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Recent experiments have observed magnetic reconnection in laser-produced high-energy-density (HED) plasma
bubbles. We perform two-dimensional (2-D) particle-in-cell (PIC) simulations to investigate magnetic reconnec-
tion between two approaching HED plasma bubbles. It is found that the expanding velocity of the bubbles has
a great influence on the process of magnetic reconnection. When the expanding velocity is small, a single X
line reconnection is formed. However, when the expanding velocity is sufficiently large, we can observe a plas-
moid in the vicinity of the X line. At the same time, the structures of the electromagnetic field in HED plasma
reconnection are similar to that in Harris current sheet reconnection.

PACS: 52.35.Vd, 52.38.−r, 52.65.Rr DOI: 10.1088/0256-307X/30/4/045201

Magnetic reconnection, the topological change of
the magnetic field in plasma, plays an important role
in the conversion of magnetic energy to plasma en-
ergy. It is considered to be related to a great deal of
explosive phenomena, such as solar flares,[1−3] magne-
tospheric substorms,[4−6] sawtooth relaxation in mag-
netic fusion devices,[7] and even the magnetotail of
unmagnetized planets.[8,9] There are numerous direct
evidences that support the existence of magnetic re-
connection in space observations[10−14] and laboratory
experimental devices.[15,16] Hall effect is considered to
play an important role during magnetic reconnection
in collisionless plasma.[17−20] Recently, it is reported
that magnetic reconnection can also occur in laser-
produced high-energy-density (HED) plasmas.[21−24]

By focusing lasers to small-scale spots on a foil, the foil
is ionized and HED plasma bubbles are created. The
bubbles expand supersonically off the surface of the
foil, and may then be squeezed together. At the same
time, a magnetic field with a megagauss order is gener-
ated around each bubble. Therefore, a fast reconnec-
tion may be observed when two bubbles with opposing
magnetic field are squeezed each other. Fox et al.[25,26]

performed fully kinetic particle-in-cell (PIC) simula-
tions with geometry and parameters relevant to the
HED plasma experiments.[21−24] They found that the
reconnection rate of magnetic reconnection in HED
plasma bubbles is much higher than the prediction of
the classic theory. The fast reconnection is caused due
to the magnetic flux pileup at the shoulder of the cur-

rent sheet, and the plasma inflow rate is much larger
than the reconnection rate. Then, the subsequent fast
reconnection occurs because the reconnection rate is
in direct proportion to the square of the amplitude of
the magnetic field. In this Letter, by performing two-
dimensional (2-D) PIC simulations, we investigate the
effects of the expanding velocity on the process of HED
plasma reconnection.

In our 2-D PIC simulations, the electromagnetic
fields are defined on the grids and updated by solv-
ing the Maxwell equations with a full explicit algo-
rithm, and the particles move in the electromagnetic
fields. The whole system runs in (𝑥, 𝑧) coordinates
with the domain size [−𝐿𝑥, 𝐿𝑥]× [−𝐿𝑧, 𝐿𝑧]. The sys-
tem is periodic in both 𝑥 and 𝑧 directions. The model
of magnetic reconnection between plasma bubbles in
this study is based on Refs. [25,26]. Two half-plasma-
bubbles are defined on the rectangular area with cen-
ters locate at (0,−𝐿𝑧) and (0,+𝐿𝑧). The radius vec-
tors of the bubbles are defined from the center of each
bubble, which can be expressed as 𝑟(1) = (𝑥, 𝑧 + 𝐿𝑧)
and 𝑟(2) = (𝑥, 𝑧 − 𝐿𝑧). The initial number density is
𝑛b+𝑛(1)+𝑛(2), where 𝑛b is a background density and
𝑛(𝑖) (𝑖=1,2) is

𝑛(𝑖) =

{︃
(𝑛0 − 𝑛b) cos

2
(︁

𝜋𝑟(𝑖)

2𝐿𝑛

)︁
if 𝑟(𝑖) < 𝐿𝑛,

0 otherwise,
(1)

where 𝐿𝑛 is the initial scale of the bubbles, and 𝑛0 is
the peak bubble density. Initially, the bubbles are ex-
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panding radially, and the velocity is expressed as the
sum of the following fields

𝑉 (𝑖) =

{︃
𝑉0 sin

(︁
𝜋𝑟(𝑖)

𝐿𝑛

)︁
𝑟(𝑖) if 𝑟(𝑖) < 𝐿𝑛,

0 otherwise.
(2)

The magnetic field is initialized as the sum of two
toroidal ribbons, with

𝐵(𝑖) =

⎧⎪⎪⎨⎪⎪⎩
𝐵0 sin

(︁
𝜋(𝐿𝑛−𝑟(𝑖))

2𝐿𝐵

)︁
𝑟 × 𝑦

if 𝑟(𝑖) ∈ [𝐿𝑛 − 2𝐿𝐵 , 𝐿𝑛],

0 otherwise.

(3)

Here 𝐵0 is the initial strength of the magnetic field,
and 𝐿𝐵 is the half-width of the magnetic ribbons. In
order to be consistent with the plasma flow, an ini-
tial electric field 𝐸 = −𝑉 × 𝐵 is added, while the
initial out-of-plane current density is determined by
Faraday’s law.
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Fig. 1. The evolution of the magnetic field for cases (a)
𝑉0 = 2.0𝑉A at Ω 𝑖𝑡 = 0, 0.4, 3.0, 3.6 and (b) 𝑉0 = 5.0𝑉A

at Ω𝑖𝑡 = 0, 0.4, 1.25, 1.6. The magnetic field lines are also
plotted in the figure for reference.

In the simulations, the mass ratio 𝑚𝑖/𝑚𝑒 is set to
be 100 and the light speed 𝑐 is 30𝑉A (where 𝑉A is the
Alfven speed based on 𝐵0 and 𝑛0). The initial temper-
ature of the ions are assumed to be the same as that of
electrons, 𝑇𝑖0 = 𝑇𝑒0 = 0.056𝑚𝑒𝑐

2. The parameters of
the plasma bubbles are chosen based on the Ruther-
ford, Omega and SG-II experiments.[21−26] The initial
scale of the bubbles is 𝐿𝑛 = 12𝑐/𝜔𝑝𝑖 and the half-
width of the magnetic ribbon is 𝐿𝐵 = 2𝑐/𝜔𝑝𝑖 (𝑐/𝜔𝑝𝑖

is the ion inertial length based on 𝑛0). We choose
𝑛b/𝑛0 = 0.2. In general, the expanding velocity
𝑉0 ∼ 𝐶s (where 𝐶s is the sound speed), and the plasma
𝛽0∼10–100. Therefore, the expanding velocity 𝑉0∼1–
10𝑉A. We set 𝐿𝑥 = 25.6𝑐/𝜔𝑝𝑖 and 𝐿𝑧 = 12.8𝑐/𝜔𝑝𝑖,

and number of the grids is 𝑁𝑥 × 𝑁𝑧 = 1024 × 256.
The time step is Ω𝑖𝑡 = 0.001 (Ω𝑖 = 𝑒𝐵0/𝑚𝑖 is the
ion gyrofrequency). More than 2 × 108 particles per
species are employed to stimulate the plasma.
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Fig. 2. The magnetic field in the 𝑥 direction 𝐵𝑥/𝐵0 along
𝑥 = 0 for the cases (a) 𝑉0 = 2.0𝑉A and (b) 𝑉0 = 5.0𝑉A. (a)
The black, blue, yellow and red lines represent the time
Ω𝑖𝑡 =0, 0.40, 3.0 and 3.6, respectively. (b) The black,
blue, yellow and red lines represent the time Ω𝑖𝑡 =0.00,
0.40, 1.25 and 1.60, respectively.
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Fig. 3. The evolution of the half-width of the current
sheet 𝛿 for the cases (a) 𝑉0 = 2.0𝑉A (solid line) and (b)
𝑉0 = 5.0𝑉A (dashed line). The width of the current sheet
2𝛿 is defined as the distance between the positive and neg-
ative peaks of 𝐵𝑥 along 𝑥 = 0.

In order to investigate the effects of the expand-
ing velocity of the bubbles on the process of HED
plasma reconnection, two different values for 𝑉0 are
used, which are 2.0𝑉A and 5.0𝑉A, respectively. Figure
1 shows the evolution of the magnetic field for cases (a)
𝑉0 = 2.0𝑉A at Ω𝑖𝑡 = 0, 0.4, 3.0, 3.6 and (b) 𝑉0 = 5.0𝑉A

at Ω𝑖𝑡 = 0, 0.4, 1.25, 1.6. The magnetic field lines are
also plotted in the figure for reference. As the bubbles
approach, an X line is formed at the leading point of
the tangency between the bubbles. At the same time,
the strong pileup of the magnetic field can be observed
in the inflow region, and this is the reason why the re-
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connection in HED plasma is much faster than that in
a Harris current sheet. The reconnection rate is con-
sidered to be related to the local Alfven speed in the
inflow region, and the pileup of the magnetic field in
the inflow region can enhance the local Alfven speed
largely. In the case with 𝑉0 = 2.0𝑉A, there is only
one X line. However, in the case with 𝑉0 = 5.0𝑉A, a
plasmoid appears in the vicinity of the X line during
the process of the reconnection. Such a plasmoid has
already been observed in the reconnection experiment
of laser-plasma interaction.[24] In the experiment, the
reconnection occurs between the plasma bubbles with
the self-generated magnetic field, where the plasmas
are produced by irradiating two laser beams to two
suitably juxtaposed Al foil targets. At the same time,
the pileup of the magnetic field is much more obvious
in the case 𝑉0 = 5.0𝑉A than in the case 𝑉0 = 2.0𝑉A,
therefore the reconnection in the case 𝑉0 = 5.0𝑉A is
much faster.
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Fig. 4. Contours of the electric field in the 𝑥 di-
rection 𝐸𝑥/(𝑉A𝐵0), the electric field in the 𝑦 direc-
tion 𝐸𝑦/(𝑉A𝐵0), the electric field in the 𝑧 direction
𝐸𝑧/(𝑉A𝐵0), and the out-of-plane magnetic field 𝐵𝑦/𝐵0

for the cases (a) 𝑉0 = 2.0𝑉A at Ω𝑖𝑡 = 3.6 and (b)
𝑉0 = 5.0𝑉A at Ω𝑖𝑡 = 1.6, when the reconnection is fully
developed.

The pileup of the magnetic field in the inflow re-
gion of the reconnection can be observed more clearly
in Fig. 2, which shows that the magnetic field in the 𝑥
direction 𝐵𝑥/𝐵0 along 𝑥 = 0 for cases (a) 𝑉0 = 2.0𝑉A

and (b) 𝑉0 = 5.0𝑉A. We can find that as the bubbles
approach, the magnetic field is enhanced in the inflow
region. The enhancement of the magnetic field is more
obvious in the case 𝑉0 = 5.0𝑉A. Figure 3 shows the
evolution of the half-width of the current sheet 𝛿 for
the cases (a) 𝑉0 = 2.0𝑉A and (b) 𝑉0 = 5.0𝑉A. The
width of the current sheet 2𝛿 is defined as the dis-

tance between the positive and negative peaks of 𝐵𝑥

along 𝑥 = 0. The current sheet is squeezed before the
reconnection occurs. The width of the current sheet
2𝛿 in the case 𝑉0 = 5.0𝑉A is much narrower than that
in the case 𝑉0 = 2.0𝑉A when the reconnection oc-
curs. The times, when the reconnection just happens,
are about Ω𝑖𝑡 = 1.6 and 0.8 in the cases 𝑉0 = 2.0𝑉A

and 5.0𝑉A, respectively, and their corresponding half-
widths of the current sheet 𝛿 are about 0.6 𝑐/𝜔𝑝𝑖 and
1.2𝑐/𝜔𝑝𝑖. Therefore, multiple X line reconnection oc-
curs in the case 𝑉0 = 5.0𝑉A, and we can observe the
plasmoid during the reconnection.

Figure 4 shows the contours of the electric field in
the 𝑥 direction 𝐸𝑥/(𝑉A𝐵0), the electric field in the 𝑦
direction 𝐸𝑦/(𝑉A𝐵0), the electric field in the 𝑧 direc-
tion 𝐸𝑧/(𝑉A𝐵0), and the out-of-plane magnetic field
𝐵𝑦/𝐵0 for the cases (a) 𝑉0 = 2.0𝑉A at Ω𝑖𝑡 = 3.6 and
(b) 𝑉0 = 5.0𝑉A at Ω𝑖𝑡 = 1.6, when the reconnection
is fully developed. In the case 𝑉0 = 2.0𝑉A, a sin-
gle X line reconnection is formed. In the vicinity of
the X line, the out-of-plane magnetic field 𝐵𝑦 exhibits
a quadrupole structure, while 𝐸𝑥 forms a bicrescent
shape around the X line with a negative value on the
left and a positive value on the right. The reconnec-
tion electric field 𝐸𝑦 points to the 𝑦 direction, while
𝐸𝑧 forms two strips, which points to the center of the
current sheet. In the case of 𝑉0 = 5.0𝑉A, a plasmoid is
formed in the vicinity of the X line. In the plasmoid,
there exists 𝐸𝑥 in the left and right parts in the plas-
moid, which directs to the center of the plasmoid. 𝐸𝑦

in the plasmoid also forms two strips, which points to
the center. The structures are similar to that in the
Harris current sheet reconnection.[27−32]

In summary, we performed 2-D PIC simulations to
investigate magnetic reconnection in two approaching
HED, laser produced plasma bubbles. When the ex-
panding velocity of the bubbles is small, a single X
line reconnection is formed. However, when the ex-
panding velocity of the bubbles is sufficiently large,
we can observe that a plasmoid appears in the vicin-
ity of the X line. A plasmoid has already observed
been observed in the reconnection experiment of two
approaching HED laser-produced plasma bubbles.[24]
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