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Abstract Amagnetic island plays an important role in magnetic reconnection. In this paper, using a series
of two-dimensional particle-in-cell simulations, we investigate the magnetic structures of a magnetic island
formed duringmultiple X linemagnetic reconnections, considering the effects of the guide field in symmetric
and asymmetric current sheets. In a symmetric current sheet, the current in the x direction forms a tripolar
structure inside a magnetic island during antiparallel reconnection, which results in a quadrupole structure of
the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system
and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently
strong, the current forms a ring along the magnetic field lines inside a magnetic island. At the same time, the
current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the
edge of the magnetic island. Such a dual-ring current system enhances the out-of-plane magnetic field inside
the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when
there is no guide field, electrons flow toward the X lines along the separatrices from the side with a higher
density and are then directed away from the X lines along the separatrices to the side with a lower density.
The formed current results in the enhancement of the out-of-planemagnetic field at one end of themagnetic
island and the attenuation at the other end. With the increase of the guide field, the structures of both the
current system and the out-of-plane magnetic field are distorted.

1. Introduction

Magnetic reconnection is a fundamental physical process which is used to explain the rapid conversion of

magnetic energy into plasma kinetic and thermal energies [Vasyliunas, 1975; Biskamp, 2000; Priest and Forbes,

2000] in plasmas ranging from the solar atmosphere [Giovanelli, 1946; Masuda et al., 1994] to the Earth’s

magnetosphere [Baker et al., 1996; Nagai et al., 1998; Angelopoulos et al., 2008], and laboratory experiments

[Ji et al., 1998; Li et al., 2007; Dong et al., 2012].

The violation of the ideal condition, E+V×B≠ 0, is essential to allow the magnetic flux transport across the
reconnection point, and the diffusion region, where the ideal condition is violated, is of strong interest for
understanding magnetic reconnections. In collisionless magnetic reconnection, the ideal condition is differ-
ent for ions and electrons due to their mass difference. The ions demagnetize on the scale of the ion inertial
length, and the electrons demagnetize on the scale of the electron inertial length, which leads to the gen-
eration of the Hall magnetic field with a quadrupole structure in the diffusion region and the Hall electric field
around separatrices [Sonnerup, 1979; Terasawa, 1983; Birn et al., 2001; Shay et al., 2001; Øieroset et al., 2001;
Pritchett, 2001; Nagai et al., 2003; Fu et al., 2006; Lu et al., 2010a]. While a vast majority of reconnection studies
consider symmetric cases with antiparallel magnetic field in the inflow region, some studies have shown that
an added uniform magnetic field in the out-of-plane direction (“guide field”) can introduce an asymmetry in
the inflow direction, and the quadrupole structure of the out-of-plane magnetic field are distorted [Pritchett
and Coroniti, 2004; Huang et al., 2010; Lu et al., 2011].

Magnetic island (also called magnetic flux rope when viewed in 3-D), formed between X lines, is also an
important phenomena in magnetic reconnection. Electrons can be trapped in a magnetic island and get
accelerated [Drake et al., 2006a; Chen et al., 2008;Oka et al., 2010a, 2010b;Wang et al., 2010], and these islands
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may coalesce each other and the electrons can be acceler-
ated with a higher efficiency [Pritchett, 2008; Oka et al., 2010a,
2010b; Tanaka et al., 2011; Le et al., 2012]. Therefore, investi-
gating the structures of magnetic islands is also essential for
the understanding of magnetic reconnections. Simulations
have shown that in antiparallel reconnection, a characteristic
quadrupole pattern of the out-of-plane magnetic field is
formed in amagnetic island [Karimabadi et al., 1999, 2004; Liu
et al., 2009] , and such a structure has also been observed by

satellite [Deng et al., 2004; Zhang et al., 2011]. In guide field magnetic reconnection, the out-of-plane magnetic
field is enhanced in a magnetic island [Ma et al., 1994; Drake et al., 2006b; Chen et al., 2008; Daughton et al.,
2011]. Recently, the out-of-plane magnetic field inside a magnetic island has been found to have more com-
plicated structures by satellite observations. Borg et al. [2012] found that the amplitude of the out-of-plane
magnetic field appears to have double peaks. Lui et al. [2007] suggest that while the outer layer of a flux rope
has the expected helical shape, the inner layers may have a more irregular magnetic structure. With two-
dimensional (2-D) particle-in-cell (PIC) simulations, Huang et al. [2012] found that in the magnetic island,
which is formed during multiple X line magnetic reconnection, the in-plane current system exhibits a dual-ring
structure. It results in a dip of the out-of-planemagnetic field in the center of the island, which is consistent with
the double peak structure of the out-of-plane magnetic field observed by Borg et al. [2012]. In this paper, by
performing a series of two-dimensional (2-D) particle-in-cell (PIC) simulations, we investigate the effect of a
guide field on the structure of the magnetic island formed during multiple X line reconnection symmetric and
asymmetric current sheets. The results show that the guide field has a significant influence on the structure of
the magnetic island, and an explanation based on the current system formed inside the island is given.

The structure of the paper is as follows. In section 2, the simulation model is overviewed. The simulation
results are presented in section 3. The conclusions and discussion are given in section 4.

2. Simulation Model

Two-dimensional PIC simulations are performed in this paper to investigate the structure of a magnetic island
formed during multiple X line magnetic reconnections. The details of the PIC simulation model can be

referred in Birdsall and Langdon [1985].
Periodic boundary conditions are as-
sumed in the x direction, while in the
z direction conducting boundary con-
ditions are retained and particles are
specularly reflected.

The initial equilibrium configuration of
the asymmetric current in the (x, z)
plane has been described by Quest and
Coroniti [1981], and the profile of the
magnetic field is given by the
expression

B0 zð Þ ¼ B0 tanh z=δð Þ þ R½ �ex
þ By0ey (1)

where By0 and δ are the amplitude of
the guide field and the initial half width
of the current sheet, respectively. The
null point exists only if |R|< 1.

The temperatures of the ions and elec-
trons are assumed to be homogeneous,

Table 1. Summary of Simulations (Runs 1–5)a

Run R α1 α2 By0/B0

1 0 0 1 0.0
2 0 0 1 0.1
3 0 0 1 1.0
4 1/2 1/3 1/3 0.0
5 1/2 1/3 1/3 1.0

aR denotes the asymmetry degree of the magnetic
field, which is defined in equation (1).

Figure 1. The time evolution of the out-of-plane magnetic field at (a) Ωit= 22, (b)
Ωit= 29, and (c) Ωit= 39 for Run 1. The in-plane magnetic field lines are also
presented. The arrows denote the direction of the local magnetic field.
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and thus, the associated plasma den-
sity in the current sheet is given by

n zð Þ ¼ n0½1� α1 tanh x=δð Þ
� α2 tanh

2 x=δð Þ�; (2)

which implies a density drop by 2α1n0
across the current sheet. In order to
satisfy the pressure balance constraint,
the parameters should be set to
α2 ¼ B20=2μ0n0 Ti0þTe0ð Þ and α1 =2Rα2.
When α1 =R=0 and α2 =1, one recovers
the usual symmetric Harris current
sheet [Harris, 1962].

We choose δ=0.5 c/ωpi (where c/ωpi is
the ion inertial length based on the
density n0). The distributions of the ions
and electrons are assumed to satisfy the
Maxwellian function with drift speeds in
the y direction. The drift speeds of the
ions and electrons satisfy the equation
Vi0/Ve0 =� Ti0/Te0 (where Vi0(Ve0) and
Ti0(Te0) are the initial drift speed and
temperature of the ions (electrons),
respectively). The initial temperature
ratio of the ions to the electrons is set
to be Ti0/Te0 = 4. The mass ratio of the
ion to the electron is mi/me = 100 and

the light speed is c= 15vA (where vA is the Alfven speed based on B0 and n0).

The simulations are performed in the (x,z) plane. The box dimensions are Lx= 102.4 c/ωpi in the x direction
and Lz= 25.6 c/ωpi in the z direction with the spatial resolution Δx=Δz= 0.05 c/ωpi= 0.5 c/ωpe (where c=ωpe is
the electron inertial length based on n0). The time step is set to Ω iΔt = 0.001, where Ωi= eB0/mi is the ion
gyrofrequency. More than 108 particles per species are employed in the simulations. In all runs, reconnection

is triggered by a small flux perturbation.

3. Simulation Results

By changing the amplitude of the ini-
tial guide field, we investigate their
effects on the structures of magnetic
islands formed during multiple X line
reconnections in symmetric and
asymmetric current sheets, and a total
of five cases are run. Runs 1–3 con-
sider magnetic reconnection in a
symmetric current, while in Runs 4
and 5 magnetic reconnection occurs
in an asymmetric current sheet. In Run
1, the guide field By0/B0 =0, and it is
antiparallel reconnection. In Runs 2
and 3, the guide field is By0/B0 = 0.1
and 1.0, respectively, which represent
a weak and strong guide field. In Runs

Figure 2. The (a) ion, (b) electron, and (c) total currents in the x direction at Ωit= 39
for Run 1. The in-plane magnetic field lines are also presented. The arrows denote the
direction of the local magnetic field.

Figure 3. The profiles of the ion (blue), electron (red), total (black) current in the x
direction, and out-of-plane magnetic field By (green) along the line x = 45c/ωpi at
Ωit = 39 for Run 1.
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4 and 5, the guide field is By0/B0 = 0 and
1.0, respectively. The parameters for
Runs 1–5 are summarized in Table 1.

Figure 1 shows the time evolution of the
out-of-plane magnetic field By in Run 1.
For reference, the magnetic field lines
are also plotted in the figure. In this
case, there is no initial guide field. With
the development of the reconnection, the
out-of-plane magnetic field around the
X lines exhibits a characteristic quadru-
pole structure, whose generation mecha-
nism has been thoroughly investigated
by numerous authors [Shay et al., 2001;
Pritchett, 2001; Nagai et al., 2003; Fu et al.,
2006; Lu et al., 2010a]. Simultaneously,
magnetic islands are formed between
the X lines. The width of the magnetic
islands increases until it saturates at about
Ωi t=38 with the width about 7.0 c/ωpi.
We can also find a produced secondary
island around x~24 c/ωpi at Ωi t=39. A
secondary island is generated in an ex-
tended current sheet in the vicinity of an
X line. In this paper, we only concern a
primary island, which is formed simulta-
neously with the appearance of X lines
during magnetic reconnection. Now let us
focus on the evolution of the out-of-plane
magnetic field By in the magnetic island
between x~24 c/ωpi and x~82 c/ωpi. At
Ωi t~29, a wave structure appears at the
two ends of the island, which is consid-
ered to be generated due to the Weibel
instability excited by the electron temper-
ature anisotropy in themagnetic island [Lu
et al., 2010b]. AtΩi t~39, the out-of-plane
magnetic field in the center of the mag-
netic island also exhibits a quadrupole
structure. Such a structure can last about

10 Ω�1
i and then disappears.

The generation mechanism of such a
quadrupole structure in the center of
the island can be understood by inves-
tigating the current system in the island.
Figure 2 plots the (a) ion current, (b)
electron current, and (c) total current in
the x direction at Ωit= 39 for Run 1. The
plasmas are accelerated by the
reconnection electric field in the vicinity
of the X line and then flow out along the
x direction, which makes the magnetic
field pile up at the two ends of the

Figure 4. The time evolution of the out-of-plane magnetic field at (a) Ωit= 22, (b)
Ωit= 29, and (c) Ωit= 37 for Run 2. The in-plane magnetic field lines are also
presented. The arrows denote the direction of the local magnetic field.

Figure 5. The (a) ion, (b) electron, and (c) total currents in the x direction at Ωit= 37
for Run 2. The in-plane magnetic field lines are also presented. The arrows denote the
direction of the local magnetic field.
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island. At the same time, the island is
contracted, and the electric field Ey is
generated at the two ends of the island.
The trapped ions and electrons in the
contracted island are accelerated by the
electric field at two ends of the island,
and then move toward the center of the
island. Such amechanism of the electron
acceleration in a magnetic island has
already been studied by Fu et al. [2006]
and Drake et al. [2006a]. Moreover, the
behaviors of the reflected ions and
electrons are different because of their
different mass. The accelerated electrons
are magnetized and move along the
magnetic field lines, and the resulting
current points toward the ends of
the island. The accelerated ions are
unmagnetized and move almost along
the x direction toward the center of the
island. Therefore, the total current sys-
tem has a tripolar structure along the
z direction inside the island. This can be
demonstrated more clearly in Figure 3,
which depicts the out-of-plane mag-
netic field By, the ion, electron, and total
current in the x direction along the line
x= 45 c/ωpi at Ωi t= 39. Such a current
system inside the island results in the
quadrupole structure of the out-of-plane
magnetic field in the center of the island.
When the island cannot be contracted
anymore, the ions and electrons in the
island cannot be accelerated. Then, both
the current and the quadrupole structure
of the out-of-plane magnetic field vanish
in the island.

Figure 4 shows the time evolution of the
out-of-plane magnetic field in Run 2. For
reference, the magnetic field lines are
also plotted in the figure. In this case,
there is a weak initial guide field. Similar
to Run 1, magnetic islands are formed
between the X lines, and there is no
fluctuation of the out-of-plane magnetic
field, as shown in Run 1. When these
magnetic islands are fully developed
(at Ωi t=37), we can also observe a
quadrupole structure of the out-of-plane
magnetic field in the center of these
magnetic islands, although the symme-
try of the quadrupole structure is now
distorted. Such a structure can last about

10 Ω�1
i and then disappears. Similarly,

Figure 6. Similar to Figure 1 showing the snapshots of the out-of-planemagnetic field
at (a) Ωit=30, (b) Ωit=38, and (c) Ωit=44 for Run 3. The in-plane magnetic field lines
are also presented. The arrows denote the direction of the local magnetic field.

Figure 7. The (a) ion, (b) electron, and (c) total currents in the x direction at Ωit= 44
for Run 3. The in-planemagnetic field lines are also presented. The arrows denote the
direction of the local magnetic field.
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the symmetry of the current system
inside the magnetic islands is also
distorted when a weak guide field is
considered. Figure 5 plots the (a) ion
current, (b) electron current, and (c) total
current in the x direction at Ωi t= 37 for
Run 2. Here, we only show the current
system in the island between x ∼ 25c/ωpi

and x ∼ 82c/ωpi. When the ions and
electrons move toward the center of the
island after they are accelerated at the
two ends of the island, they will deviate
from the x direction due to the existence
of the guide field. Therefore, compared
with Run 1, both the current system and
the quadrupole structure of the out-of-
plane magnetic field inside the island
are distorted.

With the increase of the initial guide field,
the current system inside the magnetic
island is more and more distorted. When
the initial guide field is sufficiently strong,
for example in Run 3 with a guide field
By0 = B0, the total current almost forms a
ring along the magnetic field lines inside
the magnetic island. This can be demon-
strated in Figures 6 and 7. Figure 6 plots
the time evolution of the out-of-plane
magnetic field at Ωit=44 for Run 3, while
Figure 7 shows the (a) ion current, (b)
electron current, and (c) total current in
the x direction at Ωit = 44 for Run 3.
Here, we only show the current system
in the island between x ∼ 37c/ωpi and
x ∼ 73c/ωpi. Both the ions and electrons
are accelerated at the ends of the
magnetic island; however, the electrons
can be accelerated more efficiently due
to their smaller mass. Thus, the total
current inside the magnetic island has a
ring structure. At the outer edge of the
magnetic island, there is another ring
of the current which is carried by the
energetic electrons accelerated in the
vicinity of X lines. Such a dual-ring cur-
rent system results in the enhancement
of the out-of-plane magnetic field in-
side an island with a dip in the center of
the island.

We also investigate the structures of
magnetic islands formed duringmultiple
X lines in an asymmetric reconnection,
where two inflow regions have different

Figure 8. The time evolution of the out-of-plane magnetic field at (a) Ωit= 46, (b)
Ωit= 70, and (c) Ωit= 94 for Run 4. The in-plane magnetic field lines are also
presented. The arrows denote the direction of the local magnetic field.

Figure 9. The (a) ion, (b) electron, and (c) total currents in the x direction atΩit= 94
for Run 4. The in-plane magnetic field lines are also presented. The arrows denote
the direction of the local magnetic field.
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plasma densities andmagnetic field, like
a magnetic reconnection at the mag-
netopause. These cases are carried out
in Runs 4 and 5. Figure 8 plots the time
evolution of the out-of-plane magnetic
field for Run 4. For reference, the mag-
netic field lines are also plotted in the
figure. In this case, there is no initial
guide field. Magnetic islands are formed
between the X lines. The rigidity of the
magnetic field lines in the upper plasma
sheet is stronger and more difficult to
bend, so the centers of these islands
move downward. When these magnetic
islands are fully developed, there is a
bipolar structure of the out-of-plane
magnetic island along the x direction
inside the island. The out-of-plane
magnetic field is enhanced at one end,
and is attenuated at the other end of the
island. Figure 9 shows the (a) ion cur-
rent, (b) electron current, and (c) total
current in the x direction at Ωi t= 94 for
Run 4. It is easy to find that the currents
near the separatrices are carried mainly
by the electrons, while the currents in-
side the island are small and negligible.
Because the direction of the in-plane
magnetic field around the magnetic
island is clockwise, the blue region at
the left edge of the island in Figure 9b
denotes a clockwise electron flow, while
the red region at the right edge denotes
an anticlockwise electron flow. So the
electrons flow toward the X lines along
the in-plane magnetic field lines near
the lower separatrices, and get acceler-
ated by Ey in the vicinity of the X lines.
Then, these electrons are directed away
from the X lines along the in-plane
magnetic field lines near the upper
separatrices to the side with lower den-
sity. The formed currents result in the
bipolar structure of the out-of-plane
magnetic field along the x direction in
the island, where the directions of out-
of-plane magnetic field are opposite at
the two ends of the island.

When a sufficiently strong guide field is
introduced, the symmetries of the out-
of-plane magnetic field and in-plane
current systems are distorted, which are
demonstrated in Figures 10 and 11.

Figure 10. The time evolution of the out-of-plane magnetic field at (a) Ωit= 57, (b)
Ωit=78, and (c)Ωit=99 for Run 5. The in-planemagnetic field lines are also presented.
The arrows denote the direction of the local magnetic field.

Figure 11. The (a) ion, (b) electron, and (c) total currents in the x direction at
Ωit = 99 for Run 5. The in-plane magnetic field lines are also presented. The ar-
rows denote the direction of the local magnetic field.

Journal of Geophysical Research: Space Physics 10.1002/2013JA019249

HUANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 804



Figure 10 shows the time evolution of the out-of-plane magnetic field for Run 5, while Figure 11 plots the (a)
ion current, (b) electron current, and (c) total current in the x direction atΩit=99 for Run 5. We can still find an
enhancement of the out-of-plane magnetic field at one end of the magnetic island, as well as attenuation
at the other end. However, different from Run 4, the region where the out-of-plane magnetic field gets en-
hanced moves to the upper part of the island, while the region with the attenuation of the out-of-plane
magnetic field is deviated to the lower part of the island. Such a structure of the out-of-planemagnetic field is
caused due to the asymmetric electron currents in the vicinity of the separatrices, as shown in Figure 10.

4. Conclusions and Discussion

In this paper, 2-D PIC simulations are carried out to study the structures of magnetic islands formed during
collisionless magnetic reconnection in symmetric and asymmetric current sheets, and the effects of the guide
field are considered. In a symmetric plasma sheet without an initial guide field, a quadrupole structure of the
out-of-plane magnetic field appears inside a magnetic island, which is caused by the ion and electron beams
reflected and accelerated at the two ends of the island. When a weak guide field is introduced, the quadru-
pole structure of the out-of-plane magnetic field inside a magnetic island is distorted, which is not just a
symmetric fluctuation superimposed upon the guide field. The structures inside the island are deviated from
the line z= 0 due to ji,e×Bguide forces acted on the particles. When the guide field becomes sufficiently
strong, a dual-ring current system, which is attributed to the electron dynamics in the magnetic island, is
formed in a magnetic island, and it leads to an enhancement of the out-of-plane magnetic field inside the
island with a dip in the center. During antiparallel reconnection in an asymmetric current sheet, electrons
flow toward the X lines along the lower separatrices, and are then directed away from the X lines along the
upper separatrices. The formed current results in the enhancement of the out-of-plane magnetic field at one
end of the magnetic island, and the attenuation at the other end. With the increase of the guide field, the
structures of both the current system and the out-of-planemagnetic field are distorted. Figure 12 summarizes
the above in-plane current system and out-of-plane magnetic structures inside a magnetic island generated
during multiple X line magnetic reconnections in symmetric and asymmetric current sheets.

The factors, such as the strength of the guide field and the asymmetry of the current sheet, can lead to
various magnetic structures of a magnetic island formed during magnetic reconnection. Therefore, it is not
strange that recent observations on the structures of magnetic islands are quite different. Our work only
offers rough results on the structures of magnetic island. In reality, the structures of a magnetic island may be
more complicated than that obtained in our simulations.

Figure 12. Sketch of the current system andmagnetic structures inside a magnetic island formed during multiple X line magnetic reconnections
in symmetric and asymmetric current sheets.
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