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ABSTRACT
In the context of space and astrophysical plasma turbulence and particle heating, several
vocabularies emerge for estimating turbulent energy dissipation rate, including Kolmogorov–
Yaglom third-order law and, in its various forms, j · E (work done by the electromagnetic
field on particles), and − (P · ∇) · u (pressure–strain interaction), to name a couple. It is now
understood that these energy transfer channels, to some extent, are correlated with coherent
structures. In particular, we find that different energy dissipation proxies, although not point-
wise correlated, are concentrated in proximity to each other, for which they decorrelate in a
few ion inertial scales. However, the energy dissipation proxies dominate at different scales.
For example, there is an inertial range over which the third-order law is meaningful. Contribu-
tions from scale bands stemming from scale-dependent spatial filtering show that the energy
exchange through j · E mainly results from large scales, while the energy conversion from
fluid flow to internal through − (P · ∇) · u dominates at small scales.
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1 IN T RO D U C T I O N

Energy dissipation mechanism for weakly collisional or collision-
less plasma is of principal importance for addressing long-standing
puzzles like the acceleration of energetic particles, and related ques-
tions that arise in space and astrophysical applications such as the
solar wind. Depending on the plasma conditions, different dissi-
pative mechanisms like wave–particle interactions (Hollweg 1986;
Hollweg & Isenberg 2002; Gary & Saito 2003; Markovskii et al.
2006; Gary, Saito & Li 2008; Howes et al. 2008; He et al. 2015a,b)
and heating by coherent structures and reconnection (Dmitruk,
Matthaeus & Seenu 2004; Retinò et al. 2007; Sundkvist et al. 2007;
Parashar et al. 2011; Perri et al. 2012; TenBarge & Howes 2013;
He et al. 2018), might be dominant at kinetic scales. This question
is inherently related to an open debate as to whether the fluctua-
tions in the solar wind are interacting waves, nonlinearly evolving
turbulence, or their mutual competition, each having its adherents
(Goldreich & Sridhar 1995; Bale et al. 2005; Howes et al. 2008,
2011; Saito et al. 2008; Schekochihin et al. 2008; Sahraoui et al.
2009, 2010; Narita et al. 2011; Smith, Vasquez & Hollweg 2012).
Here we focus on well-defined quantitative parameters that describe
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collisionless dissipation without being sidetracked by these contro-
versies.

While at small scales kinetic processes must be considered, the
magnetohydrodynamic (MHD) model remains a credible approxi-
mation for a kinetic plasma at scales large enough to be well sep-
arated from kinetic effects. Therefore instead of studying specific
mechanisms at kinetic scales, one can invoke classical turbulence
theory at MHD scales. A standard turbulence scenario inherited
from hydrodynamics displays an energy cascade process over the
MHD inertial range. In MHD, the energy cascade within the iner-
tial range satisfies the Politano–Pouquet law (Politano & Pouquet
1998) that describes the scaling law of the mixed third-order mo-
ments of Elsasser fields increments. Under suitable assumptions
(i.e. isotropy, homogeneity, time stationarity, and incompressibil-
ity), the third-order law follows a linear scaling relation with scale
separation and is proportional to mean energy dissipation rate. The
Politano–Pouquet law has been examined in the solar wind (Sorriso-
Valvo et al. 2007; MacBride & Smith 2008; Marino et al. 2008;
Stawarz et al. 2009; Coburn et al. 2015; Bandyopadhyay et al.
2018a) and in numerical simulations (Sorriso-Valvo et al. 2002,
2018a). A number of studies have also taken into account cor-
rections from anisotropy (Podesta 2008; Wan et al. 2009, 2010;
Osman et al. 2011; Stawarz et al. 2011), compressibility (Carbone
et al. 2009; Kritsuk et al. 2009; Forman, Smith & Vasquez 2010;
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Sorriso-Valvo et al. 2010; Marino et al. 2011; Banerjee & Galtier
2013; Banerjee et al. 2016; Hadid, Sahraoui & Galtier 2017), solar
wind shear (Wan et al. 2009, 2010) and expansion (Gogoberidze,
Perri & Carbone 2013; Hellinger et al. 2013) and Hall effect (Galtier
2008; Andrés, Galtier & Sahraoui 2018; Hellinger et al. 2018), to
name a few. More recently, Bandyopadhyay et al. (2018b) found
that the standard Kolmogorov cascade may be operative at a di-
minished intensity even in the kinetic scales, as an ingredient of
a complex cascade accommodating kinetic effects. We avoid all
such complications here in an effort to elucidate possible correla-
tions amongst several basic estimations of energy dissipation rate
(energy dissipation proxies).

‘Dissipation’ in this paper simply refers to the increase in in-
ternal energy of distribution functions. This increase in internal
energy is eventually ‘thermalized’ by infrequent collisions but this
irreversibility is not our focus here. The work done by the electro-
magnetic field on particles, j · E (Wan et al. 2012, 2015; Osman
et al. 2015; Fu et al. 2017; Yao et al. 2017; Chasapis et al. 2018a;
Ergun et al. 2018; Howes, McCubbin & Klein 2018), although
not strictly irreversible dissipation, is the necessary energy supply
from electromagnetic fields that ultimately goes into the internal
energy reservoir. It is therefore customary to deem j · E as a dissi-
pation proxy, which is highly localized in association with current
sheets (Wan et al. 2012, 2015; Osman et al. 2015; Chasapis et al.
2018a). A basic question, however, is what fraction of the electro-
magnetic energy released through j · E ends up as ion and electron
random motion as opposed to fluid flow. To this end, Yang et al.
(2017a,c) proposed recently that the interaction between pressure
tensor and strain tensor, − (P · ∇) · u, is responsible for the gen-
eration of plasma internal energy. This idea can be traced back to
early works by Braginskii (1965), which is generalized into the ki-
netic realm of collisionless systems by Del Sarto et al. (Del Sarto,
Pegoraro & Califano 2016; Del Sarto & Pegoraro 2017) as well.
More recently, there is growing evidence that elucidates the role
of pressure–strain interaction using numerical simulations (Sitnov
et al. 2018) and observations (Chasapis et al. 2018b).

The work done so far has not specifically emphasized the asso-
ciations and differences that exist among these dissipation proxies,
yet simulations and observations indicate that each of them plays
an important role in the heating process. Here we seek to describe
their correlations. To take it further, they might differ from each
other in many ways as well. We adopt a narrow tack here, inquiring
at what scales the different proxies dominate, thus providing more
detail concerning energy transfer from macroscopic fluid scales to
kinetic scales.

2 SIMULATION D ETAILS

Here we employ a fully kinetic simulation by P3D (Zeiler et al.
2002) in 2.5D geometry (three components of dependent field vec-
tors and a two-dimensional spatial grid). Number density is normal-
ized to a reference number density nr (= 1 in this simulation), mass
to proton mass mi (= 1 in this simulation), charge to proton charge
qi, and magnetic field to a reference Br (= 1 in this run). Length is
normalized to the ion inertial length di, time to the ion cyclotron time
�−1

i , velocity to the reference Alfvén speed vAr = Br/(4πminr)1/2,
and temperature to Tr = miv

2
Ar . The simulation was performed in a

periodic domain, whose size is L � 150di , with 40962 grid points
and 3200 particles of each species per cell (∼107 × 109 total parti-
cles). The ion to electron mass ratio is mi/me = 25, and the speed of
light in the simulation is c = 15vAr. Although small mass ratio and
low speed of light might introduce some unrealistic effects, they are

Figure 1. Omnidirectional energy spectrum of magnetic fluctuations (prior
to filtering). Power laws are shown for reference. Vertical lines are drawn at
wavenumbers corresponding to ion inertial scale, to electron inertial scale,
and at the filtering scale, as explained in the text.

necessary compromises to attain a large simulated system size L/di,
and a reasonably large particle number per cell, which also run-
ning for long dynamical times. This run is a decaying initial value
problem, starting with uniform density (n0 = 1.0) and temperature
of ions and electrons (T0 = 0.3). The uniform magnetic field is
B0 = 1.0 directed out of the plane. This simulation is a part of a set
of simulations to study kinetic plasma turbulence as a function of
plasma β (Parashar, Matthaeus & Shay 2018).

We analyse statistics using a snapshot near the time of maximum
root mean square (r.m.s.) electric current density (i.e., t�i = 99.0).
Fig. 1 shows the omnidirectional energy spectrum of magnetic fluc-
tuations, where k−5/3 and k−8/3 power laws are shown for reference
in the range k < 1/di and 1/di < k < 1/de, respectively. Prior to
statistical analyses, we remove noise inherent in the particle-in-cell
plasma algorithm through low-pass Fourier filtering of the fields at
kfdi ∼ 13.

3 THI RD-ORDER MOMENT ESTI MATE

In studying energy dissipation, the most satisfactory way to pro-
ceed in MHD would be to directly study the viscous and resistive
dissipation functions. However, in default of an explicit expression
for dissipation in collisionless plasma, it is promising to appeal to
a third-order law such as (Politano & Pouquet 1998)

S±
‖ (r) = 〈δz∓

‖ δz±
i δz±

i 〉 = − 4

d
ε±r (1)

where z± = u ± b/
√

4πρ, δz± = z± (x + r) − z± (x), δz±
‖ =

δz± · r/r , ε± is the mean energy transfer rate, and d is the spatial
dimension (d = 2 in our case). Upon defining S‖ = (

S+
‖ + S−

‖
)
/2,

we arrive at an expression that is proportional to the total energy
(kinetic and magnetic energies) transfer rate ε = (ε+ + ε−)/2 and
the separation r. We investigate the validity of the aforementioned
third-order law in Fig. 2, which exhibits nearly a decade of range
(∼[2di, 10di]) over which a linear variation with separation fits well,
thus finding an approximately constant energy transfer rate across
this inertial range of scales. The mean energy transfer rate evalu-
ated within [2di, 10di] range is ε = 1.87 ± 0.20 (×10−4 v3

Ard
−1
i ).

However, we should also keep in mind that the system does not
necessarily realize an inertial range that terminates exactly at the
ion scale, although the case at hand indeed shows a break of the
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Figure 2. Mixed third-order moment of Elsasser fields increments, S‖ =(
S+

‖ + S−
‖
)

/2, as a function of separation length r. A linear fit is also

indicated. The mean energy transfer rate evaluated within [2di, 10di] range
is ε = 1.87 ± 0.20 (×10−4 v3

Ard
−1
i ).

linear law in the vicinity of the ion scale. If proceeding to smaller
scales, e.g. sub-ion scales, one would prefer a dynamic law that ac-
commodates Hall effects (Galtier 2008; Andrés et al. 2018; Bandy-
opadhyay et al. 2018b; Hellinger et al. 2018), a procedure that we
will defer to a future study. Here we also emphasize that a com-
pressible channel for transfer also exists (Yang et al. 2017b), but
compressional effects are expected to be weak for the present quasi-
incompressible turbulence simulation (as established by the density
fluctuation δρ ′

α/〈ρα〉 =
√

〈(ρα − 〈ρα〉)2〉/〈ρα〉 ∼ 0.07.).
The third-order law itself is averaged over space, but is well re-

solved in scale. It is of interest to unravel the third-order expression,
examining the contributions to the final result from each point in
space. Accordingly, following Sorriso-Valvo et al. (2018a,b), we
denote by ε±

r the ‘local’ pseudo-energy transfer rates at the scale r,

ε±
r = −d

4

δz∓
‖ δz±

i δz±
i

r
, (2)

so that the ‘local’ total (kinetic and magnetic) energy transfer rate
(LET) is computed as

εr = ε+
r + ε−

r

2
. (3)

The new measure, LET, is a scalar field spatially localized. However,
the third-order law is only valid in a statistical (or ensemble average)
sense. The LET defined in this way might be reminiscent of, but
not equivalent to, the scale-to-scale energy transfer. In particular,
caution is required in claiming that the LET, whose sign can be
positive or negative, reveals exactly how much energy is transferred
locally towards smaller or larger scales in each point of the domain.
With these caveats in mind, we still believe that the LET can help
to identify patches with enhanced energy transfer, as suggested in
Marsch & Tu (1997) and Sorriso-Valvo et al. (2018b).

The spatial field of the LET is shown in Fig. 3, where we plot
isosurfaces of the LET in a space spanned by the two spatial di-
mensions (x, y) and by the separation scale r. The first feature one
can see is that the domain is interspersed with positive–negative
alternating patches, and that moreover these patches are such that
one would properly call them intermittency, since they are localized
in real space and broad band in scale. The LET is signed and its
point-wise magnitude could be large but significant cancellations

between opposite-signed spots lead to the global quantity domi-
nated by the forward cascade (positive value). It is also clear that
the structures are mainly sheet-like – elongated in the direction of
separation length without tilt, indicating that the location of en-
hanced energy transfer changes very little as the scale r is varied in
the inertial range.

4 D O M I NA N T S C A L E S O F E N E R G Y
TRANSFER C HANNELS

Elementary manipulations in the full Vlasov–Maxwell system,
without reliance on viscous or other closures, reveal the exchanges
between electromagnetic, flow and random kinetic energy (Yang
et al. 2017a,c). The first three moments of the Vlasov equation, in
conjunction with the Maxwell equations, yield energy equations:

∂tEf
α + ∇ · (Ef

α uα + Pα · uα

) = (Pα · ∇) · uα + jα · E, (4)

∂tEth
α + ∇ · (Eth

α uα + hα

) = − (Pα · ∇) · uα, (5)

∂tEm + c

4π
∇ · (E × B) = − j · E, (6)

where the subscription α = e, i indicates the species, Ef
α = 1

2 ραu2
α

is the fluid flow energy, Eth
α = 1

2 mα

∫
(v − uα)2 fα (x, v, t) dv is the

internal (thermal) energy, Em = 1
8π

(
B2 + E2

)
is the electromag-

netic energy, hα is the heat flux vector, j = ∑
α jα is the total

electric current density, and jα = nαqαuα is the electric current
density of species α. This procedure clarifies the roles of sev-
eral energy transfer channels. For example, the electromagnetic
work, j · E, exchanges electromagnetic energy with fluid flow en-
ergy, while the pressure–strain interaction − (Pα · ∇) · uα repre-
sents the conversion between fluid flow and internal energy for
species α.

These energy transfer channels were studied previously in detail
(Yang et al. 2017c,a), with little attempt made to describe their scales
of dominance. Clearly, the plasma turbulence encompasses a vast
range of scales and justification for their dominance at scales, ap-
proximate or otherwise, is crucial. A simple but essential approach
to resolve fields both in space and in scales is the space-filter tech-
nique (Germano 1992), which, although pervasive in large-eddy
simulations, merits more attention in the plasma turbulence com-
munity (Yang et al. 2017a; Camporeale et al. 2018). The low-pass
filtered field of a(x), which only contains information at length
scales >�, is defined as ā� (x) = ∫

d3rG� (r) a (x + r), where �

is the filtering scale, G� (r) = �−3G (r/�) is a filtering kernel and
G (r) is a normalized boxcar window function. To quantify the
contribution to the field from different scales, a scale-band decom-
position is introduced as

a(x) =
∑

n

a[n](x), (7)

where

a[n](x) = ā�n
(x) − ā�n+1 (x). (8)

The band-filtered field a[n] is therefore the fraction of the field a in
band [n], which contains only scales in the band (�n, �n + 1]. Here
these bands are defined with a logarithmic binning (γ n�0, γ n + 1�0],
where γ > 1 (γ = 1.5 is used in this work) and �0 is taken as
the grid spacing of the simulation δx ∼ 0.0365di. Therefore, the
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Figure 3. Isosurfaces of the LET in a space spanned by the two spatial dimensions (x, y) and the separation scale r.

contribution to the pressure–strain interaction and the electromag-
netic work from different scale bands is − (

P [m]
α · ∇) · u[n]

α and
j [m] · E[n], respectively.

Fig. 4 shows the normalized contribution to the pressure–
strain interaction from different scale bands, 〈− (

P [m]
α · ∇) ·

u[n]
α 〉/〈− (Pα · ∇) · uα〉, for both electrons and ions. In this paper,

the symbol 〈〉 denotes a volume average over the simulation do-
main. Remarkably, the band-filtered pressure–strain interaction for
electrons densely populates along the diagonal as shown in the
plot, as is the case for ions. They are suggestive of a local interac-
tion, namely the interaction mainly involves comparable scales and
the contribution from distant bands is negligible. For the normalized
contribution to the electromagnetic work from different scale bands,
〈 j [m] · E[n]〉/〈 j · E〉 in Fig. 5, notable departures from the diagonal
indicate that a wider range of scales are coupled in the interaction.
It is beyond the scope of this paper to explore in detail the reasons
for which the interactions mainly involve nearby scales, but it may
be of some help to refer to the locality of scale interactions in MHD
turbulence (Alexakis, Mininni & Pouquet 2005; Verma, Ayyer &
Chandra 2005; Aluie & Eyink 2010; Teaca, Carati & Domaradzki
2011; Yang et al. 2016).

Also noteworthy in Fig. 4 is that the most intense (dark blue)
contribution to the pressure–strain interaction is confined to a
small region very near the origin, i.e. a few di. The contribu-
tion to the pressure–strain interaction mostly results from small
scales, <6di in the present simulation. Note that the full pressure–
strain interaction can be further decomposed as − (Pα · ∇) · uα =
−pαθα − π

(α)
ij D

(α)
ij , where θα = ∇ · uα is the dilatation, D

(α)
ij =(

∂iu
(α)
j + ∂ju

(α)
i

)
/2 − θαδij /3 is the traceless strain rate tensor,

and π
(α)
ij = P

(α)
ij − pαδij is the deviatoric pressure tensor. The re-

sult shown here poses no contradiction with the conclusion in
Aluie, Li & Li (2012) and Yang et al. (2016) that the pressure-
dilatation derives most of its contribution from large scales, since
the pressure-dilatation terms here only account for a small fraction
of 〈− (Pα · ∇) · uα〉. For example, the global averages of −π

(α)
ij D

(α)
ij ,

1.05 × 10−4 v3
Ard

−1
i for electrons and 8.57 × 10−5 v3

Ard
−1
i for ions

are much greater than those of −pαθα , 9.03 × 10−6 v3
Ard

−1
i for

electrons and −8.14 × 10−6 v3
Ard

−1
i for ions. Therefore, the full

pressure–strain interaction behaves quite in analogy with the shear
associated part −π

(α)
ij D

(α)
ij , which can be cast as viscous dissipation

in highly collisional hydrodynamic limit (Braginskii 1965; Vin-
centi & Kruger 1965). Moving into the realm of strongly com-
pressed plasma, as in the turbulent magnetosheath (Chasapis et al.
2018b), compressibility effect might make a big difference.

The positive contribution to the electromagnetic work in Fig. 5
is concentrated at relatively large scales, ∼[6di, 16di] in the present
simulation. While we make no claims of universality of these scale
ranges at which the energy transfer channels dominate, due to differ-
ences in accessible parameters in simulations and in direct observa-
tional analysis, it does qualitatively support the conjecture that the
pressure–strain interaction mainly operates at small scales, while
the electromagnetic work acts primarily at relatively large scales.

5 SPATI AL C ORRELATI ON BETWEEN LET
A N D EN E R G Y TR A N S F E R C H A N N E L S

There is accumulating evidence of the association between coherent
structures and plasma dissipation. For example, HVM simulations
have shown that strong distortions of the distribution function occur
near current sheets (Greco et al. 2012; Servidio et al. 2012). Co-
herent structures (measured as high ‘PVI’ events) in any of several
variables – density, magnetic field and velocity, are associated with
extremal values of proton temperature anisotropy (Servidio et al.
2015). One also finds interesting and inter-related roles of vortic-
ity and symmetric strain in heating (Huba 1996; Del Sarto et al.
2016; Del Sarto & Pegoraro 2017; Franci et al. 2016; Parashar &
Matthaeus 2016). Meanwhile, all the energy dissipation proxies dis-
cussed above, the local energy transfer rate (LET), the electromag-
netic work j · E and the pressure–strain interaction − (P · ∇) · u,
are systematically concentrated in space, and these concentrations
occur within or very near coherent structures (Wan et al. 2012, 2016;
Parashar & Matthaeus 2016; Yang et al. 2017a,c; Sorriso-Valvo et
al. 2018a,b).
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Figure 4. Normalized contribution to the pressure–strain interaction from different scale bands, 〈− (
P [m]

α · ∇) · u[n]
α 〉/〈− (Pα · ∇) · uα〉, for both (left)

electrons and (right) ions.

Figure 5. Normalized contribution to the electromagnetic work from dif-
ferent scale bands, 〈 j [m] · E[n]〉/〈 j · E〉.

The connection between coherent structures and energy trans-
fer represents yet another way in which coherent structures and
intermittency contribute to plasma dissipation and heating, further
advancing a complementary view that has been emerging in recent
years: energy cascade leads to several channels of energy conver-
sion, interchange and spatial rearrangement that collectively leads
to production of internal energy. Given the diversity of energy dis-
sipation proxies that may dominate at different scales, a significant
question is the extent to which they are related in the overall picture
of intermittent heating.

For a first diagnostic to address these questions, Fig. 6 shows
spatial contour maps of the LET at 5di (i.e. εr=5di

), j · E and
− (P · ∇) · u separately for protons and electrons in several sub-
regions. The first thing to notice is that these energy dissipation

proxies are highly localized with intense values concentrated at
small regions. Also seen immediately is the greatly similar pattern
of their spatial distributions, though point-wise magnitudes and
signs might be different. The striking similarity between the spatial
patches of the different proxies suggests that coherent structures,
energy transfer and dissipation are all correlated to a certain extent.

We compute the global volume averages of energy dissipation
proxies, as shown in Table 1. These entries in the table, wherein
〈− (Pe · ∇) · ue〉 + 〈− (P i · ∇) · ui〉 ∼ 1.92 × 10−4 (v3

Ard
−1
i ), are

meaningfully compared with the mean energy dissipation rate es-
timated by the third-order law, ε ∼ 1.87 × 10−4 (v3

Ard
−1
i ). It is in-

teresting to note that 〈 j · E〉 is negative, suggesting that kinetic
energy of particles is converted into electromagnetic energy at this
moment. We found that the global average of the electromagnetic
work oscillates significantly over time at high frequencies (com-
parable to ωpe). This is likely an artefact of the artificial value
of ωpe/ωce in our simulation, and could be remedied by time av-
eraging the results over a plasma oscillation period (Haggerty et
al., in preparation). As computed by Wan et al. (2015, 2016),
the energy conversion rate in the frame moving with electrons
〈De〉 = 〈 j · (E + ue × B) − ρc (ue · E)〉 is somewhat lower than
ε and 〈− (Pe · ∇) · ue〉 + 〈− (P i · ∇) · ui〉. Thus this measure may
only account for a part of total dissipation.

More diagnostics, such as scatter plots of any two proxies
(not shown here) and the corresponding Spearman correlation
coefficients ρs, can be used to clarify the possible correlation.
However, their Spearman correlation coefficients are rather small,
e.g. ρs(

∣∣εr=5di

∣∣ , | j · E|) = 0.25, ρs(
∣∣εr=5di

∣∣ , |− (Pe · ∇) · ue|) =
0.042 and ρs(| j · E| , |− (Pe · ∇) · ue|) = 0.057. The conclusion
drawn in this way may seem at first to be in conflict with the finding
of Fig. 6. But it is maybe not so surprising that there is not a strong
point-wise correlation amongst the LET, the pressure–strain interac-
tion and the electromagnetic work. This recalls the lower correlation
between proton heating and current relative to vorticity, and related
findings (Servidio et al. 2015; Del Sarto et al. 2016; Franci et al.
2016; Parashar & Matthaeus 2016). According to equations (4)–(6),
the transport terms on the left-hand side could be locally enormous,
thus spoiling co-location of the proxies.
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Figure 6. Contours for εr=5di
, j · E, − (Pe · ∇) · ue and − (P i · ∇) · ui at small subregions.

Table 1. Volume averages of the LET, the electromagnetic work, the pressure–strain interaction and the electron-frame dissipation
measure De (Zenitani et al. 2011). Quantities listed are in the code units v3

Ard
−1
i .

εa 〈 j · E〉 〈 j e · E〉b 〈 j i · E〉c 〈− (Pe · ∇) · ue〉 〈− (P i · ∇) · ui〉 〈De〉d

1.87 × 10−4 −5.1 × 10−5 1.24 × 10−4 −1.75 × 10−4 1.14 × 10−4 7.8 × 10−5 1.42 × 10−4

aVolume average of the LET εr evaluated within [2di, 10di] range.
b,cSeparate contributions of electrons and protons to the electromagnetic work.
dThe work done by electromagnetic fields on particles, evaluated in the frame of electron bulk motion.

We anticipate then that the energy dissipation proxies in the
subsequent energy transfer are juxtaposed to, but not exactly
co-located with one another. This complex spatial arrangement
can best be illustrated by a scale-dependent cross-correlation
function,

R(f , g, r) = 〈(f (x + r) − 〈f 〉) (g(x) − 〈g〉)〉
〈(f (x) − 〈f 〉) (g(x) − 〈g〉)〉 , (9)

where f and g are the fields and the direction of displacement r
is arbitrary for isotropic turbulence in the plane. Such correlations
have been used to show strong correlations between hotter plasma
and vorticity as compared to the correlations between hotter plasma
and current (Parashar & Matthaeus 2016), although the correlations

were not normalized in the same fashion there. Seen in Fig. 7 is that
the correlation curves peak near 2di. It is natural that the statistical
connection between the proxies will become infinitely attenuated as
the points become infinitely far apart in space. (This follows from the
familiar clustering property of turbulent fluctuations.) It is then pos-
sible to calculate a correlation length, λc(f , g) = ∫ ∞

0 R(f , g, r)dr ,
a convenient measure of the spatial extent over which the fields are
appreciably correlated. The results are shown in Table 2. There is
clear delocalization between the proxies, so that − (Pα · ∇) · uα and
j · E are larger near, not necessarily at, locations of large εr=5di

.
Note that the short correlation length associated with j · E is in part
due to its reversal of sign around spatial separation r = 4di.
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ε ∇
ε ∇
ε

Figure 7. Two-point cross-correlation functions of εr=5di
, j · E,

− (Pe · ∇) · ue and − (P i · ∇) · ui .

Table 2. Correlation lengths estimated from the data
in Fig. 7.

Proxies λc (di)
(
εr=5di

, − (Pe · ∇) · ue

)
7.85(

εr=5di
, − (P i · ∇) · ui

)
4.72(

εr=5di
, j · E

)
1.77

6 C O N C L U S I O N S

The dissipative mechanism in weakly collisional plasma is a topic
that pervades decades of studies without a consensus solution. One
popular approach to explain dissipation is to resort to wave particle
interactions, with instabilities regulating the dynamics of extreme
distortions of the distribution function. A complementary view is
that several channels of energy conversion emerge in a turbulence
cascade process. In this paper, we study energy dissipation proxies
based on the cascade, i.e. the local energy transfer rate (LET),
the electromagnetic work j · E and the pressure–strain interaction
− (Pα · ∇) · uα .

We find that although these proxies are displaced in space, en-
hanced electromagnetic work and pressure–strain interaction are
concentrated in the proximity of regions with intense LET. Their
connection is a somewhat atypical property in that it is not read-
ily found using point-wise correlation, but rather one must appeal
to statistics, such as two-point cross-correlation functions, to un-
derstand it. The basis for their association but also delocalization
in space lies in a recognition of the key steps of energy trans-
fer: conservative rearrangement of energy in space due to transport
terms; conservative rearrangement of energy in scales due to energy
cascade; electromagnetic work on particles that drives flows; and
pressure–strain interactions that produce internal energy.

The association between the LET and energy transfer channels in
this paper, in conjunction with the results in Hall MHD (Camporeale
et al. 2018) and compressible MHD (Yang et al. 2016, 2017b),
should be an adequate starting point for further investigating, for
example, how do the characteristics of energy transfer vary going
from MHD to kinetic scales. We show here that there is a decade
of range, ∼[2di, 10di], over which the third-order law is valid. It
is also found that contributions to j · E and − (Pα · ∇) · uα are

mainly from large (∼[6di, 16di] in this simulation) and small (<6di

in this simulation) scales, respectively. Therefore, these proxies are
dominated at different scales.

Taken together, their connections and differences further support
this intuitive picture (Yang et al. 2017c): the cascade drives scale-to-
scale energy transfer, with a net transfer of energy to small scales,
and leads to intermittent distributions of several channels of energy
conversion that in turn provide the dominate dissipation mechanism.
Electromagnetic energy is converted into flows by electromagnetic
work, while pressure–strain interaction converts energy from flows
into internal energy. Note that none of the three dissipation proxies
we examined are sign-definite, and therefore some type of averag-
ing is necessary to interpret any of them as a net rate of conversion
or transfer in the complex pathways to dissipation and heating. It is
worth emphasizing that our 2.5D PIC simulation is not intended to
reproduce any particular solar wind feature or data interval. While
this model is a powerful tool, it also fails to properly account for
important real effects, such as solar wind expansion, three dimen-
sionality, ion-to-electron mass ratio, and so on. Consequently, a
report such as the present one necessarily leads to an incomplete
description of energy dissipation. We anticipate our results to be
extended to more sophisticated models in future works.
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