MPI Forum the
nascent API specification is called MPJ (Message Passing
for Java) [4].

The MPJ specification has been designed to work equally
well for both wrapper and pure Java implementations. In
general, our evaluation results in this study should be also
valid for wrapper versions of MPJ despite the fact that
JavaMPI does not conform to the specification document.
Depending on the platform and the software components
installed, significant impact on the message-passing perfor-
mance will have the efficiency of the native MPI library and
the version of the Java platform, including JNI. For pure
Java implementations of MPJ, however, a separate evalua-
tion exercise will have to be conducted.

The work presented in this paper has helped to identify
the usefulness of message-passing in Java for real applica-
tions while bringing to light the aspects of Java’s perfor-
mance which need to be improved upon in order to realize
high-performance communication. The performance mea-
surements which have been completed under this project go
directly to the questions which arise concerning Java’s fu-
ture role in scientific and high-performance computing.

7. Acknowledgements

The authors would like to thank the San Diego Super-
computer Center and the University of Wales - Cardiff for
the use of their computer systems (IBM SP-2 and Sun
E4000 respectively) and for the technical support that they
provided for this research.

177

References

1

{2

{33

{43

[5

—

{7

{8l

{91

{10}

{1y

D. Bailey, E. Barszcz, 1. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson,
T. Lasinski, R. Schreiber, H. Simon, V. Venkaakrihnan, and
S. Weeratunga. The NAS parallel benchmarks. Technical
Report RNR-94-007, NASA Ames Research Center, 1994.
http://science.nas.nasa.gov/Software/NPB/.

G. Bumns, R. Daoud, and J. Vaigl. LAM: An open cluster
environment for MPL. In Proceedings of Supercomputing
Symposium °94, Toronto, Canada, 1994.

B. Carpenter, G. Fox, G. Zhang, and X. Li A
draft Java binding for MPL November 1997.
http://www.npac.syr.edw/projects/pere/HPJava/mpilava.htmi.
B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox.
MPJ: MPI-like message passing for Java. Concurrency:
Practice and Experience, 12, 2000 (to appear).

V. Getov, S. Flynn-Hummel, and S. Mintchev. High-
performance parallel programming in Java: Exploiting na-
tive libraries. Concurrency: Practice and Experience,
10(11-13):863-872, 1998.

R. Gordon. Essential JNI: Java Native Interface. Prentice
Hall, 1998.

Java Grande Forum. Making Java work for high-end
computing. Technical Report JGF-TR-1, November 1998.
http://www.javagrande.org/reports.htm.

G. Judd, M. Clement, and Q. Snell. Dogma: - Dis-
tributed object group metacomputing architecture. Concur-
rency: Practice and Experience, 10(11-13):977-983, 1998.
http://cce.cs.byu.edu/DOGMA/.

S. Liang. the Java Native Interface: Programmer’s Guide
and Specification. Addison Wesley, 1999.

S. Mintchev and V. Getov. Towards portable message
passing in Java: Binding MPI. In: M. Bubak, J. Don-
garra, and J. Wasniewski (Eds.). Recent Advances in
PVM and MPI, LNCS, 1332:135-142, Springer, 1997.
http://perun.hscs. wmin.ac.uk/JavaMPl/.

MPI Forum. MPI: A message-passing interface standard. /n-
ternational Journal of Supercomputer Applications, 8(3/4),
1994.

