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ABSTRACT

Magnetic fields are transported and tangled by turbulence, even as they lose identity due to nonideal or resistive effects. In a balanced field, lines
undergo stretch-twist-fold processes. The curvature field, a scalar that measures the tangling of the magnetic field lines, is studied in detail here, in
the context of magnetohydrodynamic turbulence. A central finding is that the magnitudes of curvature and magnetic field are anticorrelated. A
high curvature colocates with a low magnetic field, which gives rise to power-law tails of the probability density function of the curvature field.
The curvature drift term that converts magnetic energy into flow and thermal energy largely depends on the curvature field behavior, a relationship
that helps to explain particle acceleration due to the curvature drift. This adds as well to evidence that turbulent effects most likely play an essential
role in particle energization since turbulence drives stronger tangled field configurations, and therefore curvature.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099360

I. INTRODUCTION

A divergence-free vector field, such as the magnetic field, can be
conveniently visualized in terms of field lines, which are tangent to the
field everywhere. In many astrophysical and space plasmas, magnetic
field lines play an essential role, in general for describing the topology
and connectivity at a single instance of time, and even for developing
theoretical descriptions of dynamical processes such as magnetic recon-
nection.1 Magnetic field lines are also widely used in describing mecha-
nisms for particle acceleration and for the transport of suprathermal
and energetic particles. Ambiguities in defining field lines, especially as a
function of time, are well known.2 In turbulence, magnetic field lines are
in general not well-ordered, but rather exhibit complex structures and
wander randomly in space.3–5 Moving into the realm of magnetic recon-
nection, the field lines can “disconnect” and “reconnect.” Given these
ambiguities inherent in the magnetic field line formalism, here we avoid
committing to a focus on the trajectory of the magnetic field integral
curves, and instead prefer to consider an intrinsic geometric parameter:
curvature that completely determines a curve in 2D space.

The curvature j, measuring how rapidly a curve changes direc-
tion in space, is defined as

j ¼ kb � rbk; (1)

where b ¼ B=kBk. The curvature of magnetic field lines is related
directly to the curvature drift of the motion of charged particles, which
is invoked in certain particle acceleration mechanisms, e.g., first-order
Fermi mechanism in magnetic reconnection.6,7 Indeed, rapid advances
in computations and observations have improved the understanding
of several features of magnetic reconnection7–11 that might contribute
to particle energization. For example, the curvature drift mechanism
(related to the first-order Fermi mechanism) has been identified as the
dominant source of particle acceleration.12–20 One might reason in a
qualitative sense: we think of bent field lines as elastic bands under ten-
sion, exerting a force (�jB2) on the fluid. This force will drive flows
as the lines straighten out. It is natural then to inquire the extent to
which the curvature drift acceleration and the curvature field are spa-
tially and quantitatively correlated.

Although there is hardly any doubt that the curvature, as an
essential feature of the geometrical behavior of magnetic field lines, is a
key ingredient in certain particle acceleration mechanisms, the detailed
properties of the magnetic field curvature is neither well known nor
well understood for a general configuration. The study presented in
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this letter addresses this problem by employing numerical simulations
of magnetohydrodynamic (MHD) turbulence, with the goal of provid-
ing a better physical interpretation of curvature drift acceleration. We
find that an intense curvature and a small magnetic field are preferen-
tially colocated. An intense curvature tends to be linearly anticorre-
lated with the square of magnetic magnitude. Therefore, magnetic
energy release via the curvature drift term is in strong association with
the curvature field. This result provides new insights into the literature
on particle energization during magnetic reconnection, and also favors
the influence of turbulent magnetic effects on heating.

II. METHOD

We consider two-dimensional incompressible MHD turbulence.
The dynamical equations read

@x
@t
þ v � rð Þx ¼ B � rð Þjþ �r2x; (2)

@a
@t
þ v � rð Þa ¼ gr2a; (3)

where v is the velocity field, x ¼ ðr� vÞ � ẑ is the vorticity, a is the
magnetic potential, B ¼ ra� ẑ is the magnetic field, and j ¼ ðr
�BÞ � ẑ ¼ �r2a is the electric current density. For simplicity, the vis-
cosity � and resistivity g are set to equal values. The numerical simula-
tion is done with a Fourier spectral method21 in a doubly periodic
(2p)2 Cartesian domain with a 81922 resolution. The fields are initial-
ized at modes 5 � jkj � 20 with random phases and fluctuation
amplitudes, whose spectra are proportional to 1=½1þ ðk=k0Þ8=3� with
k0¼ 10. The total kinetic and magnetic energy are each initially equal
to 0.5. We fix � ¼ g ¼ 5� 10�5, which corresponds to a high
Reynolds number. We carry out our analysis on snapshots near the
time of the maximummean square electric current density.

III. ANTICORRELATION BETWEEN THE CURVATURE
AND MAGNETIC FIELD

Curvature is a well-studied geometric characteristic of particle
trajectories, its statistical properties having been reported in numer-
ous hydrodynamic turbulence studies.22–28 Particle trajectories are
manifestly different from magnetic field lines, but similar analysis
methods are useful to study both cases. As a first step, we compute
the probability distribution function (PDF) of the field line curvature
in the above-described MHD simulation. The results, shown in Fig. 1,
reveal properties that are surprisingly reminiscent of the hydrody-
namic particle trajectory case. The distribution is broad and exhibits
two clear power-law regimes—a low-curvature plateau scaling as
�j0, while, the distribution of large curvatures scales as�j�2.

The physical origins of this feature become more apparent when
we rewrite the Lorentz force in terms of B, j� B ¼ B � rB
�rðB2=2Þ, where the second term acts in the same way as the pres-
sure force and the first term is equivalent to r � ðBBÞ, which can be
interpreted as the effect of the surface stress BiBj on fluids. Then, we
rewrite the force B � rB in terms of curvilinear coordinates attached
to a field line

B � rB ¼ B
@B
@s

t � B2

R
n: (4)

Here B ¼ kBk, s is a coordinate along the field line, t ¼ b and n are
unit vectors in the tangential and normal directions, respectively, and

R¼ 1/j is the local field line radius. It follows that the curvature can
be expressed as

j ¼ kb� B � rBð Þk
B2

¼ fn
B2
: (5)

According to Eq. (5), one might expect that a large normal force
fn and a small magnetic field both correspond to a high curvature.
However, from the joint PDFs in Fig. 2, one can see that the high cur-
vature is not strongly correlated with a large normal force but instead
is well associated with a small magnetic field magnitude, while a low
curvature is correlated with a small normal force. At a heuristic level, a
strong magnetic field may be expected to resist bending. A more spe-
cific explanation attributes this anticorrelation between j and B2 to
the action of the force component normal to the magnetic field line. A
large normal force tends to rapidly straighten out the line being in ten-
sion, which seems to rule out the possibility of a joint presence of a
high curvature and a large magnetic field.

By locating the small and large values of the curvature field, val-
ues j=jrms < 0:01 and j=jrms > 0:2 are plotted on the top of the
color map of magnetic magnitude in Fig. 3, which correspond to the
j0 low-curvature and j�2 high-curvature tails shown in Fig. 1, respec-
tively. No qualitative associations between the low curvature and large
magnetic magnitude have been observed in Fig. 3(a), while we can
readily identify the concentration of high curvature in regions of low
magnetic magnitude in Fig. 3(b). These regions of low magnetic field
strength are organized into twisted lines and isolated points. The soli-
tary points are visually found in the vicinity of magnetic island cores,
where the direction of the magnetic field changes significantly, leading
to a high curvature. The high-curvature lines are preferentially in the
form of sheet-like structures around the rims of islands, reminiscent of
the well-studied configuration of sheets of electric current density. It is
likely, of course, that this association is also related to potential sites of
magnetic reconnection.1

Based on the above results, we expect that the large-curvature
(i.e., j!1) and small-curvature (i.e., j! 0) regimes in Fig. 1
should be determined by the scaling behavior of 1/B2 as B! 0 and fn

FIG. 1. PDF of the magnetic field curvature j normalized to the root mean square
value jrms. The PDF has a j0 low-curvature regime and a j�2 high-curvature tail.
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as fn ! 0, respectively. To make these connections, one may begin
by recalling that the x and y components of magnetic fluctuations
are independent in isotropic MHD turbulence, and have quasi-
Gaussian distributions. The square of magnetic magnitude
B2 ¼ B2

x þ B2
y therefore follows a chi-squared distribution with 2

degrees of freedom, deriving the j�2 high-curvature tail as B! 0
by using Taylor expansion. Continuing, suppose we assume that
the force fn at low values is a quasi-Gaussian random variable, rec-
ognizing that it could deviate from the Gaussian distribution at
high values due to intermittency. Then, the j0 low-curvature tail is
recovered as fn ! 0.

IV. CURVATURE DRIFT ACCELERATION

The discovery of the anticorrelation between the curvature and
magnetic fields is particularly suggestive of some generalizable physical
process, such as curvature drift acceleration. From Faraday’s law, one
readily finds the equation governing magnetic energy Em¼B2/2

@Em

@t
þr � E � Bð Þ ¼ �E � j; (6)

wherein E � j ¼ E � jk þ E � j?, and ð� � �Þk and ð� � �Þ? are quantities
parallel and perpendicular with respect to the local magnetic field
direction. The perpendicular one can be further decomposed as

FIG. 2. Joint PDFs of the curvature j and (a) the square of magnetic magnitude B2 and (b) the force magnitude fn acting normal to the field lines. All quantities are normalized
to their respective root mean square values. There are apparent associations between the high curvature and low magnetic field and between the low curvature and low normal
force.

FIG. 3. Contour maps of curvature superposed on the color map of magnetic magnitude in a subregion of the whole domain. (a) Only j/jrms < 0.01 values are pictured, and
(b) only j/jrms > 0.2 values are pictured. The high curvature populates in regions of low magnetic field.
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E � j? ¼ E � ½B�ðB�rÞBB2 � � r B2
2

� �
� E�BB2 , where the second term on the

right-hand side can be combined with the second term on the left-
hand side in Eq. (6). The remaining term due to the curvature drift,
which is reminiscent of the energy conversion rate between the mag-
netic and kinetic energies,20 is

E � jc ¼ E � B� B � rð ÞB
B2

� �
� jBE?; (7)

where jc is the electric current density due to the curvature drift.
The spatial distributions of the curvature drift acceleration term

E � jc [see Fig. 4(a)] and the curvature-related component jB [see Fig.
4(b)] behave quite similarly over the whole domain, apart from regions
in the proximity of some special points like magnetic island cores
marked as green circles. Instead, the curvature drift acceleration term
E � jc [see Fig. 4(a)] and the perpendicular electric field E? [see Fig.
4(c)] exhibit similarity near these special points (marked as green
circles), e.g., both jE � jcj and jE?j are vanishingly small therein. Here,

we apply the method,29 examining the topography of magnetic poten-
tial, to find O-points (magnetic island cores marked as green circles in
Fig. 4) and X-points (magnetic reconnection sites) in 2D. The electric
field from Ohm’s law E ¼ �v� Bþ gj is dominated globally by the
term v� B,29 and which is E ¼ gj at magnetic island cores and recon-
nection sites since the magnetic field vanishes at these positions.
Therefore, the perpendicular electric field near these special points is
very small.

The linear anticorrelation between the curvature and the square
of the magnetic field provides a plausible rationale for the similar pat-
terns of jB and j in Figs. 4(b) and 4(d), where here we also exclude
from consideration some special points like magnetic island cores
(marked as green circles). Although near magnetic island cores, the
direction of the magnetic field changes over very short length scales,
corresponding to the intense curvature [e.g., high curvature at the
green circles in Fig. 4(d)], the product jB is not typically a local max-
ima at those positions. This seems to be in apparent contradiction to

FIG. 4. Contour maps of (a) the curvature drift acceleration term jE � jcj, (b) the curvature-related component jjBj, (c) the perpendicular electric field jE?j, and (d) the logarithm
of the curvature j in a subregion of the whole domain with the black contour lines showing the magnetic field lines and the green circles representing magnetic island cores.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 072306 (2019); doi: 10.1063/1.5099360 26, 072306-4

Published under license by AIP Publishing

https://scitation.org/journal/php


the preceding description of the general trend, that is, the linear anti-
correlation between the curvature and the square of magnetic field
leads to jB in an approximately linear relationship with

ffiffiffi
j
p

. However,
the measurement of curvature is inevitably limited by the numerical
resolution of the simulation. In order to illustrate the effect of grid res-
olution, we apply a Fourier zero-padding and interpolation tech-
nique29 to obtain a 16 3842 array in place of the original 81922 array.
One can see from Fig. 5(a) that the Fourier zero-padding and the
interpolation technique improve the accuracy of our measurements of
curvature and higher resolution enables resolution of a more intense
curvature. Also noteworthy from Fig. 5(b) is that the conditional aver-
ages of j tend to form a plateau as the magnetic field vanishes, which
could be near magnetic island cores and reconnection sites. It is not
possible to numerically measure the true curvature therein since there
will always be noise as approaching these zero-magnetic positions.

Previous studies12–19 on magnetic reconnection emphasize the
prominence of curvature drift acceleration in reconnection exhausts,
at ends of contracting magnetic islands and in island merging regions.
The importance of this process also emerges by virtue of the curvature
analysis here. Figures 6(a) and 6(b) show the spatial distributions of
the curvature drift acceleration in several subregions including mag-
netic island cores (marked as green circles) and magnetic reconnection
sites (marked as green stars). On the one hand, the curvature drift
acceleration at magnetic island cores and reconnection sites is small,
as we have shown, due to the negligible perpendicular electric field E?
therein. On the other hand, an intense curvature is often found in the
vicinity of these positions, thus enhancing the curvature drift accelera-
tion nearby.

The analyses we make so far make no specific reference to turbu-
lence. But turbulence and heating processes related to turbulence are
frequently implicated in the study of space and astrophysical plas-
mas.30–35 Evidently, turbulence, contemporaneous with magnetic
reconnection, operates cooperatively in the natural evolution of the
magnetic field in these plasmas.36–41 Local flows in turbulence, even
though they do not contain a magnetic island core or a reconnection
site, may also produce a large curvature. To isolate the effect of turbu-
lence, we show subregions where no topologically special points are
contained in Figs. 6(c) and 6(d). In comparison with the regions in the

proximity of magnetic reconnection sites and magnetic island cores,
the observable enhancement of the curvature drift acceleration
emerges as well in turbulence-dominant regions, supporting the view
that turbulent effects are playing an essential role in particle accelera-
tion. This point is supported by the results in Ref. 20 as well.

V. FURTHER APPLICATIONS

In this section, we discuss the properties of magnetic field curva-
ture in two different systems that deviate from the statistically homo-
geneous, isotropic and two-dimensional MHD: isotropic 3D MHD
and 2.5D kinetic plasma.

A. 3D MHD

The incompressible three-dimensional MHD equations read

@v

@t
þ v � rv ¼ �rp� þ B � rBþ �r2v; (8)

@B
@t
þ v � rB ¼ B � rvþ gr2B; (9)

where p� is the total (kinetic þ magnetic) pressure, along with
r � v ¼ r � B ¼ 0. We solve the Fourier-space version of the above
equations via a Galerkin spectral method,42 with 1024 Fourier modes
in each spatial direction. For simplicity, equal viscosity and resistivity
� ¼ g ¼ 4� 10�4 are used. The run is a freely decaying problem in a
periodic cube of size 2p and has the initially unity fluctuation energy
equipartitioned between the kinetic and magnetic components, i.e.,
Ev¼ Eb¼ 0.5. The fields are initialized at modes 1 � jkj � 5 with ran-
dom phases and fluctuation amplitudes, whose spectra are propor-
tional to 1=½1þ ðk=k0Þ11=3� with k0¼ 3. The cross-helicity is always
small. We carry out our analysis on a snapshot near the time of maxi-
mummean square current density.

One can see from Fig. 7 that the PDF of the curvature exhibits
power laws for both a small-curvature and large-curvature regimes: for
a small curvature, the PDF is close to linear with j, while, for a large
curvature, it scales as j�2.5. Since dimensonality does not enter into
the expression in Eq. (5), we expect that the anticorrelation between
the curvature and magnetic field will hold also in a 3D system. This
expectation is confirmed in our simulation, see Fig. 8, which shows

FIG. 5. Comparison between 81922 resolution and 16 3842 resolution: (a) PDF of the magnetic field curvature j and (b) average of the magnetic field curvature j conditioned
on the magnetic magnitude.
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that a low and high curvature are strongly correlated with a small nor-
mal force and a small magnetic field magnitude, respectively. In anal-
ogy with the procedure in 2D, the square of magnetic magnitude B2 in
3D MHD should then be distributed following a chi-squared distribu-
tion with 3 degrees of freedom. Since the curvature as j!1 scales
like B�2 as B2 ! 0, one can derive the scaling PðjÞ � j�2:5 for a high
curvature. A similar reasoning is applicable to the low-curvature
regime. Note that the force fn is confined to the plane orthogonal to
the magnetic field. We then assume the PDF of f 2n at small values is a
chi-squared distribution with 2 degrees of freedom. As fn ! 0; PðfnÞ
� fn, and we recover PðjÞ � j1 for a low curvature.

B. Kinetic plasma

Plasma turbulence involves structures across a wide range of
scales, spanning from macroscopic fluid scales to subelectron scales.

Based on what plasma properties we are interested in studying, a
plasma can be treated as tractable models in various limits. The MHD
model remains a credible approximation for a plasma at scales large
enough to be well separated from the kinetic effects, while a more
refined kinetic description is required at kinetic scales. Here, we com-
pare the results from fully kinetic particle-in-cell (PIC) simulations
with those fromMHD simulations.

We employ a fully kinetic simulation by P3D43 in a 2.5D geome-
try (three components of dependent field vectors and a two-
dimensional spatial grid). The number density is normalized to a refer-
ence number density nr (¼1 in this simulation), mass to proton mass
mi (¼1 in this simulation), charge to proton charge qi, and magnetic
field to a reference Br (¼1 in this run). The length is normalized to the
ion inertial length di, time to the ion cyclotron time X�1i , velocity to
the reference Alfv�en speed vAr ¼ Br=ð4pminrÞ1=2, and temperature to
Tr ¼ miv2Ar . The simulation was performed in a periodic domain,

FIG. 6. Contour maps of the curvature drift acceleration term jE � jcj. (a) and (b) Subregions including magnetic island cores (marked as green circles) and magnetic reconnec-
tion sites (marked as green stars). (c) and (d) Subregions that do not contain topologically special points. The black contour lines show magnetic field lines.
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whose size is L¼ 150di, with 40962 grid points and 3200 particles of
each species per cell (�107� 109 total particles). The ion to electron
mass ratio is mi/me¼ 25, and the speed of light in the simulation is
c¼ 15vAr. The run is a decaying initial value problem, starting with a
uniform density (n0¼ 1.0) and temperature of ions and electrons
(T0¼ 0.3). The uniform magnetic field is B0¼ 1.0 directed out of the
plane. More details about the simulation can be found in Ref. 35. We
analyze the statistics using a snapshot near the time of maximum root
mean square electric current density.

One can see from Fig. 9 that the PDF has a j0 low-curvature
regime and a j�2 high-curvature tail. Figure 10 indicates apparent
associations between a high curvature and low magnetic field and

between a low curvature and low normal force. Although the PIC sim-
ulation enables the resolution of much smaller scales, the correspond-
ing behavior of curvature is essentially similar to that in 2D MHD.
The reasoning advanced in Sec. III might therefore be deemed univer-
sal for plasma turbulence.

VI. CONCLUSIONS

Curvature characterizes magnetic field lines. For example, both
turbulence and magnetic reconnection drive tangled and bent mag-
netic configurations, corresponding to an intense curvature. We can
therefore analyze the curvature properties to improve the understand-
ing of the curvature drift mechanism, often implicated in particle
acceleration. In this work, we have clarified the dependence between

FIG. 7. 3D MHD simulation: PDF of the magnetic field curvature j normalized to
the root mean square value jrms. The PDF has a j1 low-curvature regime and a
j�2.5 high-curvature tail.

FIG. 8. 3D MHD simulation: joint PDFs of the curvature j and (a) the square of magnetic magnitude B2 and (b) the force magnitude fn acting normal to field lines. All quantities
are normalized to their respective root mean square values. There are apparent associations between the high curvature and low magnetic field and between the low curvature
and low normal force.

FIG. 9. PIC simulation: PDF of the magnetic field curvature j normalized to the
root mean square value jrms.
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the high curvature and low magnetic field. In particular, the high cur-
vature j is statistically scaled as B�2, thus generating the power-law
tails of the PDF of curvature. The curvature drift term, responsible for
particle energization, is found to be strongly associated with the scalar
curvature. It is active in high-curvature positions which could be
attributed to turbulence and magnetic reconnection. We have not
attempted to quantify the relative strength of these two kinds of accel-
eration processes here.

The simulations used here include two-dimensional MHD and
three-dimensional MHD, but it does not necessarily make a reference
to the dimensionality when arriving at Eqs. (5) and (7), in order to
maintain as broad a context as possible. It is therefore expected that
the relevant statistical features are substantially analogous in 3D and
2D. Indeed, the anticorrelation between a high curvature and low
magnetic field applies as well to the 3D case. Also noteworthy is its
application for kinetic plasma based on the PIC simulation. However,
we should make it clear that this work is neither complete in its cover-
age nor exhaustive of possibilities. The curvature drift mechanism we
study is only one possibility for particle acceleration and other mecha-
nisms have not been addressed herein.
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