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ABSTRACT

Ion stochastic heating by a monochromatic Alfvén wave, which propagates obliquely to the background magnetic
field, has been studied by Chen et al. It is shown that ions can be resonantly heated at frequencies a fraction of
the ion cyclotron frequency when the wave amplitude is sufficiently large. In this paper, the monochromatic
wave is extended to a spectrum of left-hand polarized Alfvén waves. When the amplitude of the waves is
small, the components of the ion velocity have several distinct frequencies, and their motions are quasi-periodic.
However, when the amplitude of the waves is sufficiently large, the components of the ion velocity have a
spectrum of continuous frequencies near the ion cyclotron frequency due to the nonlinear coupling between
the Alfvén waves and the ion gyromotion, and the ion motions are stochastic. Compared with the case of a
monochromatic Alfvén wave, the threshold of the ion stochastic heating by a spectrum of Alfvén waves is
much lower. Even when their frequencies are only several percent of the ion cyclotron frequency, the ions
can also be stochastically heated. The relevance of this heating mechanism to solar corona is also discussed.
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1. INTRODUCTION

Alfvén waves are considered to play a crucial role in heating
of plasmas, such as the solar corona and magnetic fusion devices
(Nekrasov 1970; Hollweg 1978; Lieberman & Lichtenberg
1973; Karney 1979; Abe et al. 1984). Numerous theoretical and
experimental papers have been published to investigate resonant
heating of ions by Alfvén waves (Isenberg & Hollweg 1983;
Cranmer et al 1999; Li et al. 1999; Tu & Marsch 2001; Lu et al.
2006a, 2006b). In these works, the cyclotron resonant condition
(ω − k||v|| = nΩ0, where n is an integer, ω and k are the
frequencies and wavevectors of the Alfvén waves, respectively.
v is the particle velocity in the laboratory frame. The subscript
“‖” denotes the component parallel to the background magnetic
field and Ω0 is the cyclotron frequency of the particle) is
necessary for ion heating by the Alfvén waves, and in general
the frequencies of the applied Alfvén waves are comparable
to the cyclotron frequency. Recently, Chen et al. (2001) found
that an obliquely propagating Alfvén wave with sufficiently
large amplitude can break the magnetic moment invariant at
frequencies a fraction of the ion cyclotron frequency, and thus
ion stochastic heating by such sub-cyclotron resonance at low
frequencies is possible. Guo et al. (2008) further pointed out that
the ion heating occurs when the cyclotron resonances at sub-
cyclotron frequencies start to overlap with their corresponding
neighboring resonances and then leads to global stochasticity.
When a spectrum of Alfvén waves is considered, White et al.
(2002) demonstrated that the amplitude threshold of the Alfvén
waves for ion stochastic heating can be significantly decreased.
Evidences of ion heating by low-frequency Alfvén waves have
also been found in laboratory experiments (Gates et al. 2001;
Fredrickson et al. 2002; Zhang et al. 2008).

In the present paper, with test particle calculations we inves-
tigate ion stochastic heating by a spectrum of obliquely propa-
gating Alfvén waves with left-hand polarization. By analyzing
the spectrum of the components of the ion velocity as well as
the evolution of the ion temperature, a more precise determina-

tion of the threshold for ion stochastic heating for a spectrum of
oblique Alfvén waves is investigated.

The paper is organized as follows. In Section 2, the simulation
model is presented, and the simulation results are described in
Section 3. In Section 4, we discuss and summarize our results.

2. SIMULATION MODEL

A spectrum of left-hand circularly polarized Alfvén waves is
considered in this paper, and the waves propagate obliquely to
the background magnetic field. The dispersion relation of the
Alfvén waves is ω = kzvA, where vA = B0

/
(4πn0mi)1/2 is the

Alfvén speed and the background magnetic field is B0 = B0iz.
Thus, in the wave frame we have the wave magnetic field (Chen
et al. 2001)

Bw =
N∑

k=1

Bk[−cos(α) sin(ψk)ix +cos(ψk)iy +sin(α) sin(ψk)iz],

(1)
where ψk = kxx + kzz + ϕk , tan(α) = kx

/
kz, and ϕk is the

random phase for mode k. N is the number of wave modes.
The particles move in the magnetic field as described by the
following equations:

mi

dv

dt
= qiv × (B0 + Bw), (2)

dr

dt
= v, (3)

where the subscript i indicates physical quantities associated
with ion species i. In this paper, we consider particle motions
in the wave frame and the wave electric field is eliminated. The
equations are solved with Boris algorithm (Birdsall & Langdon,
2005), where the kinetic energy of the particle is conserved in the
calculation of cyclotron motion. The time step is Ωpt = 0.025,
where Ωp is the proton cyclotron frequency.
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Figure 1. Poincaré plot for a monochromatic Alfvén wave, and the parameters are ω = 0.25, α = 45◦, and (a) B2
k /B2

0 = 0.02, (b) B2
k /B2

0 = 0.067, and (c)
B2

k /B2
0 = 0.08.

(a) (b) (c)

Figure 2. Power spectrum of the x component of the ion velocity vx (t), which is obtained by FFT the time series of vx (t) from Ωpt = 0 to Ωpt = 26214.4. The
parameters are the same as in Figure 1.

3. SIMULATION RESULTS

In the laboratory frame the waves propagate in the positive z
direction, whose phase velocity is equal to the Alfvén speed vA.
Therefore, in the wave frame an initially cold ion distribution
has velocity vx = 0, vy = 0, and vz = −vA. In this paper,
we investigate the effects of the number of wave modes on ion
heating by the oblique Alfvén waves. At first, we show the
results for the monochromatic wave, and then the effects of the
number of wave modes on ion heating are investigated

3.1. The Monochromatic Alfvén Wave

To study ion heating, a Poincaré plot of λ = vz/vA, ψB =
cos(kxx + kzz + ϕk), formed by taking points when vy = 0
and v̇y > 0, is constructed in the wave frame. Poincaré plot is
the intersection of an orbit in the state space of a continuous
dynamical system with a certain lower dimensional subspace,
called the Poincaré section. Poincaré plot preserves many
properties of orbits of the original dynamical system and has
a lower dimensional state space. Therefore, it is a useful tool
to analyze the properties of a dynamical system (Lieberman
& Lichtenberg, 1983). Figure 1 describes the Poincaré plot for
a monochromatic Alfvén wave, and the parameters are ω =
0.25Ωp, α = 45◦, and (a) B2

k

/
B2

0 = 0.02, (b) B2
k

/
B2

0 = 0.067,
and (c) B2

k

/
B2

0 = 0.08. With the increase of the wave amplitude,
the motions of the ion become stochastic due to the resonance
with the wave at sub-cyclotron frequencies, and the threshold
is about B2

k

/
B2

0 = 0.067 (correspondingly, Bk

/
B0 ≈ 0.259,

which is consistent with the results of Chen et al. 2001). When
the amplitude is B2

k

/
B2

0 = 0.08, the ion can readily diffuse from
vz = −vA to about vz = 0.7vA, and its motions are stochastic.

The ion stochastic motions can also be demonstrated in
Figure 2, which shows the power spectrum of the x component
of the ion velocity vx(t). We first obtain a time series of vx(t)
from Ωpt = 0 to Ωpt = 26214.4 by solving Equations (2)
and (3), and then calculate its power spectrum by Fast Fourier
Transform (FFT) the time series of vx(t). The parameters are
the same as in Figure 1. When the wave amplitude is small
(B2

k

/
B2

0 = 0.02), the ion motions have two main frequencies:
one is near 0.25Ωp and the other is near 1.0Ωp. These two
frequencies correspond to the frequencies of the Alfvén wave
and ion gyromotion, respectively, and the ion motions are quasi-
periodic. With the increase of the wave amplitude, the ion
motions have more and more distinct frequencies. When the
wave amplitude is sufficiently large, the ion motions have a
continuous frequency spectrum, which is stochastic. For the case
B2

k

/
B2

0 = 0.08, the main frequencies are concentrated between
0.8Ωp and 1.3Ωp with a continuous spectrum. Consistent with
the results of Poincaré plot and the plot of x–vx , the threshold
of the ion stochastic motions is around B2

k

/
B2

0 = 0.067.
Figure 3 shows the time evolution of the parallel and per-

pendicular temperatures for the wave amplitude B2
k

/
B2

0 = 0.02
and B2

k

/
B2

0 = 0.08. In the figure, A and B denote T||
/
T||0

and T⊥
/
T⊥0 for amplitude B2

k

/
B2

0 = 0.02, while C and D
denote T||

/
T||0 and T⊥

/
T⊥0 for amplitude B2

k

/
B2

0 = 0.08.
Here, the subscript “0” stands for the initial values of phys-
ical quantities. Initially, particles are evenly distributed in a
region with size 24π × 24π in the z − x plane, and the re-
gion is divided into 48 × 48 grids. The thermal velocity of the
particles is 0.1vA, and there is no drift velocity in the labora-
tory frame. The total number of particles is 230,400. Double
periodic boundary conditions are used for the particles: if one
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Figure 3. Time evolution of the parallel and perpendicular temperatures for the
wave amplitude B2

k /B2
0 = 0.02 and B2

k /B2
0 = 0.08. A monochromatic Alfvén

wave with ω = 0.25, α = 45◦ is used. In the figure, A and B denote T||/T||0
and T⊥/T⊥0 for amplitude B2

k /B2
0 = 0.02, while C and D denote T||/T||0 and

T⊥/T⊥0 for amplitude B2
kB

2
0 = 0.08.

moves out of one boundary, it will enter from the opposite
boundary. In this and the following subsections, we calculate
the parallel and perpendicular temperatures using the follow-
ing procedure: we first calculate T|| = mi/kB〈(vz − 〈vz〉)2〉,
T⊥ = mi/2kB〈(vx − 〈vx〉)2 + (vy −〈vy〉)2〉 in every grid (where
the bracket 〈•〉 denotes an average over a grid cell), and then
the temperatures are averaged over all grids. In this way, we
can eliminate the effects of the average velocity at each loca-
tion on the thermal temperature. From the figure, we can find
that ions can be rapidly heated before Ωpt ≈ 100, and such
mechanism to heat the ions is due to the phase mixing between
ions, which has been discussed in Lu & Li (2007) and Li et al.
(2007). In the process of phase mixing, ions are first picked up
in the transverse direction by the Alfvén wave and obtain an
average transverse velocity, then the parallel thermal motions of
ions produce phase mixing (randomization) among ions leading
to ion heating. After the phase mixing, the ions are stochasti-
cally heated by the mechanism discussed in this paper for the
amplitude B2

k

/
B2

0 = 0.08, and the perpendicular temperature is
much larger than the parallel temperature. The ions have large
temperature anisotropy, which may excite ion cyclotron waves
(Gary et al. 2003; Lu et al. 2006a, 2006b; Lu & Wang 2006).
For the amplitude B2

k

/
B2

0 = 0.02, which is smaller than the
threshold of the stochastic heating, there is no further heating.

3.2. The Alfvén Waves with Two Wave Modes

Here we consider the Alfvén waves with two wave modes,
and their frequencies are 0.25Ωp and 0.33Ωp, respectively. They
propagate along the same direction with α = 45◦. The random
phases of these two modes are 0◦ and 30◦, respectively, and the
ratio of their amplitudes is B2

k2

/
B2

k1 = 0.6295. With a spectrum
consisting of waves with different frequencies, a Poincaré
plot cannot be used to investigate the ion stochastic heating.
However, similar to the Poincaré plot for the monochromatic
Alfvén wave, we still can construct a plot of λ = vz/vA,
ψB = (

∑
k Bk cos ψk)/

∑
k Bk , by taking points when vy = 0

and v̇y > 0 in the wave frame. Figure 4 shows such plot
for (a)

∑
k B2

k

/
B2

0 = 0.01, (b)
∑

k B2
k

/
B2

0 = 0.018, and (c)∑
k B2

k

/
B2

0 = 0.04. Similar to Figure 1, which describes the
results of the monochromatic wave case, with the increase
of the wave amplitude, the z component of the ion velocity
can be diffused to a large value. For example, the ion can be
diffused from vz = −vA to about vz = −0.95vA, −0.6vA,
and 0.7vA for the wave amplitude

∑
k B2

k

/
B2

0 = 0.01, 0.018,
and 0.04, respectively. The maximum value of vz which the
ion can be diffused to by the Alfvén waves increases abruptly
around the amplitude

∑
k B2

k

/
B2

0 = 0.018. Therefore, we can
suppose that the threshold for the ion stochastic heating is about∑

k B2
k

/
B2

0 = 0.018.
Figure 5 shows the power spectrum of the x component of

the ion velocity vx(t), which is obtained by FFT the time series
of vx(t) from Ωpt = 0 to Ωpt = 26214.4, as in Figure 2. The
parameters are the same as in Figure 4. When the wave amplitude
is small (

∑
k B2

k

/
B2

0 = 0.01), the ion motions have three main
frequencies, and they are near 0.25Ωp, 0.33Ωp, and 1.0Ωp,
respectively. The former two frequencies correspond to the
frequencies of the Alfvén waves, and the last one corresponds to
that of the ion gyromotion. The ion motions are quasi-periodic.
When the wave amplitude is sufficiently large, the ion motions
have a continuous frequency spectrum, and they are stochastic.
Around

∑
kB

2
k

/
B2

0 = 0.018, the spectrum becomes continuous,
and the ion motions are stochastic. When

∑
kB

2
k

/
B2

0 = 0.04,
the continuous spectrum of the ion motions extends from 0.75Ωp
to 1.3Ωp.

Figure 6 shows the time evolution of the parallel and perpen-
dicular temperatures for the wave amplitude

∑
k B2

k

/
B2

0 = 0.01
and

∑
k B2

k

/
B2

0 = 0.04. In the figure, A and B denote T||/T||0 and
T⊥/T⊥0 for amplitude

∑
k B2

k

/
B2

0 = 0.01, while C and D denote
T||/T||0 and T⊥/T⊥0 for amplitude

∑
k B2

k

/
B2

0 = 0.04. The initial

Figure 4. Plot of λ = vz/vA, ψB = (
∑

k Bk cos ψk)/
∑

k Bk for (a)
∑

k B2
k

/
B2

0 = 0.01, (b)
∑

k B2
k

/
B2

0 = 0.018, and (c)
∑

k B2
k

/
B2

0 = 0.04, by taking points when
vy = 0 and v̇y > 0 in the wave frame. The Alfvén waves have two wave modes, and their frequencies are 0.25Ω0 and 0.33Ω0, respectively. They propagate along the
same direction with α = 45◦. The random phases of these two modes are 0◦ and 30◦, respectively.
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(a) (b) (c)

Figure 5. Power spectrum of the x component of the ion velocity vx (t), which is obtained by FFT the time series of vx (t) from Ωpt = 0 to Ωpt = 26214.4. The
parameters are the same as in Figure 4.

Figure 6. Time evolution of the parallel and perpendicular temperatures for
the wave amplitude

∑
k B2

k /B2
0 = 0.01 and

∑
k B2

k /B2
0 = 0.04. The Alfvén

waves have two wave modes, and their frequencies are 0.25Ω0 and 0.33Ω0,
respectively. They propagate along the same direction with α = 45◦. The
random phases of these two modes are 0◦ and 30◦, respectively. In the figure,
A and B denote T||/T||0 and T⊥/T⊥0 for amplitude

∑
k B2

k /B2
0 = 0.01, while C

and D denote T||/T||0 and T⊥/T⊥0 for amplitude
∑

k B2
k /B2

0 = 0.04.

and boundary conditions are the same as discussed in the above
subsection. Similar to the case with the monochromatic Alfvén
wave, we can find that ions can be rapidly heated by phase mix-
ing before Ωpt ≈ 100. Then the ions are stochastically heated
by the mechanism for the amplitude

∑
k B2

k

/
B2

0 = 0.04, and
they have temperature anisotropy with the perpendicular tem-
perature much larger than the parallel temperature. However,
for the amplitude

∑
k B2

k

/
B2

0 = 0.01, there is no further heat-
ing after Ωpt ≈ 100.

We also consider the effects of the amplitude ratio B2
k2

/
B2

k1

on ion motions by keeping
∑

k B2
k

/
B2

0 as a constant. Figure 7
shows a plot of λ = vz

/
vA, ψB = (

∑
k Bk cos ψk)/

∑
k Bk , by

taking points when vy = 0 and v̇y > 0 in the wave frame for (a)
B2

k2

/
B2

k1 = 0.1, (b) B2
k2

/
B2

k1 = 0.17, and (c) B2
k2

/
B2

k1 = 0.4,
while

∑
k B2

k

/
B2

0 is kept as 0.04. With the increase of the
amplitude B2

k2, the ion motions tend to be stochastic. Around
B2

k2

/
B2

k1 = 0.17, the ion motions become stochastic, and the z
component of the ion velocity can be diffused from vz = −vA to
about vz = 0.6vA. When B2

k2 approaches to B2
k1, the stochasticity

of the ion motions increases. For B2
k2

/
B2

k1 = 0.4, vz can be
diffused from vz = −vA to about vz = 0.7vA. This can also be
demonstrated in Figure 8, which describes the power spectrum
of the x component of the ion velocity vx(t), which is obtained by

FFT the time series of vx(t) from Ωpt = 0 to Ωpt = 26214.4, as
in Figure 2. The parameters are the same as in Figure 7. When the
amplitude ratio is small (B2

k2

/
B2

k1 = 0.1), the ion motions have
several distinct frequencies. The main frequencies concentrate
on about 0.25Ωp and 1.0Ωp, respectively, which correspond to
the main frequency of the Alfvén waves and the frequency of
the ion gyromotion. The ion motions are quasi-periodic. The
ion motions begin to have a continuous frequency spectrum for
about B2

k2

/
B2

k1 = 0.17, and become stochastic.

3.3. The Alfvén Waves with a Spectrum

In order to investigate the effects of the number of wave modes
on the ion motions, we keep α = 45◦ and

∑
k B2

k

/
B2

0 = 0.013.
The frequencies of the waves extend from ω1 = 0.25Ωp to
ωN = 0.33Ωp, and N is the number of wave modes used in
our calculations. The frequencies of the wave modes can be
calculated as follows: ωj = ω1 + (j − 1)Δω (j = 1, 2, . . . , N ),
where Δω = (ωN − ω1)/(N − 1). The amplitude of individual
wave modes satisfies the relation (Bj/B1)2 = (ωj/ω1)−q , and
q is chosen as 1.667. This means that the power spectrum
of the Alfvén waves has an index of −1.667, which is a
generally accepted value for the power spectrum of magnetic
fluctuations found in the solar wind (Villante 1980; Bavassano
& Smith 1986). Figure 9 constructs a plot of λ = vz/vA,
ψB = (

∑
k Bk cos ψk)/

∑
k Bk , by taking points when vy = 0

and v̇y > 0 in the wave frame for (a) N = 1, (b) N = 2, (c)
N = 5, and (d) N = 21. With the increase of wave modes,
the ion motions become stochastic. From the figure, we can
find that the ion motions for (c) N = 5 and (d) N = 21 are
stochastic. This can also be verified in Figure 10, which shows
the power spectrum of the x component of the ion velocity vx(t)
for (a) N = 1, (b) N = 2, (c) N = 5, and (d) N = 21. The
power spectrum is obtained by FFT the time series of vx(t) from
Ωpt = 0 to Ωpt = 26214.4, as in Figure 2. For (a) N = 1 and (b)
N = 2, the ion motions are quasi-periodic. It has several distinct
frequencies, which correspond to that of the Alfvén wave modes
and the ion gyromotion. For (c) N = 5 and (d) N = 21, the
ion motions which concentrate near Alfvén wave frequencies are
very weak, while the motions near its gyromotion are very strong
and its frequencies have a continuous spectrum. Therefore, its
motions are stochastic. We also find that if we further increase
the number of the wave modes, there is no obvious difference.

Figure 11 shows the time evolution of the parallel and per-
pendicular temperatures for different numbers of wave modes.
In the figure, A and B denote T||/T||0 and T⊥/T⊥0 for the num-
ber of wave modes N = 2, while C and D denote T||/T||0 and
T⊥/T⊥0 for the number of the wave modes N = 5. The other
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Figure 7. Plot of λ = vz

/
vA, ψB = (

∑
k Bk cos ψk)/

∑
k Bk , by taking points when vy = 0 and v̇y > 0 in the wave frame for (a) B2

k2

/
B2

k1 = 0.1 (b) B2
k2

/
B2

k1 = 0.17,
and (c) B2

k2

/
B2

k1 = 0.4, while
∑

k B2
k

/
B2

0 is kept as 0.04. The Alfvén waves have two wave modes, and their frequencies are 0.25Ω0 and 0.33Ω0, respectively. They
propagate along the same direction with α = 45◦. The random phases of these two modes are 0◦ and 30◦, respectively.

(a) (b) (c)

Figure 8. Power spectrum of the x component of the ion velocity vx (t), which is obtained by FFT the time series of vx (t) from Ωpt = 0 to Ωpt = 26214.4. The
parameters are the same as in Figure 7.

Figure 9. Plot of λ = vz

/
vA, ψB = (

∑
k Bk cos ψk)/

∑
k Bk , by taking points when vy = 0 and v̇y > 0 in the wave frame for (a) N = 1, (b) N = 2, (c) N = 5, and

(d) N = 21. We keep α = 45◦, and
∑

k B2
k

/
B2

0 = 0.013. The frequencies of the waves extend from ω1 = 0.25Ω0 to ωN = 0.33Ω0.

(a) (b) (c) (d)

Figure 10. Power spectrum of the x component of the ion velocity vx (t) for (a) N = 1, (b) N = 2, (c) N = 5, and (d) N = 21. The power spectrum is obtained by
FFT the time series of vx (t) from Ωpt = 0 to Ωpt = 26214.4. The parameters are the same as in Figure 9.
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Figure 11. Time evolution of the parallel and perpendicular temperatures for
different numbers of wave modes. In the figure, A and B denote T||/T||0 and
T⊥/T⊥0 for the number of wave modes N = 2, while C and D denote T||/T||0
and T⊥/T⊥0 for the number of the wave modes N = 5. The other parameters
are the same as in Figure 9.

parameters are the same as in Figure 9. The initial and boundary
conditions are the same as discussed in the above subsections.
Similar to the cases in the above subsections, we can find that
ions can be rapidly heated by phase mixing before Ωpt ≈ 100.
Then, for N = 5, the ions are stochastically heated with large
temperature anisotropy. However, for N = 2, no further heating
can be found after Ωpt ≈ 100.

Figure 12 shows that the threshold of ion stochastic motions
for the different number of wave modes and frequencies, (a)
is for α = 45◦ and (b) for α = 60◦. The range for the
frequencies is kept as ωN − ω1 = 0.08Ω0. In general, with
the increase of the number of wave modes, the threshold
decreases, especially for the low-frequency waves. Therefore,
if a spectrum of waves is considered, the threshold can be
much lower than that of a monochromatic wave. When the
number of wave modes is sufficiently large, there is no obvious
difference. With the increase of the wave frequencies and the
propagation angle α, the threshold of ion stochastic motions
decreases. In summary, if a spectrum of Alfvén waves is
considered, the threshold of ion stochastic motions can be much
lower than that of the monochromatic wave. For example, for
ω1= 0.05Ω0, N = 21, α = 45◦, the threshold of amplitude
can be as low as

∑
k B2

k

/
B2

0 = 0.052. We can also find that
with the increase of the propagation angle α, the ions can be
stochastically heated with more efficiency. Figure 13 shows the
time evolution of the parallel and perpendicular temperatures

Figure 13. Time evolution of the parallel and perpendicular temperatures for
different propagation angle α, the amplitude of Alfvén waves is

∑
k B2

k /B2
0 =

0.028 with the number of the waves modes N = 2, and the other parameters
are the same as in Figure 9. In the figure, A and B denote T||/T||0 and T⊥/T⊥0
for the propagation angle α = 45◦, while C and D denote T||/T||0 and T⊥/T⊥0
for the propagation angle α = 60◦.

for different propagation angle α, the amplitude of Alfvén
waves is

∑
k B2

k

/
B2

0 = 0.028 with the number of the waves
modes N = 2, and the other parameters are the same as in
Figure 9. In the figure, A and B denote T||/T||0 and T⊥/T⊥0 for
the propagation angle α = 45◦, while C and D denote T||/T||0
and T⊥/T⊥0 for the propagation angle α = 60◦. Obviously, the
heating of the ions is more efficient for the propagation angle
α = 60◦.

4. SUMMARY AND DISCUSSION

Extended from the paper of Chen et al. (2001), we investigate
the ion stochastic heating by a spectrum of low-frequency
Alfvén waves, which are left-hand polarized and propagate
obliquely to the background magnetic field. The results show
that when a spectrum of Alfvén waves is considered, the
threshold of ion stochastic heating is much lower than that of
the monochromatic wave. Even when the frequencies of Alfvén
waves are several percent of the ion cyclotron frequency, ions
may also be stochastically heated. When the amplitude of the
waves is sufficiently large, the velocity of the ion stochastic
motions has a continuous spectrum of frequencies near the
ion cyclotron frequency due to the nonlinear coupling between
the ion gyromotion and the Alfvén waves, which leads to ion
stochastic motions.

(a) (b)

Figure 12. Threshold of ion stochastic motions for the different number of wave modes and frequencies, (a) is for α = 45◦ and (b) for α = 60◦. The range for the
frequencies is kept as ωN − ω1 = 0.08Ω0.
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Low-frequency Alfvén waves are thought to be pervasive in
the solar corona (Belcher et al. 1969; Tu & Marsch 2001). The
energy of these low-frequency Alfvén waves can be transferred
to that of higher frequencies by the perpendicular cascade in
incompressible MHD turbulence (see, e.g., Cranmer & van Bal-
legooijen 2003 and references therein), or by three-wave inter-
actions in compressible MHD turbulence with the existence of
fast magnetosonic waves (Chandran 2005). The perpendicular
cascade can lead to Alfvén waves to have wavevectors perpen-
dicular to the background magnetic field. Then, the mechanisms
of ion stochastic heating discussed in this paper may have rele-
vance with solar corona heating.
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