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A multi-dimensional electron phase-space hole (electron hole) is considered to be unstable to the transverse
instability. We perform two-dimensional (2D) particle-in-cell (PIC) simulations to study the evolutions of electron
holes in weakly magnetized plasma (Ω𝑒 < 𝜔𝑝𝑒, where Ω𝑒 and 𝜔𝑝𝑒 are the electron gyrofrequency and plasma
frequency, respectively), and the effects of perpendicular thermal velocities on the transverse instability are
investigated. The transverse instability can cause decay of the electron holes. We find that with the increasing
perpendicular thermal velocity tending to stabilize the transverse instability, the corresponding wave numbers
decrease.
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Electron phase-space holes (electron holes) have
been observed in different space environments, such
as the auroral region, the magnetotail, the transition
region of the bow shock, the solar wind, the magne-
topause, and the magnetosheath.[1−6] They have also
been observed in laboratory plasma, for example, in a
magnetized plasma surrounded by a waveguide and
an unmagnetized laser-generated plasma.[7,8] Elec-
tron holes are considered to be stationary Bernstein–
Greene–Kruskal (BGK) solutions of the Vlasov and
Poisson equations.[9−11] They are positive potential
pulses, and the parallel cut of their parallel elec-
tric field 𝐸|| has bipolar structures. Particle-in-cell
(PIC) simulations have confirmed that electron holes
can be formed during the nonlinear evolution of elec-
tron bi-stream instabilities, and these holes can per-
sist for a sufficiently long time in one-dimensional
(1D) PIC simulations.[10,12−14] Recently, Muschietti et
al.[15] proposed that electron holes are unstable to the
transverse instability in weakly magnetized plasma,
which is due to the dynamics of the trapped electrons
in the electron holes. Perturbations in electron holes
can produce transverse gradients of the electric poten-
tial. Such transverse gradients focus the trapped elec-
trons into regions that already have a surplus of elec-
trons, which results in larger transverse gradients and
more focusing. Lastly, the transverse instability oc-
curs. Based on the combined actions of the transverse
instability and the stabilization of the background
magnetic field, Lu et al.[16] successfully explained the
unipolar structures of the parallel cut of the perpen-

dicular electric field 𝐸⊥ in electron holes, which have
been observed by Polar and FAST satellite.[1,17]

In this Letter, we perform two-dimensional (2D)
particle-in-cell (PIC) simulations to study the evolu-
tions of electron holes in weakly magnetized plasma
(Ω𝑒 < 𝜔𝑝𝑒, where Ω𝑒 and 𝜔𝑝𝑒 are the electron gyrofre-
quency and plasma frequency, respectively). The ef-
fects of perpendicular thermal velocities on the trans-
verse instability have also been investigated in Muschi-
etti et al.[15] They fixed the wave number of the trans-
verse instability by adding an initial perturbation, and
found that the transverse tends to be stabilized with
the increase of the electron perpendicular thermal ve-
locity. In our study, we perform PIC simulations
to investigate the transverse instability in electron
holes without adding any initial perturbations, and
the transverse instability grows spontaneously. There-
fore, the effects of the electron perpendicular thermal
velocities on the wave numbers of the transverse in-
stability can be studied.

A 2D electrostatic PIC code under periodic bound-
ary conditions is employed in our simulations.[18,19]

The background magnetic field 𝐵0 is along the 𝑥 di-
rection. In the simulations, we only move electrons,
while ions are motionless and form a neutralizing back-
ground. Initially, a potential structure, which rep-
resents an electron hole, is located in the middle of
the simulation domain. The potential structure is de-
scribed as

𝜑(𝑥) = 𝜓 exp[−0.5(𝑥− 𝐿)2/∆2
||], (1)
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where ∆|| and 𝐿 are the half width and center position
of the electron hole, respectively, 𝜓 is the amplitude
of the potential structure. The potential structure is
homogeneous in the transverse direction. The trapped
electrons gyrate in the background magnetic field, si-
multaneously they bounce back and forth in the par-
allel direction of the electron hole. The motions of a
trapped electron are determined by the ratio of the
electron gyrofrequency Ω𝑒 to the bounce frequency
𝜔𝑏 =

√︁
𝜓/∆2

||.
[15] The initial electron distributions can

be calculated by the BGK method self-consistently,
which has already been given by Muschietti et al.[20]

It is

𝐹 (𝑥, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧) = 𝐹1(𝑤) exp[−0.5(𝑣2𝑦 + 𝑣2𝑧)/𝑇⊥𝑒], (2)

where 𝑇⊥𝑒 is the electron perpendicular temperature,
𝑤 ≡ 𝑣2𝑥 − 2𝜑(𝑥) is twice the parallel energy and

𝐹1(𝑤) =

√
−𝑤
𝜋∆2

||

[︂
1 + 2 ln

(︂
𝜓

−2𝑤

)︂]︂
+

6 +
(︀√

2 +
√
−𝑤

)︀
(1 − 𝑤)

√
−𝑤

𝜋(
√

2 +
√
−𝑤)(4 − 2𝑤 + 𝑤2)

for − 2𝜓 ≤ 𝑤 < 0, (3a)

𝐹1(𝑤) =
6
√

2

𝜋(8 + 𝑤3)
for 𝑤 > 0. (3b)

Equations (3a) and (3b) describe the distributions
of the trapped and passing electrons, respectively.
The trapped electron distribution has a hollowed out
shape, while the passing electron distribution has a
flattop shape.

In the simulations, the density is normalized to
the unperturbed density 𝑛0. The velocities are ex-
pressed in units of the electron parallel thermal veloc-
ity 𝑣||Te = (𝑇||𝑒/𝑚𝑒)

1/2. The dimensionless units used

here have space in Debye length 𝜆𝐷 =
(︁

𝜀0𝑇||𝑒
𝑛0𝑒2

)︁1/2

,

time in the inverse plasma frequency 𝜔𝑝𝑒 = ( 𝑛0𝑒
2

𝑚𝑒𝜀0
)1/2,

and potential in
𝑚𝑒𝑣

2
||Te

𝑒 . Cell size units 𝜆𝐷 × 𝜆𝐷 are
used in the simulations, and the time step is 0.02𝜔−1

𝑝𝑒 .
There are average 625 particles in each cell, and the
number of cells is 128×512. Ω𝑒 is chosen to be 0.1𝜔𝑝𝑒.
The initial potential is characterized by 𝜓 = 0.8 and
∆|| = 2.0. Initially, the electrons are loaded to sat-
isfy Eqs. (2) and (3). We change the perpendicular
thermal velocity 𝑣⊥Te to investigate its effect on the
transverse instability.

Figure 1 shows the simulation results for 𝑣⊥Te =

1.0𝑣||Te. The top row displays the time evolution of
the electric field energies (a1) 𝐸2

𝑥 and (b1) 𝐸2
𝑦 , respec-

tively, and they are normalized by 𝑛0𝑇||𝑒/𝜀0. From the
second row, the left and right columns plot the electric
field component 𝐸𝑥 and 𝐸𝑦 at 𝜔𝑝𝑒𝑡 = 0, 70 and 160 in

the domain 0 ≤ 𝑥 ≤ 128𝜆𝐷 and 0 ≤ 𝑦 ≤ 128𝜆𝐷. With
the excitation of the transverse instability at about
𝜔𝑝𝑒𝑡 = 40, the electric field energy 𝐸2

𝑥 begins to de-
crease and 𝐸2

𝑦 increases. Then, a kinked electron hole
can be found in the simulation domain, and the bipo-
lar structures of the parallel of 𝐸𝑦 can be observed if
we cut the electron hole along the direction parallel to
the background magnetic field. After the transverse
instability is sufficiently strong, it begins to destroy
the electron hole. At about 𝜔𝑝𝑒𝑡 = 80 both the elec-
tric field component 𝐸𝑥 and 𝐸𝑦 begin to decrease until
they disappear at about 𝜔𝑝𝑒𝑡 = 150.
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Fig. 1. The simulation results for 𝑣⊥Te = 1.0𝑣||Te. The
top row shows the time evolution of the electric field ener-
gies 𝐸2

𝑥 and 𝐸2
𝑦 , respectively, and they are normalized by

𝑛0𝑇||𝑒/𝜀. From the second row, the left and right columns
plot the electric field component (a) 𝐸𝑥 and (b) 𝐸𝑦 at
𝜔𝑝𝑒𝑡 = 0, 70 and 160 in the domain 0 ≤ 𝑥 ≤ 128𝜆𝐷 and
0 ≤ 𝑦 ≤ 128𝜆𝐷.

The transverse instability is a self-focusing type
of instability acting at the level of the trajectories of
trapped electron in electron holes. This can be illus-
trated by following electron trajectories in a kinked
electron hole, whose potential is modeled as[15]

𝜙(𝑥, 𝑦) = 𝜓 exp

[︂
− 0.5

(︂
𝑥− 16.0 − 𝜀∆‖ cos 𝑘𝑦

∆‖

)︂2 ]︂
,

(4)
where 𝜀 is a measure of the perturbation and 𝑘 is its
transverse wave number. The parameters are 𝜓 = 0.8,
∆|| = 2.0, 𝜀 = 0.3 and 𝑘 = 0.39. Figure 2 describes the
typical trajectories of trapped electrons in the electron
hole. The charged density 𝜌 is also shown in the figure.
Initially, these electrons are distributed evenly in the
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𝑦 direction, and they start from 𝑥 = 13. The trapped
electrons tend to accumulate to the regions that al-
ready have a surplus of electrons (with negative charge
density). Then, the transverse undulation in the elec-
tron hole becomes more and more pronounced, which
results in a self-focusing type of instability.
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Fig. 2. The typical trajectories of trapped electrons in
the electron hole. The charged density 𝜌 is also shown.
Initially, these electrons are distributed evenly in the 𝑦 di-
rection, and they start from 𝑥 = 13. In the figure, the solid
lines denote the typical trajectories of trapped electrons,
and the color representations denote the charged density
𝜌. The parameters are 𝜓 = 0.8, Δ|| = 2.0, 𝜀 = 0.3 and
𝑘 = 0.39.

Figure 3 shows the time evolution of the electric
field energies 𝐸2

𝑥 and 𝐸2
𝑦 for 𝑣⊥Te = 0.2, 0.5 and

1.0𝑣||Te, respectively. The electric field energies are
normalized by 𝑛0𝑇||𝑒/𝜀0. In the figure, the increase
of the electric field energy 𝐸2

𝑦 means the excitation
of the transverse instability in the electron hole, and
correspondingly, the electric field energy 𝐸2

𝑥 decreases.
Therefore, we can find that with the increase of the
electron perpendicular thermal velocity, the transverse
instability is difficult to be excited. The transverse in-
stability begins to be excited at about 𝜔𝑝𝑒𝑡 = 24, 32,
and 40 for 𝑣⊥Te = 0.2, 0.5 and 1.0𝑣||Te, respectively,
at the same time, 𝐸2

𝑦 attains their maximum values
(about 0.00031, 0.00013, and 0.00006, respectively) at
𝜔𝑝𝑒𝑡 = 45, 65, and 80.

The reasons for the stabilization of the electron
perpendicular thermal velocity to the transverse in-
stability in electron holes can be explained as follows:
with the increase of the perpendicular thermal ve-
locity, the diffusion across the background magnetic
field also increases. It can prevent the trapped elec-
trons from being focused by the transverse gradients
of the potential, and make the electron hole stable. At
the same time, as pointed out by Muschitti et al.,[15]

the criterion for the transverse instability in electron
holes is 𝑣⊥Te ≪ 𝜔𝑏/𝑘. In this study, we find that
with the increase of the perpendicular thermal veloc-
ity 𝑣⊥Te, the wave numbers 𝑘 of the transverse insta-

bility decreases. This can be demonstrated in Fig. 4,
in which we plot the wave numbers 𝑘 of the kinked
electron holes at different perpendicular thermal ve-
locities. The wave numbers are calculated from the
self-consistent PIC simulations without initial pertur-
bations when the kinked electron holes are fully devel-
oped. The wave numbers 𝑘 are inversely proportional
to the perpendicular thermal velocity 𝑣⊥Te and con-
sistent with the criterion of the transverse instability
proposed by Muschitti et al.[15]
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Fig. 3. The time evolution of the electric field energies (a)
𝐸2

𝑥 and (b) 𝐸2
𝑦 for 𝑣⊥Te = 0.2, 0.5 and 1.0𝑣||Te, respec-

tively. The solid, dashed, and dotted lines denote 0.2𝑣||Te,
0.5𝑣||Te and 1.0𝑣||Te, respectively. Here the electric field
energies are normalized by 𝑛0𝑇||𝑒/𝜀.
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Fig. 4. The wave number 𝑘 of the kinked electron holes
formed due to the transverse instability for 𝑣⊥Te = 0.2,
0.5, 0.8, 1.0, 2.0𝑣||Te. The triangles are the results from
2D PIC simulations. The solid lines represent the equation
𝑘 = 𝑎𝑣−1

⊥Te
, where 𝑎 = 0.09.

In summary, performing 2D electrostatic PIC sim-
ulations we have investigated the transverse instability
electron holes in weakly magnetized plasma under dif-
ferent electron perpendicular thermal velocity condi-
tions. Our results show that the transverse instability
causes the electron holes to become kinked, and lastly
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destroys the electron holes. At the same time, the in-
crease of the electron perpendicular thermal velocity
tends to stabilize it, and the corresponding wave num-
bers decrease. Weibel or whistler instability is also
unstable to electron anisotropic temperature.[21−23]

However, its effects are neglected because it is an elec-
tromagnetic instability and we use electrostatic PIC
simulations in the present study. The interactions be-
tween the transverse instability and Weibel instability
in electron holes are our investigation in the future.
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