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On the Gradient of the Electron Pressure inAnti-Parallel Magnetic Reconnection *
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We first perform a two-dimensional particle-in-cell simulation of anti-parallel magnetic reconnection to verify
that in the electron diffusion region the reconnection electric field is mainly balanced by the gradient of the
electron pressure. Then, by following typical electron trajectories in the fixed electromagnetic field of anti-
parallel reconnection, we calculate the gradient of the electron pressure. We find that the resulted gradient of the
electron pressure is equal to the reconnection electric field. This indicates that in the electron diffusion region
the reconnection electric field is balanced by the gradient of the electron pressure, which results from the electron
nongyrotropic motions. Our result gives a microphysical explanation of the balance between the reconnection
electric field and the gradient of the electron pressure.
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As a fundamental physical process in plasma, mag-
netic reconnection is closely related to the rapid en-
ergy conversion: the magnetic free energy stored in a
current sheet suddenly releases, which accelerates and
heats the plasma.[1−7] The diffusion region, which is
strongly localized and extending several ion Larmor
radius in collisionless reconnection,[8−11] facilitates the
topological changes of the magnetic field lines.

Derived from the Vlasov equation, the electron mo-
mentum equation without classical collisions can be
expressed as[11−14]

𝐸 = −𝑉𝑒 ×𝐵 − 1

𝑛𝑒𝑒
∇ · 𝑃𝑒−

𝑚𝑒

𝑒

(︁𝜕𝑉𝑒

𝜕𝑡
+𝑉𝑒 · ∇𝑉𝑒

)︁
,

(1)

where 𝐸 and 𝐵 are the electric field and the magnetic
field, 𝑃𝑒 is the electron pressure tensor, 𝑛𝑒 and 𝑉𝑒 are
the electron density and bulk velocity. The right-hand
side (RHS) of Eq. (1) is composed of three parts: the
first term representing the electron convection effect,
the second term showing the gradient effect of electron
pressure, and the last term containing the inertial ef-
fect of the electrons. In the two-dimensional (2D) case,
where magnetic reconnection is assumed to occur in
the (𝑥, 𝑧) plane with 𝜕/𝜕𝑦=0, the 𝑦 component for
Eq. (1) is

𝐸𝑦 = − (𝑉𝑒𝑧𝐵𝑥 − 𝑉𝑒𝑥𝐵𝑧)

− 1
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+ 𝑉𝑒𝑧

𝜕𝑉𝑒𝑦
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)︁
. (2)

The characteristic lengths below which the electron
convection, the gradient of the electron pressure, and
the electron inertial terms take place are 𝑐/𝜔pi, 𝑐/𝜔pe

and 𝑐/𝜔pe, respectively, (where 𝜔pi and 𝜔pe are the

plasma frequencies for ions and electrons while 𝑐/𝜔pi

and 𝑐/𝜔pe are the inertial lengths for ions and elec-
trons). The vicinity of the 𝑋 line in anti-parallel mag-
netic reconnection has multi-scale structures.[5,6,15−17]

In the ion diffusion region (with the scale of the ion
inertial length) the electrons are frozen in the mag-
netic field while ions are unmagnetized, which causes
the Hall effect: a quadruple structure of the out-of-
plane magnetic field and the reconnection electric field
dominated by the electron convection. In the electron
diffusion region (with the scale of the electron iner-
tial length), both ions and electrons are unmagnetized,
and the reconnection electric field is balanced mainly
by the gradient of the electron pressure. The electron
inertial term is considered to be negligible in both the
ion and electron diffusion regions. It has recently been
demonstrated that the evolution of the gradient of the
electron pressure in the electron diffusion region is re-
lated to the onset of magnetic reconnection.[18]

Although it is generally accepted that the recon-
nection electric field in the vicinity of the 𝑋 line dur-
ing anti-parallel reconnection is balanced mainly by
the gradient of the electron pressure, which is demon-
strated by comparing the two terms obtained from 2D
particle-in-cell (PIC) simulations,[7−10] the detailed
microphysics is still unknown. In this Letter, by
studying electron dynamics in the electron diffusion
region, we demonstrate that the reconnection electric
field is balanced by the gradient of the electron pres-
sure, while the gradient of the electron pressure is gen-
erated due to the electron nongyrotropic motion.[19]
This gives a microphysical explanation of the balance
between the reconnection electric field and the gradi-
ent of the electron pressure in the electron diffusion
region.

A 2D PIC simulation code is used here,
which has been widely used to study magnetic
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reconnection.[20−22] The initial configuration is a 1D
Harris current sheet in the (𝑥, 𝑧) plane, where the ini-
tial magnetic field is given as

𝐵0(𝑧) = 𝐵0 tanh(𝑧/𝜆)𝑒𝑥, (3)

where 𝐵0 is the asymptotical magnetic strength and
𝜆 is the half width of the current sheet. The corre-
sponding number density is

𝑛(𝑧) = 𝑛b + 𝑛0sech2(𝑧/𝜆), (4)

where 𝑛b is the number density of the background
plasma, and 𝑛0 is the peak Harris number density.
The initial distribution functions for the ions and elec-
trons are Maxwellian with a drift speed in the 𝑦 di-
rection satisfying 𝑉i0/𝑉e0 = −𝑇i0/𝑇e0, where 𝑉i0 (𝑉e0)
and 𝑇i0 (𝑇e0) are the initial drift speed and temper-
ature of ions (electrons), respectively. In the simula-
tion, we set the temperature ratio as 𝑇i0/𝑇e0 = 4, and
the density ratio is 𝑛b/𝑛0 = 0.2. The initial half width
of Harris current sheet is 𝜆 = 0.5𝑐/𝜔pi, where 𝑐/𝜔pi

is defined by 𝑛0. The mass ratio is 𝑚i/𝑚𝑒=100 and
light speed is 𝑐 = 15𝑉A, where 𝑉A is the Alfvén speed
based on 𝐵0 and 𝑛0. The computation is carried out
in a rectangular domain in the (𝑥, 𝑧) plane whose size
is (12.8𝑐/𝜔pi)×(6.4𝑐/𝜔pi) with grid number 512×256.
Thus, the spatial resolution is 0.025𝑐/𝜔pi = 0.25𝑐/𝜔pe.
The time step is Ω i∆𝑡 = 0.001, where Ωi is the ion
gyro-frequency. We employ 109 particles in the sim-
ulation domain. The periodic boundary conditions
are used along the 𝑥 direction. The ideal conducting
boundary conditions for the electromagnetic fields and
reflected boundary conditions for particles are used in
the 𝑧 direction.
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Fig. 1. The electrons off-diagonal pressure tensor terms
𝑃𝑒𝑥𝑦 (a) and 𝑃𝑒𝑦𝑧 (b), the gradient of 𝑃𝑒𝑥𝑦 (c) and 𝑃𝑒𝑦𝑧

(d), the sum of the two gradient terms (e), and the non-
ideal electric field (𝐸+𝑉𝑒×𝐵)𝑦 (f) at Ωi𝑡=15 in the anti-
parallel reconnection. The in-plane magnetic field lines
are also presented.

A single 𝑋 line is formed near the center of the
simulation domain and the reconnection rate attains
its maximum around Ωi𝑡 = 16. Figure 1 exhibits
the electron off-diagonal pressure tensor terms 𝑃𝑒𝑥𝑦

(Fig. 1(a)) and 𝑃𝑒𝑦𝑧 (Fig. 1(b)), the gradient of 𝑃𝑒𝑥𝑦

(Fig. 1(c)) and 𝑃𝑒𝑦𝑧 (Fig. 1(d)), the sum of the two
gradient terms (Fig. 1(e)), and the non-ideal electric

field (𝐸 + 𝑉𝑒 × 𝐵)𝑦 at Ωi𝑡 = 16 (Fig. 1(f)). The
off-diagonal term 𝑃𝑒𝑥𝑦 has a bipolar structure along
𝑧 = 0 around the 𝑋 line, while the off-diagonal term
𝑃𝑒𝑦𝑧 has a bipolar structure along 𝑥 = 0 around the
𝑋 line. Their gradients peak at the 𝑋 line. From
Figs. 1(e) and 1(f), we can also find that the non-ideal
electric field 𝐸+𝑉𝑒×𝐵 around the 𝑋 line is well rep-
resented with the gradient of electron pressure term
near the 𝑋 line (the electron diffusion region with the
size around 𝑐/𝜔pe), which implies that the electron in-
ertial effect is significantly small there.[15,18] This can
be seen more clearly in Fig. 2, which shows the pro-
file of the reconnection electric field, the electromo-
tive force term, and the off-diagonal electron pressure
tensor term along 𝑧 = 0 at Ωi𝑡 = 16. The electro-
motive force term supports the reconnection electric
field at |𝑥| ≥ 0.3𝑐/𝜔pi. In the vicinity of the 𝑋 line
with |𝑥| ≤ 0.3𝑐/𝜔pi, the reconnection electric field is
mainly balanced by the off-diagonal electron pressure
tensor term. Note that the spatial coordinates in the
figures are normalized by the electron inertial length.
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Fig. 2. Profiles of the reconnection electric field (the black
line), the electromotive force term (red line) and the off-
diagonal electron pressure tensor term (blue line) along
𝑧 = 0 at Ωi𝑡 = 16.0.
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Fig. 3. The in-plane electron flow vectors in the anti-
parallel reconnection and the out-of-plane electric field
(filled contours) are shown in the top panel. The bottom
panel shows the electrons velocity distributions 𝑓(𝑣𝑥, 𝑣𝑦)
and 𝑓(𝑣𝑥, 𝑣𝑧) in the marked regions in the top panel.

Figure 3 shows the in-plane electron bulk flow
vectors (the arrows in the top panel) and the corre-
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sponding electron velocity distributions 𝑓(𝑣𝑥, 𝑣𝑦) and
𝑓(𝑣𝑥, 𝑣𝑧) (the bottom panel) in three different regions
(marked with A, B and C, respectively) around the
𝑋 line at Ωi𝑡 = 16. The background colors and
solid lines in the top panel represent the out-of-plane
electric field and in-plane magnetic field lines, respec-
tively. The electron flow patterns above and below the
plasma sheet are symmetric. Electrons move through
the electron diffusion region, becoming accelerated
by the reconnection electric field, and they are then
expelled away from the 𝑋 line as a super-Alfvénic
jet.[23,24] The electron velocity distribution in region
B is almost symmetric along, which leads to 𝑃𝑒𝑥𝑦 ≈ 0.
In regions A and C the symmetry is broken, which
results in the non-zero values of 𝑃𝑒𝑥𝑦.
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Fig. 4. The simplified configuration of electromagnetic
fields in the vicinity of the 𝑋 line for theoretical calcula-
tion.
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Fig. 5. The distributions of the four typical electrons in
the (𝑣𝑥, 𝑣𝑦) plane when they are located at 𝑥 = 0 and
𝑥 = Δ𝑥, respectively.

The balance between the reconnection electric field
and the gradient of the electron pressure around in the
electron diffusion region can be investigated by analyz-
ing the typical electron trajectories.[25] Let us follow
several electron motions along 𝑧 = 0. First, we as-
sume that the electromagnetic field is 𝐸 = (0, 𝐸𝑦, 0)
and 𝐵 = (0, 0, 𝐵𝑧) in the electron diffusion region, as
shown in Fig. 4. We consider the electron trajectories
in the (𝑣𝑥, 𝑣𝑦) plane of four typical electrons near the
𝑋 line (𝑥 = 0). In Fig. 5, we plot the locations of
these four electrons in the (𝑣𝑥, 𝑣𝑦) plane when their
positions are at 𝑥 = 0 and 𝑥 = ∆𝑥, respectively. Elec-
trons 1 and 2 move from 𝑥 = 0 to 𝑥 = ∆𝑥, while
electrons 3 and 4 move from 𝑥 = ∆𝑥 to 𝑥 = 0. The
motions of the electrons can be described by Newton’s
equation

𝑚𝑒𝑑𝑣/𝑑𝑡 = −𝑒(𝐸 + 𝑣 ×𝐵), (5)

In our calculation, we assume that the velocities of
electrons 1, 2, 3, and 4 at 𝑥 = 0 are (𝑎1, 𝑏1), (𝑎2, 𝑏2),
(−𝑎1, 𝑏1), and (−𝑎2, 𝑏2). Under this assumption, the

velocities of electrons 1 and 2 at 𝑥 = ∆𝑥 are

𝑣′1𝑥 = 𝑎1 −
𝑒

𝑚𝑒
𝑏1𝐵𝑧∆𝑡

𝑣′1𝑦 = 𝑏1 −
𝑒

𝑚𝑒
(𝐸𝑦 − 𝑎1𝐵𝑧)∆𝑡

𝑣′2𝑥 = 𝑎2 −
𝑒

𝑚𝑒
𝑏2𝐵𝑧∆𝑡

𝑣′2𝑦 = 𝑏2 −
𝑒

𝑚𝑒
(𝐸𝑦 − 𝑎2𝐵𝑧)∆𝑡, (6)

and the velocities of electrons 3 and 4 at 𝑥 = ∆𝑥 are

𝑣′3𝑥 = − 𝑎1 +
𝑒

𝑚𝑒
𝑏1𝐵𝑧∆𝑡

𝑣′3𝑦 = 𝑏1 +
𝑒

𝑚𝑒
(𝐸𝑦 + 𝑎1𝐵𝑧)∆𝑡

𝑣′4𝑥 = − 𝑎2 +
𝑒

𝑚𝑒
𝑏2𝐵𝑧∆𝑡

𝑣′4𝑦 = 𝑏2 +
𝑒

𝑚𝑒
(𝐸𝑦 + 𝑎2𝐵𝑧)∆𝑡. (7)

Note that the time interval ∆𝑡 is much smaller than
the electron gyroperiod, we can then neglect 𝑜(∆𝑡2)
terms. Hence, the average velocities of these four
electrons at 𝑥 = ∆𝑥 are 𝑣′𝑥 = 0, 𝑣′𝑦 = 1

2 (𝑏1 + 𝑏2) +
1
2

𝑒
𝑚𝑒

𝐵𝑧∆𝑡(𝑎1 + 𝑎2). The contribution from these four
electrons to the electron off-diagonal pressure tensor
term 𝑃𝑒𝑥𝑦 can be calculated by

𝑃𝑒𝑥𝑦 = 𝑚𝑒

4∑︁
𝑗=1

(𝑣′𝑗𝑥 − 𝑣′𝑥)(𝑣′𝑗𝑦 − 𝑣′𝑦), (8)

where the bar is the notation for an ensemble aver-
age. After substituting the velocity expressions of the
electrons at 𝑥 = ∆𝑥 (Eqs. (6) and (7)) into Eq. (8), we
can obtain

𝑃𝑒𝑥𝑦 = − 2(𝑎1 + 𝑎2)𝑒𝐸𝑦∆𝑡

+ 2
𝑒2

𝑚𝑒
𝐵𝑧𝐸𝑦(𝑏1 + 𝑏2)∆𝑡2. (9)

Neglecting the 𝑜(∆𝑡2) term, the result is

𝑃𝑒𝑥𝑦 = −2(𝑎1 + 𝑎2)𝑒𝐸𝑦∆𝑡. (10)

Hence, the gradient of the electron off-diagonal terms
is

− 1

𝑛𝑒𝑒
(∇ · 𝑃𝑒)𝑦 = − 1

4𝑒

𝑃𝑒𝑥𝑦

∆𝑥
. (11)

After substituting the off-diagonal expression (10) at
𝑥 = ∆𝑥 into Eq. (11) and using ∆𝑥 ∼ (𝑎1 + 𝑎2)∆𝑡/2,
we can obtain

− 1

𝑛𝑒𝑒
(∇ · 𝑃𝑒)𝑦 = 𝐸𝑦. (12)

This is the general Ohm law in the vicinity of the 𝑋
line during the anti-parallel reconnection.

In summary, a 2D PIC simulation of anti-parallel
magnetic reconnection has first been performed to
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show that in the electron diffusion region the reconnec-
tion electric field is mainly balanced by the gradient of
the electron pressure. Then, by following typical elec-
tron trajectories in the electromagnetic field, we also
find that the resulted gradient of the electron pressure
is equal to the reconnection electric field. The micro-
physical evidence, of which the reconnection electric
field is mainly balanced by the gradient of the electron
pressure in the electron diffusion region, is given.
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