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By performing one-dimensional (1-D) hybrid simulations, we analyze in detail the parametric instabilities of
the Alfvén waves with a spectrum in a low beta plasma. The parametric instabilities experience two stages.
In the first stage, the density modes are excited and immediately couple with the pump Alfvén waves. In the
second stage, each pump Alfvén wave decays into a density mode and a daughter Alfvén mode similar to the
monochromatic cases. Furthermore, the proton velocity beam will also be formed after the saturation of the
parametric instabilities. When the plasma beta is high, the parametric decay in the second stage will be strongly
suppressed.
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Alfvén waves are the exact solutions of the ideal
incompressible magnetohydrodynamic (MHD) equa-
tions regardless of their amplitudes, and the inten-
sity of their total magnetic fields is a constant.[1−4]

However, since Galeev[5] pointed out in 1963 that
a monochromatic circularly polarized Alfvén wave
can decay into one forward propagating ion acous-
tic wave and one backward propagating daughter
Alfvén wave,[5−10] numerous works have been devoted
to investigate the parametric instabilities of Alfvén
waves via both theoretical analysis and numerical
simulations.[5−24] In the MHD frame, the paramet-
ric instabilities of a monochromatic Alfvén wave can
be divided into three types.[13,16,18] The decay in-
stability can occur in a low beta plasma and gener-
ates one forward propagating ion acoustic wave (𝑘s)
and one backward propagating daughter Alfvén wave
(𝑘− = 𝑘0 − 𝑘s).[5−8,16,18] The beat instability gener-
ates one forward propagating ion acoustic wave (𝑘s)
and two daughter Alfvén waves that propagate for-
ward and backward, respectively (𝑘± = 𝑘0±𝑘s).[16,18]
Such an instability can occur in both low and high
beta plasmas for a left-handed polarized Alfvén wave,
while for a right-handed polarized Alfvén wave, the
beat instability can only take place in a high beta
plasma with the amplitude of the pump wave reach-
ing a higher threshold value (𝐴 > 2|𝜔0|(𝛽 − 1), where
𝐴 and 𝜔0 represent the normalized amplitude and fre-
quency of a pump wave, respectively).[16,18] The mod-
ulation instability occurs in a two-fluid plasma and
generates one forward propagating ion acoustic wave
(𝑘s) and two forward propagating daughter Alfvén
waves (𝑘± = 𝑘0 ± 𝑘s).[11−13] The modulation insta-
bility occurs in a low beta plasma for a left-handed
polarized Alfvén wave and in a high beta plasma for
a right-handed Alfvén wave.[11−13,18]

Recently with 1-D hybrid simulations, Araneda et

al.,[21] Nariyuki et al.[25,26] and Kauffmann et al.[27]
found that ion dynamics can restrain the growth of
the parametric decay of a parallel propagating Alfvén
wave and can promote the excitation of the modu-
lation instability.[21,25−27] Further, with 2-D hybrid
simulation models,[28−31] Matteini et al.[28] and Gao
et al.[30] have reported that the perpendicular para-
metric decay can occur for a parallel propagating ei-
ther linearly or left-hand polarized pump Alfvén wave
in a low beta plasma. Although a monochromatic
pump Alfvén wave is preferentially used in the above
studies, the Alfvén waves in plasma usually exhibit
a spectral structure.[32−36] Consequently with a 1-D
hybrid simulation model for the spectrum of Alfvén
waves, Nariyuki et al.[26] and Matteini et al.[37] have
found that the modulation instability and pondero-
motive effect of the magnetic field will dominate the
dissipation of the pump Alfvén waves at an early time
of the evolution. In this Letter, we analyze in detail
the parametric instabilities of the Alfvén waves with
a spectrum in a low beta plasma, which is observed to
experience two stages.

Here a 1-D hybrid simulation model under period
boundary condition is employed, where the ions are
described as particles, while the electrons are treated
as the massless fluid.[38−40] The hybrid simulation
model not only can simulate the ion dynamics more
accurately than the MHD simulation model, but also
can save more computing time than the PIC simula-
tion model. The basic equations solved in the hybrid
simulations are listed as follows:

𝑚i
𝑑𝑣i

𝑑𝑡
= 𝑒(𝐸 + 𝑣i ×𝐵) − 𝑒𝜂𝐽 ,

0 = 𝑛e𝑚e
𝑑𝑉e

𝑑𝑡
= −𝑒𝑛e(𝐸 + 𝑉e ×𝐵) −∇𝑝e + 𝑒𝑛e𝜂𝐽 ,

𝜇0𝐽 = ∇×𝐵,
𝜕𝐵

𝜕𝑡
= −∇×𝐸,

𝑝e
𝑛𝛾
e

= const,
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with the electric field 𝐸, the magnetic field 𝐵, the cur-
rent density 𝐽 , the ion velocity 𝑣i, the electron bulk
velocity 𝑉e, the pressure of electrons 𝑝e, and the num-
ber density 𝑛e (charge neutrality 𝑛e = 𝑛i = 𝑛). Here
𝑒, 𝑚i and 𝑚e represent the charge unit, the masses
of ion and electron, respectively; 𝜂 is the resistivity,
which represents wave-particle effects due to high fre-
quency plasma instabilities that involve the electron
mass. The state equation of electrons is adiabatic,
where 𝛾 represents the adiabatic index.

The simulations are performed in 𝑥-axis parallel
to the ambient magnetic field (𝐵0), and all physical
quantities depend only on one spatial coordinate 𝑥.
Here the plasma density, magnetic field, and velocity
are normalized by the initial uniform density 𝜌0, back-
ground magnetic field intensity 𝐵0, and background
Alfvén velocity 𝑣A = 𝐵0/

√
𝜇0𝜌0, respectively. The

time and space are normalized by the reciprocal of
proton cyclotron frequency Ω−1

p = 𝑚p/𝑒p𝐵0 (𝑚p is
the mass of proton, and 𝑒p is the charge of proton)
and proton inertial length 𝑐/𝜔pp (𝑐 is the speed of light
in a vacuum, and 𝜔pp is the proton plasma frequency
based on the proton number density 𝑛p), respectively.

The initial pump Alfvén waves are given as[26,37]

𝛿𝐵p =

𝑘𝑛∑︁
𝑘0=𝑘1

𝛿𝐵𝑘0 [cos(𝑘0𝑥− 𝜔0𝑡 + 𝜑𝑘0)𝑦

+ sin(𝑘0𝑥− 𝜔0𝑡 + 𝜑𝑘0
)𝑧], (1)

𝛿𝑢p =

𝑘𝑛∑︁
𝑘0=𝑘1

𝛿𝑢𝑘0
[cos(𝑘0𝑥− 𝜔0𝑡 + 𝜑𝑘0

)𝑦

+ sin(𝑘0𝑥− 𝜔0𝑡 + 𝜑𝑘0
)𝑧], (2)

where 𝛿𝐵p is the magnetic fluctuation and 𝛿𝑢p is
the associated transverse velocity. The initial phase
𝜑𝑘0

is given randomly with a range [0, 2𝜋]. By us-
ing Eqs. (1) and (2), the initial pump Alfvén waves
are set to be a linear superposition of parallel propa-
gating left-handed Alfvén waves, which have a spec-
trum structure. Each initial pump Alfvén wave with
the wave number 𝑘0 and frequency 𝜔0 is given by
employing the dispersion relation obtained from the
Hall-MHD equations,[14] for left-handed Alfvén wave
𝜔2
0 = 𝑘20(1 − 𝜔0) and Walen’s relation,[25] 𝛿𝑢𝑘0

=
−𝛿𝐵𝑘0

/(𝜔0/𝑘0).
The number of grid cells is 𝑛𝑥 = 600, the size

of grid cell is ∆𝑥 = 1.0𝑐/𝜔pp, the time step is
∆𝑡 = 0.025Ω−1

p , and the electron resistive length is
set to be 𝐿r = 𝜂/𝜇0𝑉A = 0.02𝑐/𝜔pp, which is use-
ful in eliminating unwanted high frequency noise. For
protons, 900 macroparticles are initially evenly dis-
tributed in every cell. The total magnetic field en-
ergy of the initial pump Alfvén waves is set to be
𝑘𝑛∑︀

𝑘0=𝑘1

(𝛿𝐵𝑘0/𝐵0)2 = 0.04, and the amplitude of each

initial pump Alfvén wave is equal.
Three simulation runs are performed. The electron

beta 𝛽e, the proton beta 𝛽p, and the wave numbers of
the initial pump Alfvén waves for each run are listed
in Table 1.

Figure 1 displays the time evolution of the den-
sity fluctuations ⟨(𝛿𝜌/𝜌0)2⟩1/2 for run 1. It can be
found that the evolution has two stages. In the first
stage (up to Ωp𝑡 ≈ 550), the density fluctuation in-
creases up to ⟨(𝛿𝜌/𝜌0)2⟩1/2 ≈ 0.08 immediately, and
then nearly remains constant except for some large
oscillations. However, at the beginning of the sec-
ond stage, the density fluctuation begins to increase
rapidly until its saturation with ⟨(𝛿𝜌/𝜌0)2⟩1/2 ≈ 0.2
at about Ωp𝑡 = 800.
Table 1. The simulation parameters for runs 1–3.

Run 𝛽e 𝛽p Wave numbers
1 0.1 0.01 𝑘1=0.209, 𝑘2=0.094

2 0.1 0.01
𝑘1=0.136, 𝑘2=0.168, 𝑘3=0.199,

𝑘4=0.230, 𝑘5=0.262
3 0.3 0.8 𝑘1=0.209, 𝑘2=0.094
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Fig. 1. Time evolution of the density fluctuations
⟨(𝛿𝜌/𝜌0)2⟩1/2 for run 1. The two stages (stage 1 and stage
2) of the time evolution are separated by a vertical dashed
line at Ωp𝑡 ≈550.
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Fig. 2. Time evolution of the power spectra for (a) the
density fluctuations and (b) the magnetic field fluctuations
for run 1. In panel (a) the density modes (𝑘s, 𝑘s1, and 𝑘s2)
are denoted by arrows. In panel (b) the pump Alfvén wave
modes (𝑘1, 𝑘2) and the daughter Alfvén wave modes (𝑘−1 ,
𝑘−2 ) are also denoted by arrows, respectively.

Figure 2 displays the time evolution of the power
spectra for the density fluctuations (Fig. 2(a)) and the
magnetic field fluctuations (Fig. 2(b)) for run 1. In
Fig. 2(a) we can find that in the first stage a den-
sity mode with the wave number (𝑘s𝑐/𝜔pp ≈ (𝑘1 −
𝑘2)𝑐/𝜔pp ≈ 0.115) appears first, and such a density
mode is the result of the envelope modulation of the
two incoherent pump Alfvén waves. The higher har-
monic density modes with wave numbers 2𝑘s, 3𝑘s, and
4𝑘s can also be excited. The interactions between
these density modes and the pump Alfvén waves lead
to the generation of several modes of magnetic fluc-
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tuations. This can be demonstrated more clearly in
Fig. 3, which plots the power spectra of the density
fluctuations (Fig. 3(a)) and the magnetic fluctuations
(Fig. 3(b)) at Ωp𝑡 = 200 for run 1. To fully un-
derstand the coupling processes between the density
modes and the Alfvén modes, we have carefully cal-
culated the wave-number relations of all wave modes
in the system. The results have also been presented
in Fig. 3. The wave numbers of the excited magnetic
fluctuations include (𝑘2 − 𝑘s)𝑐/𝜔pp ≈ −0.021, which
propagates backward, and (𝑘1 + 𝑘s)𝑐/𝜔pp ≈ 0.324,
(𝑘1 + 2𝑘s)𝑐/𝜔pp ≈ 0.439, etc., which propagate for-
ward.
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Fig. 3. The power spectra of (a) the density fluctuations
and (b) the magnetic field fluctuations at Ωp𝑡 = 200 for
run 1. The black lines and red lines show the magnetic
and density fluctuations, respectively. The forward modes
and backward modes are denoted by solid lines and dashed
lines, respectively. In panel (a) the density mode (𝑘s) and
its higher harmonic modes (2𝑘s, 3𝑘s, and 4𝑘s) are denoted
by arrows, respectively. In panel (b) the pump Alfvén
wave modes (𝑘1, 𝑘2) and the daughter Alfvén wave modes
(𝑘2 − 𝑘s, 𝑘1 + 𝑘s, and 𝑘1 + 2𝑘s) are denoted by arrows,
respectively.
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Fig. 4. The power spectra of (a) the density fluctuations
and (b) the magnetic field fluctuations at Ωp𝑡 = 800 for
run 1. The black lines and red lines show the magnetic and
density fluctuations, respectively. The forward modes and
backward modes are denoted by solid lines and dashed
lines, respectively. In panel (a) the density modes (𝑘s,
𝑘s1, and 𝑘s2) are denoted by arrows, respectively. In panel
(b) the pump Alfvén wave modes (𝑘1, 𝑘2), the daughter
Alfvén wave modes (𝑘−1 , 𝑘−2 , 𝑘1 + 𝑘s, and 𝑘1 + 2𝑘s) are
denoted by arrows, respectively.

Figure 4 demonstrates the power spectra of the
density fluctuations (Fig. 4(a)) and the magnetic fluc-
tuations (Fig. 4(b)) at Ωp𝑡 = 800 for run 1. All
the dominant modes and the wave-number relations
among them are also provided in both the panels.
It is found that, in the second stage, in addition to
the residual wave modes excited in the first stage,
each pump Alfvén wave will decay into a forward
propagating density mode and a backward propa-

gating daughter Alfvén wave. The wave numbers
of the density modes corresponding to the pump
waves (𝑘1𝑐/𝜔pp = 0.209 and 𝑘2𝑐/𝜔pp = 0.094) are
𝑘s1𝑐/𝜔pp ≈ 0.314 and 𝑘s2𝑐/𝜔pp ≈ 0.141, respectively,
while the daughter Alfvén waves have wave numbers
𝑘−1 𝑐/𝜔pp ≈ (𝑘1 − 𝑘s1)𝑐/𝜔pp ≈ −0.105 and 𝑘−2 𝑐/𝜔pp ≈
(𝑘2 − 𝑘s2)𝑐/𝜔pp ≈ −0.047. This physical process in
the secondary stage can be roughly considered as the
superposition of the parametric decay of each pump
Alfvén wave.

Figure 5 shows the time evolution of the power
spectra for the density fluctuations (Fig. 5(a)) and the
magnetic fluctuations (Fig. 5(b)) during the paramet-
ric instabilities of five pump Alfvén waves in run 2.
Similar to the parametric instabilities of the two pump
Alfvén waves in run 1, this evolution can also be di-
vided into two stages. In the first stage, more density
modes are excited due to the envelope modulation of
the five pump Alfvén waves, and more modes of the
magnetic fluctuations are generated due to the interac-
tions between the density modes and the pump Alfvén
modes. In the second stage, each pump Alfvén wave
can decay into a forward propagating density mode
and a backward propagating daughter Alfvén wave
mode. Compared with the case of two pump waves
in run 1, both the density and magnetic fluctuations
show a broader and more continuous spectrum in run
2.
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Fig. 5. Time evolution of the power spectra for (a) the
density fluctuations and (b) the magnetic field fluctuations
with five initial pump Alfvén waves for run 2.
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Fig. 6. Scatter plots of protons in the (𝑣‖, 𝑣⊥) space,
panel (a) for run 1 at Ωp𝑡 = 800 and panel (b) for run 2
at Ωp𝑡 = 1150.

Figure 6 shows the velocity distributions of protons
at Ωp𝑡 = 800 for run 1 in Fig. 6(a) and at Ωp𝑡 = 1150
for run 2 in Fig. 6(b). A proton beam can be observed
just after the saturation of parametric instabilities in
both runs, which is due to the Landau resonance with
the excited ion acoustic waves.

Figure 7 presents the time evolution of the power
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spectra for the density fluctuations (Fig. 7(a)) and the
magnetic fluctuations (Fig. 7(b)) in run 3. As shown
in Fig. 7(a), the density fluctuations 𝑘s are also gener-
ated rapidly.[37] Then the wave-coupling processes be-
tween these density fluctuations and pump waves can
be observed in the early stage in Fig. 7(b). However,
compared with the results of run 1, the subsequent
parametric decay for each pump wave is strongly sup-
pressed (Figs. 7(a) and 7(b)), which may be due to the
strong damping of ion acoustic waves in the high beta
plasma.
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Fig. 7. Time evolution of the power spectra for (a) the
density fluctuations and (b) the magnetic field fluctuations
for run 3. In panel (a) the density mode (𝑘s) is denoted
by an arrow. In panel (b) the pump Alfvén wave modes
(𝑘1, 𝑘2) are also denoted by arrows, respectively.

In summary, by using 1-D hybrid simulations, we
have analyzed in detail the parametric instabilities of
the pump Alfvén waves with a spectrum in a low beta
plasma and found that the evolution has two stages.
Before the parametric decay of each pump Alfvén
wave, the modulation of the pump Alfvén waves due to
spatial inhomogeneity of the magnetic pressure (i.e.,
ponderomotive force) can cause density fluctuations
and their interactions with the pump Alfvén waves
can further lead to magnetic fluctuations. Therefore,
compared with the monochromatic cases, much more
density and magnetic wave modes with a broad spec-
trum can be generated during the evolution of the
parametric instabilities of the Alfvén waves with a
spectrum. Moreover, the proton velocity beam will
also be formed after the saturation of the parametric
instabilities. In the high beta case, due to the strong
damping of ion acoustic modes, the parametric decay
in the second stage will be strongly suppressed.
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