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Abstract Theoretical bounce resonance diffusion coefficients from interactions between electrons
and spatially confined waves are derived and validated. Roberts and Schulz bounce resonance diffusion
coefficients assume waves to be present on the whole bounce trajectory of particles; therefore, they are not
directly applicable to waves that have a finite spatial extent. We theoretically derive and numerically validate
a new set of bounce resonance diffusion coefficients for spatially confined waves. We apply our analysis to
magnetosonic waves, which are confined to equatorial regions, using a previously published magnetosonic
wave model. We find that the bounce resonance diffusion coefficients are comparable to the gyroresonance
diffusion coefficients. We conclude that bounce resonance diffusion with magnetosonic waves might play
an important role in relativistic electron dynamics.

1. Introduction

Wave particle interactions play a very important role in the flux variation of relativistic electrons in Earth’s
outer radiation belt [see, e.g., Thorne, 2010]. Previous work mainly focused on gyroresonance, which violates
the first and the second adiabatic invariants, and drift resonance, which violates the third adiabatic invariant.
For example, gyroresonances with chorus [see, e.g., Horne et al., 2005; Thorne et al., 2013] and magnetosonic
waves [Horne et al., 2007; Tao et al., 2009] have been shown to cause enhancement of MeV electron flux, while
that with electromagnetic ion cyclotron (EMIC) waves [Thorne and Kennel, 1971; Millan and Thorne, 2007],
chorus [see, e.g., O’Brien et al., 2004], and plasmaspheric hiss [Lyons and Thorne, 1973; Meredith et al., 2006] can
contribute to the loss of radiation belt electrons. Drift resonance with ULF waves can lead to radial transport
of electrons, resulting in energization or loss of radiation belt electrons [Elkington et al., 2003; Fei et al., 2006;
Shprits et al., 2006; Hudson et al., 2014; Dai et al., 2013, 2015].

While cyclotron and drift resonances have been studied in great detail, little attention has been paid to bounce
resonance, which violates the second adiabatic invariant. Roberts and Schulz [1968] derived theoretical bounce
resonance diffusion coefficients, assuming that waves are present on the whole trajectory of particles. They
suggested that bounce resonance might lead to quick pitch angle scattering of near-equatorially trapped
particles. However, the lack of knowledge of wave distributions made it difficult for the authors to accurately
evaluate the importance of bounce resonance in their study. For example, observations show that magne-
tosonic waves are localized near geomagnetic equator within ∼3∘ in latitude [Russell et al., 1970; Ma et al.,
2013]; therefore, the theoretical diffusion coefficients of Roberts and Schulz [1968] cannot be directly used to
evaluate the importance of bounce resonance with magnetosonic waves. Recently, Shprits [2009] surveyed
potential waves that can bounce resonance with radiation belt electrons, suggesting that bounce resonances
with magnetosonic waves and EMIC waves may lead to pitch angle scattering of near-equatorially mirroring
particles and they may also result in local acceleration of electrons. However, no quantitative estimates of the
bounce resonance effects have been made by Shprits [2009].

The purpose of this work is to derive the bounce resonance diffusion coefficients for spatially confined
waves like magnetosonic waves and provide the first quantitative calculation of the bounce resonance
diffusion coefficients of magnetosonic waves. Like Horne et al. [2007], we do not consider fine structures
of magnetosonic waves [Fu et al., 2014; Boardsen et al., 2014] and assume that the wave spectrum is broad
enough to allow the use of a diffusion approach to describe the particle dynamics. Also, we only consider
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bounce resonance, therefore excluding nonresonant interactions like transit time scattering [Bortnik and
Thorne, 2010; Bortnik et al., 2015; Li et al., 2014]. We start from a review of the derivation of the Roberts and
Schulz [1968] theoretical bounce resonance diffusion coefficients in section 2.1, using the approach given by
Schulz and Lanzerotti [1974]. Then we derive, in section 2.2, a new set of bounce resonance diffusion coeffi-
cients for spatially confined waves. In section 3, we use guiding center test particle simulations to validate
both sets of theoretical diffusion coefficients and evaluate the importance of bounce resonance diffusion by
magnetosonic waves in radiation belt electron dynamics. We then summarize our work and discuss possible
implications of the study in section 4.

2. Theoretical Bounce Resonance Diffusion Coefficients
2.1. The Roberts and Schulz Diffusion Coefficients
A set of theoretical bounce resonance diffusion coefficients have been derived by Roberts and Schulz [1968]
and Schulz and Lanzerotti [1974, pp. 62–65]. In this section, we give a brief review of the derivation of the
diffusion coefficients given by Schulz and Lanzerotti [1974]. The bounce resonance violates the second
adiabatic invariant while preserving the first invariant, therefore allowing the use of guiding center equations
of motion. For a dipole geomagnetic field, the guiding center equations can be simplified as

dp‖
dt

+ M
𝛾

𝜕B
𝜕s

= f∥(s, t), (1)

where s is the distance from the equatorial plane along a field line, 𝛾 the Lorentz factor, f∥(s, t) the perturbation
force parallel to the background magnetic field, and M = p2

⟂∕2mB the first adiabatic invariant. Here m is the
particle’s rest mass, and p∥ and p⟂ are the particle’s momentum parallel and perpendicular to the background
geomagnetic field B, respectively. Multiplying equation (1) by p∥∕m and using that p∥ = 𝛾mṡ, equation (1) can
be written as

dW∕dt = (p∥∕m)f∥(s, t), (2)

with W = (p2
∥∕2m) + MB. Following Schulz and Lanzerotti [1974], for a time interval 0 < t < 𝜏 , the oscillatory

force is represented using Fourier series as

f∥(s, t) =
∞∑

n=1

fn cos(k∥ns − 𝜔nt + 𝜙n), (3)

where𝜔n = 2𝜋n∕𝜏 , k∥n is the parallel wave vector, and𝜙n is the initial phase of the nth component. According
to Schulz and Lanzerotti [1974], the contribution of each component to the mean square force perturbation⟨[f∥(s, t)]2⟩ is (1∕2)f 2

n , which resides in a frequency interval Δ𝜔 = 2𝜋∕𝜏 , thus, the spectral density at 𝜔n is
 (𝜔n) = (𝜏∕4𝜋)f 2

n .

To obtain bounce resonance diffusion coefficients, we integrate equation (2) along the unperturbed orbit of a
particle. For particles mirroring close to the magnetic equator, the unperturbed trajectory is approximated by

s(t) ≈ s0 sin(Ωbt + 𝜃0), (4)

where 𝜃0 is the initial bounce phase, and s0 = p∥e∕(𝛾mΩb), with p∥e the parallel momentum at the geomag-
netic equator and Ωb the bounce frequency. Following Schulz and Lanzerotti [1974], we choose 𝜏 = NTb,
where N is a large number and Tb is the bounce period; therefore, 𝜔n = (n∕N)Ωb. From equations (2)–(4),
the change of W at t = 𝜏 is

ΔW =
∞∑

n=1

(p∥e∕mΩb)fnΔWn, (5)

where

ΔWn = ∫
2𝜋N+𝜃0

𝜃0

cos 𝜃 cos(k∥ns0 sin 𝜃 − n
N
𝜃 + n

N
𝜃0 + 𝜙n)d𝜃. (6)
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Here 𝜃 = Ωbt + 𝜃0 is the particle’s bounce phase. Using exp(iz sin 𝜃) =
∑∞

l=−∞ Jl(z) exp(il𝜃), equation (6) is

ΔWn = 1
2

∞∑
l=−∞

Jl(zn)∫
2𝜋N+𝜃0

𝜃0

[
f+(𝜃) + f−(𝜃)

]
d𝜃, (7)

with zn = k∥ns0, f±(𝜃) = cos[l±𝜃 + (n∕N)𝜃0 + 𝜙n], and l± = l − n∕N ± 1.

In this work, we consider only bounce resonance; i.e., 𝜔n∕Ωb = n∕N = l0, and l0 is an integer. Equation (7) is
then reduced to

ΔWl0N = Ωb𝜏 l0
Jl0
(zl0N)
zl0N

cos(l0𝜃0 + 𝜙l0N). (8)

It is straightforward to show that the contribution of nonresonant terms to ΔWn in equation (7) vanishes.
Substituting equation (8) into equation (5) gives

ΔW =
∞∑

l0=1

p∥e𝜏

m
fl0Nl0

Jl0
(zl0N)
zl0N

cos(l0𝜃0 + 𝜙l0N). (9)

The bounce resonance diffusion coefficient DWW is defined by DWW = ⟨(ΔW)2⟩∕2𝜏 , where ⟨⋅⋅⟩ denotes
averaging over 𝜃0 and 𝜙n. Using equation (9), it is straightforward to obtain

DWW = 𝜋

∞∑
l0=1

[p∥e

m
l0Jl0

(zl0N)∕zl0N

]2

 (l0Ωb). (10)

Here zl0N = k∥l0Ns0, with k∥l0N the parallel wave vector corresponding to 𝜔l0N = l0Ωb.

The bounce resonance diffusion coefficient given in equation (10) can be shown to be consistent with that
given by Roberts and Schulz [1968], which is

DWW =
𝛾2Ω2

b

2𝜋

∞∑
l0=1

l2
0 ∫

∞

−∞
dk∥F(k∥, l0Ωb)

J2
l0
(k∥s0)

k2
∥

, (11)

where the function F(k∥, l0Ωb) satisfies

1
2𝜋2 ∫

∞

−∞
dk∥F(k∥, l0Ωb) =  (l0Ωb). (12)

Letting the k∥ dependence to be 𝛿(k∥ − k∥l0N) in F(k∥, l0Ωb), equation (11) is reduced to equation (10).

2.2. Bounce Resonance Diffusion Coefficients for Spatially Confined Waves
The Roberts and Schulz bounce resonance diffusion coefficients (equation (10) or (11)) assume that the wave
field covers the whole bounce trajectory. On the other hand, realistic waves generally only cover part of the
bounce trajectory of a particle. For example, Horne et al. [2007] used a magnetosonic wave model where the
waves are confined to a magnetic latitude range of |𝜆| ≤ 3∘. Except at very large equatorial pitch angles (𝛼0 ≳

84∘), particles can bounce out of this latitude range. Therefore, the Roberts and Schulz diffusion coefficients
are not directly applicable to spatially confined waves like magnetosonic waves.

In this section, we follow the approach of Schulz and Lanzerotti [1974] and derive the bounce resonance dif-
fusion coefficients for spatially confined waves. As a typically example of spatially confined waves, Horne et al.
[2007] assumed that the magnetosonic wave power is constant within |𝜆| ≤ 𝜆0 with 𝜆0=3∘ and is zero outside
this latitude range. Following Horne et al. [2007], we assume that the perturbation force for spatially confined
waves is represented by

f∥(s, t) =
{∑∞

n=1 fn cos(k∥ns − 𝜔nt + 𝜙n) |s| < smax,

0 |s| ≥ smax,
(13)

where smax denotes the distance from the equatorial plane to the boundary of magnetosonic waves along a
field line. Note here that, for simplicity, we do not consider a spread in wave normal angle for a given frequency.
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From ds = LRE(1 + 3 sin2 𝜆)1∕2 cos 𝜆d𝜆, L being the L shell value and RE is Earth radius, it is straightforward to
get smax from smax = ∫ 𝜆0

0 (ds∕d𝜆)d𝜆 and

smax =
1
2

[
sin 𝜆0

√
3 sin2 𝜆0 + 1 + ln

(√
3 sin2 𝜆0 + 1 +

√
3 sin 𝜆0

)
∕
√

3
]

LRE . (14)

Approximating the unperturbed bounce motion as s(t) ≈ s0 sin 𝜃, then the oscillatory force is nonzero only
when the bounce phase is within the range

∑∞
r=0(r𝜋 − 𝜃max, r𝜋 + 𝜃max), where 𝜃max is

𝜃max =
{

arcsin(smax∕s0) smax < s0,

𝜋∕2 smax ≥ s0.
(15)

Considering that the integrand of equation (6) has a period of 2𝜋N, the integration range in equation (6)
becomes

∫
𝜃max

0
d𝜃 +

2N−1∑
r=1

∫
r𝜋+𝜃max

r𝜋−𝜃max

d𝜃 + ∫
2N𝜋

2N𝜋−𝜃max

d𝜃, (16)

which can be combined to give

r=2N−1∑
r=0

∫
r𝜋+𝜃max

r𝜋−𝜃max

d𝜃. (17)

Considering only bounce-resonant terms; i.e., n∕N = l0 with l0 an integer, we find

ΔW =
p∥e𝜏

m

∞∑
l0=1

cos(l0𝜃0 + 𝜓l0N)
fl0N

𝜋
(ΔWl01 + ΔWl02), (18)

where

ΔWl01 =
l0

zl0N
Jl0
(zl0N)[2𝜃max + sin(2𝜃max)], (19)

ΔWl02 =
∑

|l−l0|≠1
l−l0=odd

(
sin l+𝜃max

l+
+

sin l−𝜃max

l−

)
Jl(zl0N). (20)

The bounce resonance diffusion coefficient DWW for spatially confined waves is therefore

DWW =
∞∑

l0=1

[p∥e

m
(ΔWl01 + ΔWl02)

]2

 (𝜔l0N)∕𝜋, (21)

where 𝜔l0N = l0Ωb. It is straightforward to see that equation (21) is the same as equation (10) if 𝜃max = 𝜋∕2.
For electromagnetic perturbations like magnetosonic waves, the parallel force f‖(s, t) is

f∥(s, t) = −M
𝛾

𝜕B∥(s, t)
𝜕s

+ qE∥(s, t). (22)

Therefore, the spectral density of the force in equation 21 is related to the spectral densities of the magnetic
and electric fields by [Schulz and Lanzerotti, 1974]

 (𝜔) = M2

𝛾2
k2
∥∥(𝜔) + q2∥(𝜔), (23)

where ∥ and ∥ are the spectral density of the parallel wave magnetic field and electric field, respectively.

The bounce resonance diffusion coefficient DWW can be converted to equatorial pitch angle and energy
diffusion coefficients that are commonly used in global radiation belt modeling. The particle’s equatorial pitch
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angle 𝛼0 satisfies cot2 𝛼0 = W∕MBe − 1, where Be is the geomagnetic field strength at the magnetic equator;
therefore,

𝜕𝛼0

𝜕W
= −

sin2 𝛼0 tan 𝛼0

2MBe
. (24)

Similarly, since E = (𝛾 − 1)mc2 and 𝛾2 = 1 + 2W∕mc2, we have

𝜕E
𝜕W

= 1√
1 + 2W∕mc2

= 𝛾−1. (25)

Correspondingly, the equatorial pitch angle and energy diffusion coefficients are

D𝛼0𝛼0
= DWW

(
𝜕𝛼0

𝜕W

)2

, D𝛼0E = DWW

𝜕𝛼0

𝜕W
𝜕E
𝜕W

, and DEE = DWW

(
𝜕E
𝜕W

)2

. (26)

Note that for bounce resonance, the cross diffusion coefficient D𝛼0E is always negative for 0 < 𝛼0 < 𝜋∕2. This
is because the conservation of M = p2

⟂e∕2mBe requires that an increase in the equatorial pitch angle always
leads to a decrease in energy.

3. Simulation Results
3.1. Validation of the Roberts and Schulz Diffusion Coefficients
In this section, we will use test particle simulations to validate the Roberts and Schulz diffusion coefficients
(equations (10) and (26)) [Schulz and Lanzerotti, 1974; Roberts and Schulz, 1968] using magnetosonic waves. For
simplicity, we use a simplified dipole geomagnetic field with Bz(𝜆) = Be

√
1 + 3 sin2 𝜆∕ cos6 𝜆 and Be ≈ 0.31∕L3

Gauss. Following Tao et al. [2012], we choose Bx = −x(dBz∕dz)∕2 and By = −y(dBz∕dz)∕2 in order to satisfy
∇ ⋅ B = 0. We consider a magnetosonic wave field with oblique propagation in x-z plane; i.e.,

E =
N∑

i=1

ex Exi sin𝜙i + eyEyi cos𝜙i + ezEzi sin𝜙i, (27)

B =
N∑

i=1

ex Bxi cos𝜙i + eyByi sin𝜙i + ezBzi cos𝜙i. (28)

Here 𝜙i = ∫ ki ⋅ dr − 𝜔it + 𝜙i0 is the wave phase of the ith component, with 𝜔i the wave frequency, 𝜙i0 the
wave initial phase, ki the wave vector given by ki = ki(sin𝜓i, 0, cos𝜓i), where 𝜓i is the wave normal angle.
The amplitudes of the electric and magnetic fields are related by cold plasma dispersion relation as in Tao and
Bortnik [2010].

The magnetosonic wave model used in the simulation is adopted from Horne et al. [2007]. The magnetic field
spectral density is (𝜔) ∝ exp(−(𝜔 − 𝜔m)2∕𝛿𝜔2), 𝜔m∕|Ωe| = 3.49 × 10−3, 𝛿𝜔∕|Ωe|= 8.86 × 10−4, and a
wave amplitude Bw = 218 pT in the range 0.0026|Ωe| < 𝜔 < 0.0044|Ωe|, where Ωe is the equatorial
electron cyclotron frequency. The field amplitude of the ith component is determined correspondingly using
the method in Tao et al. [2012]. For simplicity, we set the wave normal angle 𝜓 = 89∘ instead of a Gaussian
distribution in tan𝜓 as in Horne et al. [2007]. Furthermore, to be consistent with the assumption of Roberts and
Schulz [1968], we use an unrealistic wave model in this part by assuming that the wave field is present at all
latitudes and spectral density  remains constant. On the other hand, the wave field is present only near the
equator in Horne et al. [2007]. Finally, the plasma density is assumed to be fpe∕fce = 3, independent of latitude.

We use the guiding center equations in Tao et al. [2007] to trace test particles. A fourth-order Runge-Kutta
method is used to solve the set of guiding center equations. To calculate the diffusion coefficients for a given
𝛼0 and E, the initial equatorial pitch angle and energy of all test particles are set to be 𝛼0 and E, respectively.
To create ensemble of particles with different initial bounce phases and initial wave phases, we perform 20
batches of simulations for a given 𝛼0 and E. In each batch, we use 100 particles whose initial bounce phase is
randomly chosen from [0, 2𝜋]. Similarly, the wave initial phase is randomly distributed in [0, 2𝜋]. From batch
to batch, we use a different set of random initial wave phases and initial particle bounce phases. Sample
trajectories of five particles from a simulation are shown in Figure 1 (left), which demonstrates that the
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Figure 1. (left) Changes of 𝛼0 of five randomly selected electrons, represented by different colors. (right) The evolution
of ⟨(Δ𝛼0)2⟩ with time for initial 𝛼0=60∘. The blue line is the corresponding linear fitting.

motion of particles are indeed stochastic from bounce resonance with a broadband magnetosonic wave field.
The test particle diffusion coefficients are obtained from D𝛼0𝛼0

= ⟨(Δ𝛼0)2⟩∕2𝜏 and DEE = ⟨(ΔE)2⟩∕2𝜏 , where
Δ𝛼0 = 𝛼0 − ⟨𝛼0⟩ and ΔE = E − ⟨E⟩. Here ⟨...⟩ means averaging over all particles in a simulation. We then
perform a linear fitting to ⟨(Δ𝛼0)2⟩ (or ⟨(ΔE)2⟩ for DEE) as a function of time, and the test particle diffusion
coefficient is then half of the slope. This process is illustrated in Figure 1 (right) for D𝛼0𝛼0

.

The comparison between the numerical diffusion coefficients and Roberts and Schulz diffusion coefficients
is shown in Figure 2 for E = 1 MeV electrons at L = 4.5. We compare both D𝛼0𝛼0

and DEE∕E2. This comparison
demonstrates that the theoretical diffusion coefficients of Roberts and Schulz agree well with test particle
simulations, which proves the correctness of the Roberts and Schulz bounce resonance diffusion coefficients
when the assumptions of the theory are satisfied.

3.2. Validation of the Diffusion Coefficients for Spatially Confined Waves
We now validate the diffusion coefficients for spatially confined waves using magnetosonic waves. The setup
of the wave field is the same as in the section 3.1, except that we now consider realistic magnetosonic waves;
i.e., the wave field is present only up to |𝜆| ≤3∘. Following Horne et al. [2007], the spectral density(𝜔) remains
constant within |𝜆| ≤ 3∘ and is zero beyond this latitude range. Other parameters of simulations are exactly
the same as in section 3.1. The resulting comparison of theoretical diffusion coefficients (equations (21)–(26))
with test particle simulations are shown in Figure 3. The good agreement between theory and simulation
proves that the newly derived theoretical diffusion coefficients for spatially confined waves are correct.

Since we have validated the theoretical diffusion coefficients for spatially confined waves, we use them to
estimate the importance of bounce resonance diffusion in radiation electron dynamics. Following Horne et al.
[2007], we calculate the theoretical D𝛼0𝛼0

and DEE∕E2 for different equatorial pitch angles and energies at two
different fpe’s, shown in Figure 4. For energy E =1 MeV, the maximum D𝛼0𝛼0

and DEE∕E2 from bounce reso-
nance are close to 10−5 at fpe∕fce =3, comparable to that from gyroresonance [Horne et al., 2007, Figure 4].

Figure 2. The comparison of Roberts and Schulz diffusion coefficients (left) D𝛼𝛼 and (right) DEE∕E2, represented by solid
lines, with numerical diffusion coefficients from simulation, represented by blue stars, for E = 1 MeV and fpe∕fce = 3.

LI ET AL. BOUNCE RESONANCE DIFFUSION 9596



Geophysical Research Letters 10.1002/2015GL066324

Figure 3. The same as Figure 2, except that the theory is for spatially confined waves.

At fpe∕fce = 10, the maximum D𝛼0𝛼0
and DEE∕E2 from bounce resonance are close to 10−3 and 10−4,

respectively. These values are much larger than those from gyroresonance [Horne et al., 2007, Figure 5]. We
note from Figure 4 that pitch angle bounce resonance diffusion coefficients near 𝛼0 ∼90∘ are very small;
hence, bounce resonance diffusion is not effective in transporting equatorially mirroring electrons. On the
other hand, Chen et al. [2015] suggested that nonlinear interactions between a monochromatic magnetosonic
wave and electrons through bounce resonance might be effective in transporting 90∘ electrons. Furthermore,
the bounce resonance diffusion by magnetosonic waves is not effective in scattering electrons into the loss
cone; therefore, if acting alone, this process should lead mainly to energization of relativistic electrons. On the
other hand, similar to gyroresonance, bounce resonance diffusion coefficients of magnetosonic waves peak
around some intermediate pitch angles between 50∘ and 70∘. Therefore, a combination of gyroresonance with
whistler mode hiss and bounce resonance with magnetosonic waves might significantly reduce the lifetime
of electrons in plasmasphere [Meredith et al., 2009; Mourenas et al., 2013]. Finally, based on the comparison
of diffusion coefficients, we conclude that for relativistic electrons, the pitch angle and energy diffusion from
bounce resonance with magnetosonic waves is as important as that from gyroresonance. Note that although
for simplicity we assumed a single wave normal angle in our calculation, adopting a Gaussian distribution in
tan𝜓 should not change our conclusion qualitatively.

Figure 4. Theoretical bounce resonance diffusion coefficients (left) D𝛼𝛼 and (right) DEE∕E2 for (top) fpe = 3fce and
(bottom) fpe = 10fce, for spatially confined magnetosonic waves.
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4. Summary and Discussion

In this study, we first reviewed the derivation of the Roberts and Schulz bounce resonance diffusion
coefficients using the method of Schulz and Lanzerotti [1974]. The Roberts and Schulz diffusion coefficients,
however, assume that the wave field covers the whole bounce trajectory of particles, which is not consistent
with observations of magnetosonic waves. We then followed the approach by Schulz and Lanzerotti [1974]
and derived the bounce resonance diffusion coefficients for spatially confined waves. Using guiding center
test particle simulations, we validated both sets of theoretical bounce resonance diffusion coefficients for
magnetosonic waves. From the calculated pitch angle diffusion coefficients, magnetosonic waves can lead to
significant pitch angle scattering of electrons with 𝛼0 near 50∘–70∘; therefore, when combined with whistler
mode hiss waves, bounce resonance might significantly reduce the lifetime of electrons in the plasmasphere
[Meredith et al., 2009; Mourenas et al., 2013]. More importantly, we find that the energy diffusion coeffi-
cients from bounce resonance with spatially confined magnetosonic waves are comparable to those from
gyroresonance. Therefore we conclude that bounce resonance with magnetosonic waves may play an impor-
tant role in both pitch angle scattering and acceleration of the relativistic electrons in the event studied by
Horne et al. [2007].

The effect of bounce resonance with magnetosonic waves on electron dynamics, however, depends on
various parameters; e.g., plasma density and wave amplitude. We demonstrated in Figure 4 that an increase
in plasma density from fpe∕fce = 3 to fpe∕fce = 10 can increase the maximum bounce resonance diffusion
coefficients by about 2 orders of magnitude. Our study should be combined with further observations of
magnetosonic wave distribution and plasma parameter information to further estimate the role of bounce
resonance with magnetosonic waves in radiation belt electron dynamics.

In this work, we assumed that the magnetosonic waves have a single wave normal angle for a given frequency
for simplicity. It is more realistic to allow a spread in wave normal angle as in Horne et al. [2007]. Also, we
assumed a broadband wave field, which allows us to use diffusion to describe the wave particle interaction
process. Observations show that magnetosonic waves might also have fine structures, which might lead to
coherent motions of electrons [see, e.g., Chen et al., 2015; Artemyev et al., 2015]. These issues, however, are
outside the scope of this study and will be addressed in future investigations.
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