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Abstract We carry out large-scale particle-in-cell kinetic simulations to demonstrate that a super-Alfvénic
electron shear flow across the current layer can be spontaneously generated in the outflow region of
magnetic reconnection, which is unstable to the electron Kelvin-Helmholtz (K-H) instability. The resulted K-H
vortex structures continuously drive the secondary magnetic reconnection and formation of secondary
magnetic islands, which leads to strong electron energization in the outflow region.

1. Introduction

Magnetic reconnection suddenly releases magnetic free energy by rearranging magnetic field. It is widely
discussed in solar [Giovanelli, 1946; Masuda et al., 1994], planetary [Øieroset et al., 2001; Wang et al., 2010;
Zhang et al., 2012], and laboratory plasmas [Ji et al., 1998; Li et al., 2007; Dong et al., 2012] and often invoked
to explain plasma heating and acceleration [Vasyliunas, 1975; Biskamp, 2000; Priest and Forbes, 2000]. Previous
kinetic studies primarily focused on the dynamics close to X lines, and the formation of secondary islands has
been identified in the electron diffusion region [Drake et al., 2006a; Daughton, 2006;Wang et al., 2010]. These
secondary islands (flux ropes in three-dimensional simulations) are considered to be generated by the tear-
ing instability [Daughton et al., 2011] or through the Kelvin-Helmholtz (K-H) instability driven by an external
velocity shear [Fermo et al., 2012]. They not only dramatically enhance the reconnection rate [Daughton,
2006] but are also beneficial to electron acceleration through Fermi process or coalescence of magnetic
islands [Drake et al., 2006b; Wang et al., 2010; Oka et al., 2010; Guo et al., 2014].

Until now the outflow structure of magnetic reconnection and its related plasma energization are much less
known. Observations at Earth’s magnetotail have shown magnetic fluctuations in the outflow region of
magnetic reconnection [Volwerk et al., 2007]. The observations of solar flares indicate continuous particle
energization as plasma flows in the plasma sheet [Fletcher and Hudson, 2008; Liu et al., 2013], and the magnetic
fluctuations in the outflow region have been suggested to be important for electron acceleration [Larosa and
Moore, 1993]. However, to understand the plasma dynamics in the reconnection outflow region, a self-
consistent kinetic simulation is desired.

In this work, by performing large-scale two-dimensional (2-D) particle-in-cell (PIC) simulations of magnetic
reconnection with a finite guide field, we demonstrate that strong electron shear flow spontaneously develops
in the outflow region. We find that the shear flow is unstable to the electron Kelvin-Helmholtz instability, and it
results in multiple K-H vortices that continuously drive secondary reconnection and lead to the formation of
magnetic islands. This process leads to strong electron energization in the outflow region, whichmay be impor-
tant for a number of explosive phenomena such as solar flares and storms in planetary magnetospheres.

2. Simulation Model

The simulations start from a Harris current sheet equilibrium with a particle number density n(z) = nb
+ n0 sech

2(z/δ), where nb=0.1n0 represents the background density and δ= 0.5c/ωpi is the half width of the
current sheet. The corresponding magnetic field is given by B(z) = B0 tanh(z/δ)ex+ By0ey, where B0 is the
asymptotical magnetic field and By0 = B0 is the guide field. Both ions and electrons are assumed to have
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Maxwellian velocity distributions, with
an initial temperature ratio Ti0/Te0 = 5
and a mass ratio mi/me=25, where
the subscripts i and e stand for ion
and electron, respectively. The light
speed is assumed to be c=15VAi,
where VAi is the ion Alfvén speed
based on B0 and n0. The electromag-
netic fields are defined on the grids
and updated by integrating the
Maxwell equations with an explicit
leapfrog scheme, while the ions and
electrons are treated as individual
superparticles and advanced in these
electromagnetic fields. The simulation

is performed in the (x, z) plane, and a large-scale computational domain [�Lx/2, Lx/2] × [�Lz/2, Lz/2] with
Lx=204.8c/ωpi and Lz=25.6c/ωpi is used here. The spatial resolution is Δx=Δz = 0.05c/ωpi. The time step is

set to be Δt ¼ 0:001Ω�1
i , where Ωi= eB0/mi is the ion gyrofrequency. More than 109 particles for each species

are employed in the simulation. Periodic boundary conditions are assumed in the x direction, while in the z
direction conducting boundary conditions are retained and particles are specularly reflected at the boundaries.

The reconnection is initiated by a small
local flux perturbation centered at
x=0, and the perturbation has the

form Δψ ¼ ψ0e
�x2þz2ð Þ=δ2 cos 2πx=Lxð Þ

cos πz=Lzð Þ. Here the initial disturbance
amplitude ψ0 is set to 0.05cB0/ωpi.

3. Simulation Results

In our simulations, only one single X
line, which appears around Ωit=15,
develops in the middle of the current
sheet (at x≈ 0). The simulation domain
is sufficiently large, which allows us to
study the evolution of the exhaust
region before the computational
boundary can influence it. In Figure 1,
we plot the time evolution of the out-
of-plane electron current density Jey
in the outflow region, and magnetic
field lines are also shown in the figure
for reference. AroundΩit=65, the vor-
tex structures of the out-of-plane elec-
tron current develop in the outflow
region. As the time goes on, the vortex
structures of the electron current
become fully developed and propa-
gate toward the downstream region
with a sub-Alfvén speed of about
0.8 VAi.

Figure 2 shows an enlarged view of
the magnetic field lines and electron
flow vectors in the outflow region at

Figure 1. The time evolution of the electron out-of-plane current density
at (a) Ωit = 55, (b) Ωit = 65, and (c) Ωit = 75 in the outflow region of the
reconnection. The white lines represent the in-plane magnetic field lines.

Figure 2. The enlarged view of the in-plane magnetic field lines and electron
flow vectors in the outflow region at (a) Ωit= 70, (b) Ωit= 71, and (c) Ωit= 72.
It gives an image of the generation of the magnetic island in a Kelvin-Helmholtz
vortex. The red and blue lines present the in-planemagnetic lines in the upper
and lower half plane of the initial Harris current sheet. The arrows show the
electron flow in the frame of the mean electron outflow Ve+ 0.8VAiex.
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Ωit= 70, 71, and 72, respectively. The magnetic field lines are twisted in the outflow region caused by the
vortex structures of the out-of-plane electron currents, which leads to the generation of a thin current layer.
Then, magnetic reconnection occurs around Ωit=70. During the reconnection, a magnetic island with the size
of about one ion inertial length is formed and detached from the lower part of the current sheet. The magnetic
island then propagates toward the downstream regionwith a speed about 0.8 VAi. Similar processes for the gen-
eration of magnetic islands in a shear layer have also been discussed in the previous researches [Fermo et al.,
2012; Nykyri and Otto, 2001; Nakamura et al., 2008; Nakamura and Fujimoto, 2008]. Here the process takes place
spontaneously in the outflow of a magnetic reconnection region. In order to distinguish the reconnection in
the outflow region from the primary reconnection at x≈ 0, we call the reconnection, which occurs later in the
outflow region of the primary magnetic reconnection, as secondary reconnection, and the resulted islands as
secondary islands. Electrons flow along the magnetic field lines at a high speed around the magnetic island,
which forms a vortex. Note that in Figure 2, we only show the formation of one secondary island. Actually, in
the whole outflow region of the primary reconnection, there are multiple secondary islands that continuously
form due to the evolution of vortex structures.

With the proceeding of the secondary magnetic reconnection and the formation of secondary magnetic
islands in the outflow region, we also find that the electrons in the outflow region can be strongly heated.
Figure 3 shows the time evolution of the electron temperature in the outflow region and the electron energy
spectrum in the selected region. AroundΩit=65, the vortex structures and secondary magnetic islands begin
to develop in the outflow region. From the figure, we can find that accompanied with the generation of the
vortex structures andmagnetic islands, the electrons are highly heated with the temperature about 2–3 times
of that just before the formation of secondary magnetic islands (around Ωit= 55). However, we can also find
that there is still another process of electron heating before Ωit= 65. Such a heating process has been pre-
viously studied in Wu and Shay [2012] and Huang et al. [2014], which is caused when the electrons are
reflected by the enhanced magnetic field which is piled up by the plasma jet from the reconnection site,
and simultaneously, the electron shear flow is formed in the outflow region.

To identify the generation mechanism of these vortex structures and the secondary magnetic reconnection
in the outflow region of the primary reconnection, we show the distributions of the electron bulk velocity in
such a vortex structure at Ωit= 65, when the structures begin to develop. Figure 4a plots the distribution of
the electron bulk velocity in the x direction Vex, while Figure 4b shows the profiles of the drift velocity� Ez/By,
electron bulk velocity along the x direction Vex, and the half local electron Alfvén speed |VAex|/2 along the z
direction. A shear flow of electron velocity can be obviously found in the outflow region. In the lower part
of the current sheet, the electron bulk velocity is Vex≈� 0.2VAi, while in the upper part the electron bulk

Figure 3. The snapshots of the electron temperature at (a) Ωit = 55, (b) Ωit = 65, and (c) Ωit = 75 in the reconnection
outflow. The initial electron temperature in the plasma sheet is about 0.01 mec

2, and the black curve shows the initial
Maxwellian distribution. The white lines represent the in-plane magnetic field lines. (d) The electron energy spectra in the
selected region marked with blue, green, and orange boxes are represented in the corresponding colors.
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velocity is Vex≈1.6VAi. The velocity
shear can be seen more clearly in
Figure 4b. Note that the electron bulk
velocity is consistent with the drift velo-
city, which means that in this region
electrons are frozen and roll up the
magnetic field lines. This velocity shear
may be unstable to K-H instability;
however, it must also overcome any
stabilizing effects from the magnetic
field in the direction of streaming asso-
ciated with Alfvén waves or whistler
waves. For the electron K-H insta-
bility to develop within an electron
current sheet, the characteristic
growth rate must exceed the whis-
tler frequency. The instability criter-
ion is ΔVex> |VAex|/2 [Fermo et al.,
2012], where VAex is the x component
of the local electron Alfvén speed.
As demonstrated in the shadow
region in Figure 4b, where the
shear flowexists, the dotted line shows
|VAex|/2≤ 0.4VAi, while ΔVex≈ 1.8|VAex|.

It is consistent with the criterion of the electron K-H instability. Note that ions are decoupled from the magnetic
field lines while themotions of electrons change the topology of the magnetic field during the formation of the
magnetic island. At the same time, the half width of the shear flow can be estimated to be about 0.4 c/ωpi, and
according to the theory [Gaur and Das, 2012], the wavelength of the fastest-growing mode of the electron K-H
instability is about 5.0 c/ωpi. From Figure 3c, the average length of these vortex structures is about 4.2 c/ωpi, and
our simulation result is roughly consistent with the predicted value from the theory.

4. Conclusions and Discussion

In summary, by performing a large-scale PIC simulation of magnetic reconnection in a current sheet with a
guide field, we investigate the formation of the turbulent current sheet and the resulted secondary reconnec-
tion in the outflow region of the primary magnetic reconnection. After the primary magnetic reconnection
occurs in the center of the simulation domain, a strong electron shear flow develops in the outflow region,
and the current sheet in the outflow region is unstable to the electron K-H instability, which leads to the for-
mation of the twisted current sheet with vortex structures. In such a twisted current sheet, secondary recon-
nection continuously occurs and leads to the formation of magnetic islands; at last electrons are strongly
energized. The formation of secondary magnetic island has been previously reported in the vicinity of the
X line due to the tearing instability [Daughton, 2006] or electron K-H instability driven by an electron shear
flow [Fermo et al., 2012], which can greatly enhance the reconnection rate. In this work, we find that second-
ary magnetic reconnection can occur and then magnetic islands are generated in the outflow region of mag-
netic reconnection. Electrons can also be significantly energized in the current sheet.

Although a strong guide field (By0 = B0) is used in this letter, our simulations have shown that such kind of
secondary islands may also be generated in the outflow region when the guide field is as weak as 0.3 B0.
Such an amplitude of the guide field may exist in either the magnetotail or magnetopause reconnection.
Therefore, the secondary islands generated in the outflow region of the primary reconnection due to the exci-
tation of the electron K-H instability can be expected to be observed by satellite observations in both the
magnetotail and magnetopause reconnection. Actually, secondary islands have been observed in the out-
flow region of the magnetotail reconnection [Eastwood et al., 2007], and the electron K-H instability may pro-
vide a generation mechanism for such kind of secondary islands.

Figure 4. A zoom in of the region within the green box in Figure 1b. (a) The
electron bulk velocity in the x direction and (b) the profiles of drift velocity
� Ez/By, electron bulk velocity Vex, and the local electron Alfvén speed |VAex|/2
along the z direction. The value is averaged within 57.7c/ωpi ≤ x ≤ 58.7c/ωpi,
which is denoted with the gray box in Figure 4a.
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