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Abstract The wave normal angle of excited whistler waves was previously considered to be controlled by
the parallel plasma beta (β∥h) of anisotropic hot electrons, while the effects of thermal electrons were usually
neglected. By combining both the linear theoretical and 2‐D particle‐in‐cell (PIC) simulation models, we
have investigated the effects of thermal electrons on the whistler anisotropy instability. In the high‐beta
(β∥h ≥ 0.025) regime, the wave normal angle of the dominant whistler mode with the largest growth rate is
always 0°, which is not affected by thermal electrons, while, its wave frequency and linear growth rate
decrease with the density and temperature of thermal electrons. These results are also confirmed by PIC
simulations. In the low‐beta (β∥h ≤ 0.025) regime, with the increase of the density and temperature of
thermal electrons, the wave normal angle of the dominant whistler mode turns to zero from a large value.
This change could be due to the stronger damping caused by thermal electrons for oblique whistler mode,
since oblique wave usually has a smaller cyclotron resonant velocity than parallel wave. PIC simulations also
show a consistent result, but reproduce a broad magnetic spectrum, even in the case including sufficient
thermal electrons. Furthermore, thermal electrons with large parallel velocities are resonantly accelerated in
the perpendicular direction, while parts of hot electrons are trapped and accelerated in the parallel direction.
Our study suggests that the wave normal angle of whistler mode in the Earth's magnetosphere could be
determined by both anisotropic and thermal electrons.

1. Introduction

Whistler mode chorus waves are the most intense emissions within the frequency range of 0.1–0.8fce ( fce is
the equatorial electron gyrofrequency) and are also known as chorus waves in the Earth's inner magneto-
sphere (Burtis & Helliwell, 1969; Li et al., 2012). Whistler mode chorus waves have been widely believed
to play an important role in controlling the electron dynamics in the Van Allen radiation belt. They can
not only scatter the lower energy (0.1–30 keV) electrons into the atmosphere to cause the diffuse aurora
(Ni et al., 2008, 2011; Nishimura et al., 2013; Thorne et al., 2010) but also accelerate the seed electrons (hun-
dreds of keV) up to relativistic energies (approximately MeV) to refill the radiation belt during magnetic
storms (Reeves et al., 2013; Thorne et al., 2013; Xiao et al., 2014). Whistler mode waves in the magnetosphere
often exhibit a banded structure in the spectrogram, which are separated into two bands (i.e., lower and
upper bands) by a power minimum at about 0.5fce (Gao, Lu, et al., 2016; Li et al., 2012; Ratcliffe & Watt,
2017; Tsurutani & Smith, 1974). Many observations have demonstrated that the main source region of whis-
tler mode waves is located near the magnetic equator within a narrow range of magnetic latitudes (~±5°;
Lauben et al., 2002; LeDocq et al., 1998; Santolik et al., 2005). Whistler waves in the magnetosphere, espe-
cially lower band waves, are considered to extract the free energy from the anisotropic hot electrons injected
from the plasma sheet (Fu et al., 2014; Gao et al., 2014a; Ke et al., 2017; Li et al., 2010; Lu et al., 2004, 2010).

Most of the whistler mode waves in the magnetosphere have a very small wave normal angle (less than 10°;
Li et al., 2013), but there is also a secondary population with a large wave normal angle (Gao, Mourenas,
et al., 2016; Li et al., 2013; Santolik et al., 2009). Moreover, whistler mode waves with a finite wave normal
angle exhibit some interesting features, distinct from parallel wave characteristics. Such lower band oblique
whistler mode wave has a strong electrostatic component, which can couple with its electromagnetic com-
ponent to drive the upper band harmonic wave (Gao, Lu, et al., 2016; Gao et al., 2018). This lower band cas-
cade mechanism is proposed to explain the generation of multiband chorus waves (Chen et al., 2017; Gao,
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Lu, et al., 2016, Gao, Ke, et al., 2017, Gao et al., 2018). Similarly, two non-
parallel lower band chorus waves can also be coupled with each other,
thereby generating a more oblique upper band wave (Fu et al., 2017;
Gao, Lu, et al., 2017). Since there are considerable parallel fluctuating
electric fields for oblique whistler waves, the Landau resonance also plays
an important role in scattering electrons with energies of tens of keV
(Agapitov et al., 2015; Artemyev et al., 2016; Shprits & Ni, 2009). Both the-
ory and observations also indicate that oblique whistler waves cause the
efficient pitch angle scattering loss of electrons through higher‐order
cyclotron resonances (Artemyev et al., 2014; Li et al., 2014; Mourenas
et al., 2012).

Previous studies considering an electron population consisting of only
one (hot) component have shown that the wave normal angle of excited
whistler waves is mainly controlled by the parallel plasma beta (β∥h) of
anisotropic hot electrons (An et al., 2017; Gary et al., 2011; Yue et al.,
2016). Based on the kinetic linear theory, Gary et al. (2011) pointed out

that the dominant whistler mode with the maximum growth rate is parallel propagating if β∥h > 0.025,
while the maximum growth rate shifts to oblique propagation if β∥h < 0.025. This critical value of plasma
beta is then supported by a statistical work conducted by Yue et al. (2016), where they found quasi‐parallel
and oblique lower band chorus waves are roughly separated by β∥h = 0.025. The two‐dimensional (2‐D)
particle‐in‐cell (PIC) simulations also give results that are consistent with the linear theory (An et al.,
2017). However, in above theoretical and simulation works, the plasma only includes one electron compo-
nent, that is, anisotropic hot electrons, but there are typically at least two components of electrons (ther-
mal and hot electrons) in the Earth's magnetosphere (Fu et al., 2014; Gao et al., 2014a; Li et al., 2010).
Moreover, the statistical results by Yue et al. (2016, Figure 3 therein) indicate that there are also some
quasi‐parallel lower band whistler waves with very small wave normal angles below β∥h = 0.025.
Therefore, in this paper, we try to investigate the effects of thermal electrons on the whistler anisotropy
instability by employing both the linear theory and 2‐D PIC simulation model. Interestingly, we find that
under certain conditions, the existence of thermal electrons greatly change the wave normal angle distri-
bution of excited whistler mode waves besides the reduction of the growth rates.

The rest of this paper is organized as follows. Both linear theoretical and PIC simulation models used in this
study are described in section 2. The results are presented in section 3. At last, we summarize the principal
results and give some related discussions in section 4.

2. Linear Theoretical and PIC Simulation Models

In this paper, we try to study the effects of thermal electrons on whistler waves excited by anisotropic hot
electrons in a homogeneous plasma by a combination of the linear theory and PIC simulations. The
WHAMP (Waves in Homogeneous Anisotropic Magnetized Plasma) model (Ronnmark, 1982) is chosen to
calculate the dispersion relation and linear growth rates, which has been widely used in previous works
(Xiao et al., 2007; Chen, Gao, Lu, Sun, et al., 2018, Chen, Gao, Lu, & Wang, 2018; Denton, 2018). This code
can be easily accessed on https://github.com/irfu/whamp. In each case, there are generally three
components (i.e., protons, thermal electrons, and hot electrons) in the plasma system, which are denoted
by subscripts i, t, and h hereafter, respectively. The anisotropy is defined by the ratio between the
perpendicular and parallel temperatures with respect to the background magnetic field for each component.
Both protons and thermal electrons satisfy isotropic Maxwellian velocity distribution, while the velocity
distribution of anisotropic hot electrons is bi‐Maxwellian with Th⊥/Th∥ > 1. In all cases, the ratio of electron
plasma frequency and gyrofrequency (ωpe/Ωe) is fixed as 4, which is a reasonable value in the inner
magnetosphere (Gao et al., 2014b). To perform one linear theory calculation, we need to initialize some
parameters in the WHAMP model, such as the density, parallel beta, and anisotropy of each component,
and ωpe/Ωe.

The PIC simulation model is a powerful tool to study plasma waves in a self‐consistent system (Chen, Gao,
Lu, Sun, et al., 2018; Fu et al., 2014; Gao, Ke, et al., 2017; Ke et al., 2017, 2018), where the electromagnetic

Table 1
Some Initial Parameters in These Simulation Runsa

Parameter Run 1 Run 2 Run 3 Run 4

β∥h 0.5 0.5 0.012 0.012
Ah 3.0 3.0 9.0 9.0
β∥t 0 0.25 0 0.006
nt/ntotal 0 90% 0 80%
L∥(L⊥)/λe 48.0 51.2 14.0 20.0
ΩeΔt 0.02 0.04 0.02 0.02
nx(ny) 128 256 128 128
np 10,000 500 10,000 10,000

aThese parameters include the parallel plasma beta of hot electrons β∥h,
temperature anisotropy of hot electrons Ah, parallel plasma beta of ther-
mal electrons β∥t, proportion of thermal electrons nt/ntotal, simulation
box size in x and y direction L∥(L⊥)/λe, time step ΩeΔt, number of cells
nx(ny) in x and y direction, and number of macroparticle np in each cell
for each species.
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fields are updated by solving Maxwell equations and the positions and velocities of ions and electrons are
advanced by solving relativistic motions in the electromagnetic fields. This model includes the full three‐
dimensional electromagnetic fields and velocities but only allows spatial variations in x and y directions.
The background magnetic field B0 is along the x axis. In this model, the periodic boundary condition is
adopted. Note that the protons are simply treated as a fixed positively charged background by setting the
mass ratio between proton and electron (mi/me) as infinity. Here space and time are normalized to the

electron inertial length λe = c/ωpe and inverse of electron gyrofrequency Ω−1
e , respectively. In this study,

we have carried out four runs, and the initial setup for each run has been listed in Table 1.

3. Results
3.1. Linear Theoretical Results

Since the parallel plasma beta of hot anisotropic electrons β∥h is a key fac-
tor controlling the wave normal angles of excited whistlers, we investigate
the effects of thermal electrons for cases classified into two regimes (high‐
beta [β∥h>0.025] and low‐beta [β∥h<0.025]) with the WHAMP model.

Note that the parallel plasma beta is defined by β‖j ¼ 2μ0nekBT‖j=B2
0

(where j represents different species and ne is the total electron density)
in our study.

Figure 1 shows (a, c) the linear growth rate γm and (b, d) frequencyωm as a
function of wave normal angle for a series of cases with different parallel
plasma betas in the high‐beta regime. Here γm and ωm denote the growth
rate and frequency of the wave mode with the maximum linear growth
rate at each wave normal angle. In Figures 1a and 1b, there are only ani-
sotropic hot electrons in those cases, while there is a thermal component
(β‖t = 0.5β∥h) accounting for 90% of total electrons in cases presented in
Figures 1c and 1d. In Figure 1a, we find that the dominant whistler mode
with the largest growth rate for each case is always parallel propagating in

Figure 1. (a, c) The linear growth rate γm and (b, d) frequency ωm as a function of wave normal angle for a series of cases
with different parallel plasma betas in the high‐beta regime. In each case, γm and ωm denote the growth rate and fre-
quency of the wave mode with the maximum linear growth rate at each wave normal angle.

Figure 2. The distribution of the linear growth rate γd in the (β∥t, nt) plane
in the high‐beta regime. Here γd represents the linear growth rate of the
dominant wave mode in each case.

10.1029/2019JA026463Journal of Geophysical Research: Space Physics

FAN ET AL. 5236



this high‐beta regime, which has also been pointed out by Gary et al.
(2011). Their growth rates increase with the β∥h (Figure 1a), while their
frequencies slightly decrease with the β∥h (Figure 1b). The effects of
thermal electrons can be found in Figures 1c and 1d. First, the wave
normal angle of the dominant wave mode for each case is still at 0°, but
their growth rates become much smaller compared with cases only
including hot electrons. This obvious reduction of growth rates is
mainly caused by the lower percentage of hot anisotropic electrons.
Second, the frequencies of unstable wave modes in all cases are found to
decrease, and there is also a trend that the wave frequency is inversely
correlated with the β∥h.

The effects of thermal electrons on whistler modes in the high‐beta regime
are summarized in Figure 2, which displays the distribution of the linear
growth rate γd in the (β∥t, nt) plane. Hereafter, the subscript d denotes the
dominant wave mode with the maximum growth rate in each case. Here
the parallel plasma beta and anisotropy of hot electrons are fixed as
β∥h = 0.2 and Ah = 2.25, which are chosen without any preference in
the high‐beta regime. Just as discussed above, the growth rate of the domi-
nant whistler mode is found to decrease with the increasing proportion of
thermal electrons. Besides, with the increase of the plasma beta of thermal
electrons, the growth rate also becomes smaller, which may be due to the
stronger damping effect caused by thermal electrons with a higher tem-
perature. It is worth noting that the wave normal angle of the dominant
wave mode is still 0°, which is not affected by thermal electrons.

With a same format as Figure 1, Figure 3 presents several cases in the low‐
beta regime. For the cases only including anisotropic electrons, the domi-
nant whistler modes turn out to be oblique with respect to the background
magnetic field, with wave normal angle around 50° (Figure 3a). Their
growth rates also increase with the plasma beta of anisotropic electrons.

Figure 3. (a, c) The linear growth rate γm and (b, d) frequency ωm as a function of wave normal angle for a series of cases
with different parallel plasmas betas in the low‐beta regime.

Figure 4. The distribution of (a) the linear growth rate γd and (b) wave nor-
mal angle θd of the dominant whistler mode in the (β∥t, nt) plane in the low‐
beta regime.
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Since a high anisotropy is chosen here, then the frequencies of those dominant modes fall into the upper
band. When there is a thermal component in the plasma system, the growth rates of all wave modes also
significantly decrease (Figure 3c). What is interesting here is that the growth rates show varying degrees

Figure 5. (a) The linear growth rate as a function of the wave normal for two cases (yellow curve in Figures 3a and 3c).
The black curve denotes the case only containing anisotropic component, while the red curve represents the case
containing both thermal and anisotropic components. The dominant wave mode for each case is marked by a star:
magenta star for the parallel mode and blue star for the oblique mode. (b) The initial parallel velocity distributions of hot
(black solid line) and thermal (black dotted line) components. The vertical lines mark the resonant velocities of two
selected modes in panel a.

Figure 6. (a) The temporal profile of the intensity of fluctuating magnetic fields δB2=B2
0, (b) the distribution of magnetic power δB2

total=B
2
0 in the (kx,ky) plane at

Ωet = 30, (c) the distribution of fluctuating magnetic fields δBz/B0 at Ωet = 30, and (d) the temporal profile of the magnetic amplitude for the dominant wave
modemarked by black stars “*” in panel b for Run 1. The time shown in panels b and c is corresponding to that marked by the blue dotted line in panel a. In panel d,
the red dashed line represents the linear fit of δBk(t)/B0 in the linear growth phase.
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of decline for wave modes with different wave normal angles in each case. Specifically, the whistler mode
with a larger wave normal angle (>30°) experiences a more significant decrease of the linear growth rate.
As a result, the dominant wave mode becomes parallel propagating in some cases, such as red and yellow
curves in Figure 3c.

The effects of thermal electrons on the growth rate and wave normal angle of the dominant whistler mode in
the low‐beta regime are shown in Figure 4, which presents the distribution of (a) the linear growth rate γd
and (b) wave normal angle θd of the dominant whistler mode in the (β∥t, nt) plane. Note that the parallel
plasma beta and anisotropy of hot electrons are fixed as β∥h = 0.02 and Ah = 3.78, which are chosen without
any preference in the low‐beta regime. Similar to the cases in the high‐beta regime (Figure 2), the linear
growth rate is also inversely correlated with the plasma beta and density of thermal electrons (Figure 4a). In
Figure 4b, the white area denotes that the dominant whistler mode is parallel propagating (i.e., θd = 0) in
those cases. Most notably, there is a clear turning point of the wave normal angle of the dominant wave
mode with the increase of the β∥t and nt. Specifically, the excited whistler mode tends to become parallel pro-
pagating from an oblique one with the increase of the β∥t and nt. This indicates that the wave normal angle of
whistler mode with the maximum growth rate is not only controlled by the plasma beta of anisotropic elec-
trons but also modulated by thermal electrons. To better understand the change of wave normal angle, a
further physical explanation is given in Figure 5. Taking two cases (yellow curve in Figures 3a and 3c) as
examples, we have presented the linear growth rate as a function of the wave normal angle for two cases in
Figure 5a. The black curve denotes the case only containing anisotropic component, and the wave normal
angle of the dominant whistler mode is about 44°. While, the red curve represents the case containing both
thermal and anisotropic components, and the dominant mode now becomes parallel propagating. We select
these two modes (blue and magenta stars) to calculate their resonant velocities, which are shown in Figure 5
b. The parallel velocity distributions of hot and thermal components are denoted by the black solid and
dotted lines, respectively. First, the Landau resonant velocity of the oblique wave is far away from the ther-
mal population. Second, both parallel and oblique waves can interact with thermal electrons through the

Figure 7. The scatterplots of electrons in the (vx, vy) plane (a, c, and e), (vz, vy) plane (b, d, and f), (x, vx) plane (g, i, and k), and (x, vz) plane (h, j, and l) atΩet= 10, 40,
and 60, respectively.
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cyclotron resonance, but the oblique wave has a smaller resonant velocity. This means that oblique waves
experience stronger damping by thermal electrons, which could be the main reason that less oblique
waves are excited in this case. To roughly estimate the damping rate of two wave modes caused by
thermal electrons, we simply consider a plasma system only containing thermal component. With the
WHAMP model, we calculate the growth rates for oblique (k∥λe ≈ 2.40, k⊥λe ≈ 2.30, and ω ≈ 0.65Ωe) and
parallel (k∥λe ≈ 1.69 and ω ≈ 0.71Ωe) modes to be −0.0081 and −0.0038Ωe. Note that the frequencies of
two wave modes change due to the change of the dispersion relation of whistler modes. We can find that
both modes are damped by thermal electrons, but the oblique mode experiences stronger damping.

3.2. PIC Simulations

With a 2‐D PICmodel, four runs listed in Table 1 are performed to further demonstrate the effects of thermal
electrons on the generated whistler waves in a more self‐consistent plasma system. Figure 6 gives the result

for Run 1, including (a) the temporal profile of the intensity of fluctuating magnetic fields δB2=B2
0 (δB

2 ¼ δ

B2
x þ δB2

y þ δB2
z), (b) the distribution of total magnetic power δB2

total=B
2
0 in the (kx,ky) plane atΩet= 30, (c) the

distribution of fluctuating magnetic fields δBz/B0 at Ωet = 30, and (d) the temporal profile of the magnetic
amplitude δBk/B0 for the dominant wave mode marked by black stars “*” in panel b. Here the total magnetic
power is the sum of the power of all three magnetic components. In Figures 6b and 6c, in order to compare
with the results obtained from the linear theory, the time is chosen in the linear growth phase of fluctuating
magnetic fields, which has been marked by the blue dotted line in Figure 6a. As shown in Figure 6a, the ani-

sotropic hot electrons are unstable to excited whistler mode waves, which then saturate at ~50Ω−1
e after a

linear growth phase. The dominant wave mode (k*mλe≈0:79) with the largest magnetic power is located at
the parallel direction (Figure 6b), which is consistent with the prediction of the linear theory (kmλe = 0.8)
in this case. Moreover, the generated whistler waves actually exhibit a broad spectrum, which further result
in the modulation of waveforms in both x and y directions (Figure 6c). In Figure 6d, at each time point, we

Figure 8. The simulation results for Run 2 in the same format as Figure 6.
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Figure 9. The simulation results for Run 3 in the same format as Figure 6.

Figure 10. The scatterplots of electrons for Run 3 in the same format as Figure 7.
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first obtain the magnetic power spectrum in the (kx,ky) plane by performing the 2‐D Fourier transform and

then select the magnetic power at k*mλe≈0:79. Through a linear fit of δBk/B0 from 2 to 36Ω−1
e , the growth rate

of this dominant wave mode is estimated as ~0.16Ωe, which is quite similar to that given by the linear theory
(γ ≈ 0.17Ωe). We have also investigated the electron dynamics during the instability for Run 1. Figure 7
exhibits the scatterplots of hot electrons in the (vx, vy) plane (a, c, and e), (vz, vy) plane (b, d, and f), (x, vx)
plane (g, i, and k), and (x, vz) plane (h, j, and l) at three different times. Most notably, the excited whistler
mode waves scatter electrons into the parallel direction, resulting in the reduction of anisotropy
(Figures 7c and 7e), and also the saturation of the instability. Meanwhile, the perpendicular bulk velocity
of hot electrons fluctuates along the x axis (Figures 7j and 7l), which is consistently coupled with the
wave fields.

With a same format, Figure 8 illustrates the results for Run 2, where 90% of electrons are thermal electrons.
The growth rate of fluctuating magnetic fields is found to decrease so significantly, as well as the saturation
amplitude (Figure 8a). Themagnetic spectrum of excited whistler waves becomes very narrow but still peaks
at the parallel direction (Figure 8b). Meanwhile, the fluctuating magnetic fields in Figure 8c depict four clear
uniform waveforms. Compared with Run 1, the wave number and growth rate of the dominant wave mode

in Run 2 decline to 0.61λ−1e and 0.0095Ωe. In Run 2, the evolution of hot electrons is quite similar to that in
Run 1, while thermal electrons are found to be slightly heated in the perpendicular direction (not shown).

The low‐beta cases are also simulated. The results of Run 3 are displayed in Figure 9 in the same format as
Figure 6. In this case, the parallel plasma beta of anisotropic electrons is very low (i.e., β∥h = 0.012), which is
in favor of generation of oblique whistler waves. Consistent with the linear theory, the dominant wave
mode is found to have a wave normal angle of 45° (Figure 9b). Besides, those excited whistler waves show
a very broad magnetic spectrumwith a large range of wave normal angles from 0° to ~50°. Since many waves
modes are generated with different wave numbers, the waveforms shown in Figure 9c have been strongly
modulated and are far from a sinusoidal pattern. Here the calculated growth rate of the dominant wave

mode (k*mxλe ¼ 2:24) is about 0.093Ωe, which is quite similar to the value (0.0997Ωe) obtained from the

Figure 11. The simulation results for Run 4 in a same format as Figure 6.
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linear theory. In the same format as Figure 7, Figure 10 presents the evolution of the electron distribution for
Run 3. Expectedly, the anisotropy of electrons gradually decreases after the excitation of whistler mode
waves, which is due to the scattering of electrons in the parallel direction (Figures 10c and 10e). Since the
oblique whistler mode waves have the significant parallel electric fields, it is interesting to find that some
electrons with large parallel velocities are trapped in the wave potential and accelerated in the parallel
direction (Figures 10e and 10k).

Figure 11 gives the results of Run 4. In this low‐beta case, the thermal electrons also reduce the growth and
intensity of fluctuating magnetic fields (Figure 11a). Most notably, although the oblique whistler modes also
appear in this system, the strongest mode now becomes nearly parallel propagating (Figure 11b), whose
growth rate is calculated as 0.0097Ωe (Figure 11d). Figure 12 displays the scatterplots of electrons in the
(vx, vy) plane (a and e), (vz, vy) plane (b and f), (x, vx) plane (c and g), and (x, vz) plane (d and h) for both ther-
mal and hot components at Ωet = 800. Although the oblique whistler mode waves are excited with lower
amplitudes, there are still parts of hot electrons trapped and accelerated in the parallel direction
(Figure 12g). Moreover, in Figure 12a, we can also find that some thermal electrons are resonantly acceler-
ated in the perpendicular direction, which is consistent with the result shown in Figure 5b.

4. Conclusion and Discussion

In this paper, we have investigated the effects of thermal electrons on the whistler anisotropy instability
using both the linear theory and 2D PIC simulations. In the high‐beta (β∥h ≥ 0.025) regime, the wave nor-
mal angle of the dominant whistler mode is always 0°, which is independent of thermal electrons, while
its wave frequency and linear growth rate decrease with the density and temperature of thermal electrons.
These results are also confirmed by PIC simulations. Moreover, we further find that the excited whistler
spectrum becomes narrower, if there are sufficient thermal electrons in the plasma. In the low‐beta
(β∥h ≤ 0.025) regime, with the increase of the density and temperature of thermal electrons, the wave nor-
mal angle of the dominant whistler mode jumps to zero from a large value. This change could be due to
the stronger damping caused by thermal electrons for oblique whistler mode, since oblique wave usually
has a smaller cyclotron resonant velocity than parallel wave. In the case with sufficient thermal electrons,
the PIC simulation also presents a broad magnetic spectrum of generated whistler waves but with a smal-
ler magnitude. Moreover, the maximum power is found not in an oblique direction, but in the parallel
direction. Furthermore, thermal electrons with large parallel velocities are resonantly accelerated in the

Figure 12. The scatterplots of electrons in the (vx, vy) plane (a and e), (vz, vy) plane (b and f), (x, vx) plane (c and g), and (x, vz) plane (d and h) for both thermal and
hot components at Ωet = 800.
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perpendicular direction, while parts of hot electrons are trapped and accelerated in the parallel direction.
This indicates that the wave normal angle of the dominant wave mode is not only controlled by the
plasma beta of anisotropic electrons but also modulated by the density and temperature of
thermal electrons.

Previous studies have indicated that the dominant whistler mode with the maximum growth rate is parallel
propagating if β∥h> 0.025, while the maximum growth rate shifts to oblique propagation if β∥h< 0.025 (Gary
et al., 2011). In a recent statistical study by Yue et al. (2016), the quasi‐parallel and oblique lower band chorus
waves are found roughly separated by the plasma beta (~0.025). However, there are still substantial quasi‐
parallel lower band whistler waves having very small wave normal angles associated with the low beta
(<0.025; Yue et al., 2016), which is difficult to understand by the linear theory if only anisotropic electrons
are considered in the plasma. Actually, it is more realistic to consider at least two components of electrons
(thermal and hot electrons) in the Earth's magnetosphere (Fu et al., 2014; Gao et al., 2014a; Li et al., 2010,
2016). According to our results, the existence of thermal electrons could reduce the transition value of the
plasma beta, which can provide a potential explanation for those parallel chorus waves associated with a
very low beta in the magnetosphere.
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