On the current density reduction ahead of dipolarization fronts

San Lu¹, A. V. Artemyev¹, V. Angelopoulos¹, Quanming Lu², and Jiang Liu¹

¹Department of Earth, Planetary, and Space Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California, USA. ²CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China

Abstract During their earthward propagation, dipolarization fronts (DFs) interact with the ambient plasma sheet on kinetic scales. The interaction region is important to the front’s structure, propagation, and regional closure of the current system. However, the physics in this region, especially of its current system, is poorly understood. We present Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations of the interaction region between DFs and the ambient plasma sheet at $x \sim -12 R_E$ downtail; these observations show that the current density ahead of the DFs is significantly reduced near the neutral plane. We use a two-dimensional particle-in-cell model to simulate the current density reduction ahead of DFs and investigate the physical mechanism that causes it: Ion reflection and acceleration at the front cause positive charge density to build up. The resultant electrostatic field, E_x, is directed away from the neutral plane. The positive cross-tail $E_x \times B_z$ drift of electrons (which remain magnetized) does not affect demagnetized ions. This electron-ion decoupling results in a dawnward cross-field current carried by electrons that reduces the cross-tail current ahead of the approaching front.

1. Introduction

Dipolarization fronts (DFs), transient increases in the northward magnetic field component, B_z, in the Earth’s magnetotail plasma sheet, have been observed by spacecraft for decades [Russell and McPherron, 1973; Moore et al., 1981; Angelopoulos et al., 1992; Nakamura et al., 2002; Runov et al., 2009, 2011a, 2011b; Schmid et al., 2011, 2015; Fu et al., 2012a, 2012b]. Often preceded by a smaller B_z decrease [e.g., Nakamura et al., 2002; Sitnov et al., 2009; Lu et al., 2015], DFs are embedded within bursty bulk flows [Angelopoulos et al., 1992, 1994], which are widely believed to play a crucial role in earthward transport of energy and flux [Angelopoulos et al., 1992, 2013; Nakamura et al., 2011; Liu et al., 2011, 2014; Li et al., 2016]. Dipolarization fronts energize and inject particles [Fu et al., 2011, 2013; Gabrielse et al., 2012, 2014; Ganushkina et al., 2013; Lin et al., 2014] and drive a variety of waves [Sergeev et al., 2009; Deng et al., 2010; Huang et al., 2012; Panov et al., 2013]. Reflected and accelerated by approaching DFs [Zhou et al., 2010; Wu and Shay, 2012; Eastwood et al., 2015], ions from the ambient plasma sheet compose earthward precursor flows to the front [Zhou et al., 2011]. These ions also create a local density/pressure enhancement that works against the curvature force, moderating the DFs’ initial acceleration and contributing to its eventual stoppage [Li et al., 2011; Zhou et al., 2014a].

Recently, multispacecraft observations have been used to study the current system of DFs. Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations have revealed a strong duskward current density within DFs (about 10 times larger than the cross-tail current density ahead of them) [Runov et al., 2011b; Liu et al., 2013a]. Cluster observations have demonstrated that when DFs are preceded by transient B_z decreases, the current within those decreases is often dawnward [Yao et al., 2013]. According to THEMIS and Cluster observations, DFs also carry field-aligned currents that form a current “wedgelet” [Liu et al., 2013a, 2013b; Sun et al., 2013], and Liu et al. [2015] suggested that several wedgelets combined compose a large-scale substorm current wedge [McPherron et al., 1973]. Thus, the current closure around DFs can have implications for the global magnetospheric current system.

Although reflected ions act on the DF’s current system and the cross-tail current sheet, how these systems interact in the region between them is poorly understood. Test particle modeling with a prescribed electromagnetic field for the cross-tail current sheet and the approaching front has shown, to first order, that observations are consistent with a simple picture of ion reflection without feedback to the fields [Zhou et al., 2011, 2014b; Ukhorskiy et al., 2013; Greco et al., 2014]. In principle, however, reflected ions...
observed near DFs could modify the configuration of the cross-tail current sheet ahead of fronts. Recent observations of that current sheet near the neutral plane have revealed a significant duskward current density reduction associated with pressure buildup near the front [Yao et al., 2015]. Similar reduction was derived from multifluid model [Yang et al., 2012]. The dawnward current that leads to this reduction may be generated by reflected ion currents [Zhou et al., 2014b; Pan et al., 2015] or pressure gradient buildup [Yao et al., 2015]. These mechanisms, which arise from evolution of ions in prescribed fields, have not been verified by self-consistent kinetic models of DF propagation in the presence of ion-electron interactions in this kinetic regime.

It is important to understand this current density reduction because it affects the interaction of the DF with the medium it encounters just upstream of it and the redistribution (local or global) of the DF during its propagation. The interaction of the magnetic field fronts (with plasma flows) with their surrounding current sheets is rather common because of the transience of magnetic reconnection in planetary magnetospheres and the solar corona. An investigation of the structure of the interface between the magnetotail current sheet and DFs can improve our understanding of this interesting intermediate region where magnetic energy is converted to energy of reflected ions and where electromagnetic waves are generated. In this paper, we present THEMIS observations of current density reduction ahead of dipolarization fronts and use two-dimensional (2-D) particle-in-cell (PIC) model to simulate this reduction and determine how it occurs.

2. THEMIS Observations

We examine THEMIS observations from October to December 2015, when the three THEMIS spacecraft (ThA, ThD, and ThE) traversed the nightside magnetotail near $x \sim -12 \; R_E$ (GSM coordinates are used throughout this paper). There are two main advantages of this data set.

1. During this time the three THEMIS spacecraft often formed a triangle with separation of approximately 1000–5000 km, predominantly lying in the (x,z) plane and near the magnetic equator. The small y separation between the spacecraft allows us to obtain accurate derivatives in the x and z directions, ignoring the typically smaller variation of plasma sheet quantities along y. Thus, we can regularly apply the curlometer technique [Dunlop et al., 2002] for THEMIS measurements of the magnetic field in two dimensions and obtain the average duskward directed current density in the region between the spacecraft.

2. The magnetic field gradients (in the background current sheet and at the DF) are much stronger in the near-Earth region ($x \sim -12 \; R_E$), where THEMIS spacecraft are located, than in the midtail ($x \sim -18 \; R_E$) region, where the Cluster mission previously collected most of its DF observations [e.g., Schmid et al., 2011; Fu et al., 2012b]. Thus, the THEMIS spacecraft can measure both the strong current density at DFs and the much weaker (but still significant) cross-tail current density in the background current sheet, allowing us to unambiguously detect current density reduction (relative to the unperturbed current sheet) ahead of the DF.

We use magnetic field measurements with 3 s (spin period) resolution [Auster et al., 2008] and combined moments of electrons and ions from the THEMIS electrostatic analyzer [McFadden et al., 2008] and solid state telescope [e.g., Angelopoulos et al., 2008]. The curlometer technique [Dunlop et al., 2002] is used, except with 2-D (gradients only in the (x,z) plane), and we calculate both $\partial B_z/\partial z$ and $\partial B_y/\partial x$ (the main current density component is $j_y = (\partial B_y/\partial z - \partial B_z/\partial x)/\mu_0$).

Three THEMIS spacecraft observed a DF near the neutral plane (see Figure 1). At least one spacecraft measured $|B_x| < 10$ nT (not shown here), indicating that the triad were near the magnetic equator. As shown in Figure 1a, all three THEMIS spacecraft observed a B_x increase (from 10 to 20 nT). As expected, the most tailward ThA detected an increasing B_x first, signifying DF arrival from the tail. The B_x increase was subsequently observed by ThD and ThE. This DF’s earthward velocity was about 100 km/s (low for this region [see Liu et al., 2014]). The sharpest B_x increase was observed by ThE, which was located in the neutral plane ($B_x \approx 0$); ThA ($B_x \approx 15$ nT) and ThD ($B_x \approx -10$ nT) observed smoother DF profiles. Near the beginning of the plotted interval, the current density in the background current sheet was about $j_y \approx 5 \; nA/m^2$. Just ahead of the DF, j_y dropped to zero; at the DF itself, j_y reached 25 nA/m². The plasma temperature (ion and electron) increased and the density decreased in the DF region relative to those in the pre-DF region (a typical evolution near a DF [see, e.g., Runov et al., 2015; Schmid et al., 2015, and references therein]). The plasma velocity V_x shown for ThE (closer to the neutral plane) started growing from zero ahead of the DF and reached its maximum value,
~100 km/s, just at the B_z peak. The rise of V_x ahead of the front, which has been explained by ion reflection from the DF [see, e.g., Zhou et al., 2010, 2011], is consistent with the acceleration of preexisting plasma by pressure gradients ahead of front and an imbalance between the gradients and the curvature force [Li et al., 2011]. Although the long time intervals of THEMIS observations around $x - - 12\ R_E$ would allow us to assemble a large database of DF observations, the separation between spacecraft is generally larger than a typical DF’s spatial scale; and, thus, current density calculations near DFs often provide smoothed results. Therefore, we restrict our consideration to several examples in which the effect of current reduction can be easily distinguished.

Figure 2 shows six THEMIS DF observations. In all, we see a clear reduction of the current density j_y ahead of the DF (demarcated by red arrows). In three of the cases, this reduction is so pronounced that the local j_y becomes negative. Although reversal of j_y is occasionally observed near the neutral plane, cross-tail pressure balance necessitates that the total current $\int_{-L}^{L} j_y\,dz$ remain positive (L is the plasma sheet thickness). Hence, in the plasma sheet above and below the spacecraft triangle, j_y should be positive. We checked that the lobe magnetic field (equal to the total current $\int_{-L}^{L} j_y\,dz$) did not change significantly ahead of DFs. To examine and understand the observed reduction in current density, we next use PIC simulations and compare them with the observations.

3. PIC Simulations

We perform 2-D PIC simulations to explore the potential current density reduction ahead of the DFs and investigate its formation mechanism. The electric and magnetic fields are defined on the grids in the (x, z)
plane and updated by solving Maxwell’s equations with a full explicit algorithm. The macroparticles, electrons, and ions, are advanced in the electromagnetic fields. The initial equilibrium is a one-dimensional Harris current sheet with an initial magnetic field \(\mathbf{B} = B_0 \tanh(z/\delta) \mathbf{e}_y \) and density \(n = n_b + n_0 \sec^2(z/\delta) \), where \(B_0 \) is the asymptotic magnetic field, \(\delta \) is the half width of the current sheet, and \(n_b \) is the background plasma density. The initial velocity distributions of the ions and electrons are Maxwellian with drift speed \(V_{\alpha 0} = 2T_{\alpha 0}/q \) in the \(y \) direction, where \(\alpha = i \) and \(e \) represent ions and electrons, respectively. We use uniform initial electron and ion temperatures with \(T_e/T_i = 5 \). Specific parameters for the simulations are \(\delta = 0.5d_i \) (\(d_i = c/\omega_{pi} \) is the ion inertial length defined by \(n_0 \)), \(n_b = 0.1n_0 \), ion-to-electron mass ratio \(m_i/m_e = 25 \), and light speed \(c = 15v_A \), where \(v_A \) is the Alfvén speed based on \(B_0 \) and \(n_0 \). The simulations are performed in a rectangular domain with dimensions \(L_x \times L_z = 204.8d_i \times 25.6d_i \), spatial resolution \(\Delta x = \Delta z = 0.05d_i \), and temporal resolution \(\Delta t = 0.001 \Omega_i^{-1} \), where \(\Omega_i = eB_0/m_i \) is the ion gyrofrequency. In the \(x \) direction we use periodic boundary conditions; particles leaving one boundary will enter the simulation domain from the boundary on the opposite side. Conductive boundary conditions are adopted in the \(z \) direction; particles are specularly reflected on the conductive boundaries. More than \(10^9 \) particles are employed in the simulations. The simulations are initiated with a small magnetic flux perturbation at the center of the current sheet. The perturbation results in reconnection and development of outflows with enhanced magnetic flux that is consistent with dipolarized flux bundles moving toward Earth.

Figure 3 shows (a) the cross-tail current density, \(j_y \), and the current contributions from (b) electrons, \(j_{ey} \), and (c) ions, \(j_{iy} \), at normalized time \(\Omega_i t = 21 \). The simulated DF, the interface between the ambient plasma and the recently reconnected dipolarizing flux bundle, is characterized by a sharp \(B_z \) increase and is located at
x ≈ 117d_i. The DF propagates along the positive x direction toward the right. The cross-tail current density has a peak, ~ 5en_0v_A, at the front because of the sharp B_z variation there. The current density at the front is mainly contributed by the ions because of their duskward (positive y) deflection caused by the strong B_z. The cross-tail current density decreases to below en_0v_A from x ≈ 118d_i to 127d_i ahead of the DF. The current density in the unperturbed current sheet is 2en_0v_A.

From Figures 3b and 3c, we deduce that the current density reduction ahead of the DF is mainly caused by the dawnward (negative y) current density of the electrons. It is important to note that above and below the neutral plane, the ion current density is increased ahead of the DF (see Figure 3c). This allows the total cross-tail current \(\int_{-L}^{L} j_y \, dz \) to remain almost unchanged, whereas the current density near the neutral plane is reduced significantly. Figure 4 shows the virtual satellite observations at (x, z) = (120, 0)d_i (denoted by an asterisk in Figure 3), which allow us to further investigate the time evolution of the current density reduction ahead of the DF. Note that the DF arrives at \(\Omega t \approx 21.5 \), and \(B_z \) reaches its maximum 1.4B_0 at \(\Omega t \approx 23 \). Ahead of the DF, from \(\Omega t = 14.5 \) to 21.5 (the yellow region in Figure 4), the cross-tail current density \(j_y \) begins to decrease from 2en_0v_A to 0.5en_0v_A. The current density reduction ahead of the DF is caused by the increase in electron bulk velocity from ~ 0.3v_A to 1.2v_A, while the ion bulk velocity remains unchanged (Figure 4c). The plasma (electron and ion) density increases slightly ahead of the DF and then decreases dramatically behind it (a typical DF signature described in Runov et al. [2011a, 2015]). The ion temperature increases from 0.5m_i\nu^2_A in the unperturbed current sheet to 0.8m_i\nu^2_A ahead of the DF. Electrons, on the other hand, are mostly heated behind the DF; their relative temperature increase ahead of the DF is less significant than that of the ions.

Given that the current density reduction ahead of the DF is caused by duskward (in the positive y direction) electron flow, which corresponds to dawnward (negative) electron current density, we choose a representative time, \(\Omega t = 21 \) (denoted by the vertical dotted line in Figure 4), when \(j_y \) reaches its minimum, to investigate
the formation mechanism of the duskward electron flow. We use the drift approximation to describe the electron bulk velocity \(\mathbf{V}_{e} \)

\[
\mathbf{V}_{e} = \mathbf{V}_{E \times B} + \mathbf{V}_{e,DM},
\]

where \(\mathbf{V}_{E \times B} = \frac{\mathbf{E} \times \mathbf{B}}{B^2} \) is the E-cross-B drift velocity, and \(\mathbf{V}_{e,DM} = -\mathbf{B} \times \nabla p_{e}/(en_{e}B^2) \) is the electron diamagnetic drift velocity. For isotropic electrons there is no electron curvature drifts induced by thermal anisotropy (i.e., by difference of temperature components along and across the magnetic field). Figure 5a shows \(E_y \), which leads to a duskward (positive \(y \)) E-cross-B drift in this region. (Note that the DF propagates in the direction toward the right.) Figures 5b–5d present the \(y \) components of \(\mathbf{V}_{E \times B}, \mathbf{V}_{e,DM}, \) and their sum. In the current sheet ahead of the DF, where the cross-tail current density reduces, the large electron duskward flow (or dawnward current) is mostly contributed by the E-cross-B drift. In the unperturbed current sheet (for example, at \(x = 140d \)), however, the electron dawnward flow is much smaller and caused by electron diamagnetic drift. The sum of \(\mathbf{V}_{E \times B} \) and \(\mathbf{V}_{e,DM} \) shows good consistency with the electron bulk velocity (see Figures 5d and 5e), validating equation (1).

Therefore, the electric field \(E_y \) plays an important role in the formation of positive/duskward electron bulk flow, or current density reduction, ahead of the DF. The generation of \(E_y \) can be understood from Figure 5f, which plots the charge density. A positive charge density at the center of the current sheet generates the electrostatic field \(E_y \) ahead of the DF. The charge originates as follows: ions are relected and accelerated ahead of the DF [Zhou et al., 2010; Wu and Shay, 2012] (electrons are not). This generates a positive \(j_x \) (see Figure 5g), although it breaks up because of an instability around \(x = 120d \), (likely the firehose instability [e.g., Wu et al., 2013] or the Weibel instability [e.g., Lu et al., 2011; Schoeffler et al., 2013]). The above ion reflection/acceleration weakens in the region farther away from the DF, for example,
\[j_x \approx 1.0e_n \nu_A \text{ at } x = 125d_i \] and \[j_x \approx 0.3e_n \nu_A \text{ at } x = 135d_i \] so \(\partial j_x / \partial x > 0 \). Therefore, the positive charge density is built up by charge conservation \(\partial \rho / \partial t = - \nabla \cdot j \approx - \partial j_x / \partial x > 0 \). This charge density causes the formation of the above \(E_z \) directed away from the neutral plane.

4. Summary and Discussion

Using THEMIS observations and PIC simulations, we showed that the current density ahead of DFs is significantly reduced relative to the ambient plasma sheet cross-tail current density. The physical mechanism of this reduction can be summarized as follows:

1. Ions are reflected and accelerated ahead of DFs, and this reflection causes positive charge density buildup.
2. Positive charge density at the equator generates an electrostatic field \(E_z \) directed away from the neutral plane ahead of the DFs.
3. Electron positive (duskward) \(E_x \times B_x \) drift reduces cross-tail current density. Unlike electrons, ions are demagnetized and do not execute this drift, resulting in a net electron current in the duskward direction that reduces the ambient duskward current.
Previous test particle simulations [Zhou et al., 2014b; Pan et al., 2015] have suggested that reflected ions can then be deflected downward by the (finite) B_y and form a dawnward secondary current. In our PIC simulations, the reflected ion population generates a polarization electric field E_p (i.e., an electrostatic field caused by decoupling of reflected demagnetized ions from magnetized electrons) that drives duskward electron motion (dawnward current) in the absence of a compensating ion current. The previous understanding of current modification in the current sheet ahead of DFs derived in test particle models is modified and improved by our self-consistent model. For a more realistic investigation of this effect, further PIC simulation studies with nonzero B_y initial condition [e.g., Lembège and Pellat, 1982; Schindler and Birn, 2002; Sitnov and Schindler, 2010] are needed.

In the THEMIS observations, current density reduction lasts around 30 s (see red arrows in Figure 2). For a DF propagation speed of about 100 – 200 km/s (see Figure 1a and statistics in Runov et al., [2011]a), the spatial scale of the current density reduction region is ~4000 km. For a typical ion density of ~0.3 cm$^{-3}$ (see Figure 1b and statistics in Runov et al. [2015]), the local ion inertial length d_i is ~300 km. Therefore, the observed spatial scale of current density reduction ahead of DFs is about 13d_i. In our PIC simulations, the spatial scale of the current density reduction is about 15d_i (see Figure 5), which is consistent with the observed value.

In the magnetotail current sheet there is usually a nonzero guide field B_y [e.g., Petrukovich, 2011]. Theoretically, a small guide field cannot modify the magnetotail electron kinetics significantly if [e.g., Hesse et al., 2004]

$$B_y < (\partial B_y/\partial z)\lambda_{ez},$$

where λ_{ez} is the electron bounce width in the field reversal given by Biskamp and Schindler [1971]:

$$\lambda_{ez} = \left[\frac{2m_e T_e}{e^2 (\partial B_y/\partial z)^2}\right]^{1/4}.$$

For $m_e/m_i = 1/25$, $T_e = 0.15 m_e v_A^2$, and $\partial B_y/\partial z \approx 0.75 B_y/d_i$, as measured in the simulation for the current density reduction region, equation (2) gives the threshold of the guide field $B_y < 0.29 B_0$. We further performed runs with small guide fields, $B_y = 0.1 B_0$ and $0.2 B_0$, and found that the current density reduction ahead of DFs still exists, showing that the current density reduction is not sensitive to small guide fields in the magnetotail.

We would like to mention that several previous observations have shown that a B_y dip/reduction may be associated with dipolarization front and often occurs just before the leading edge of the front [e.g., Runov et al., 2009; Yao et al., 2015, and references therein]. In the THEMIS data set shown in Figures 1 and 2, a B_y dip is not observed for all cases. Moreover, Figures 1 and 2 show that a B_y dip can be observed before j_y reduction, or j_y reduction occurs when B_y has already started to dipolarize (increase). Further investigations are needed to identify a possible relation between current density variation responsible for B_y reduction and observed j_y reduction.

Acknowledgments
We acknowledge NASA contract NASS-02099 for the use of data from the THEMIS Mission. We would like to thank the following people specifically C. W. Carlson and J. P. McFadden for the use of ESA data, D.E. Larson and R.P. Lin for the use of SST data, and K.H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Aerospace Center (DLR) under contract 50 OC 0302. We thank J. Hohl for her assistance in preparation and editing of this paper. We would also like to thank the National Science Foundation of China, grant 41331067, 41527804, 11235009, and 41474125. The THEMIS data were downloaded from http://themis.ssl.berkeley.edu/. The data of simulations can be obtained by contacting the corresponding author through e-mail.

References