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ABSTRACT
The characteristics of whistler-mode waves excited by temperature anisotropic electrons, whose velocity distribution is a combination of bi-
Maxwellian distribution and beam-like shapes, are investigated by both linear theory analysis and particle-in-cell simulation. A frequency
gap is formed between two peaks, which is caused by the mode splitting of beam-like electrons. We have further investigated the influences
of different parameters and found that the position of beam-like shape is the key parameter in determining the frequency of power gap.
Moreover, the beam-like component on one direction will lead to the gap in the spectra of waves propagating in the opposite direction. Our
study can shed light on the effects of beam-like electrons on the spectra of whistler-mode waves.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0026220

I. INTRODUCTION

Whistler-mode waves are electromagnetic waves with a right-
handed polarization,1–4 which are considered to play an important
role in the Earth’s radiation belt, including accelerating electrons
to high energy and precipitating energetic electrons into the iono-
sphere.6–12 The magnetic equator can be one of the source regions
of whistler-mode waves, where the dipole magnetic field reaches
its minimum.3,4,13 It is commonly accepted that whistler-mode
waves can be excited by an electron temperature anisotropy,3–5,14–18

whose dominant wave mode generally propagates along the back-
ground magnetic field (i.e., the wave normal angle θ ≈ 0○).15

However, when the electron plasma beta is sufficiently small (βe
≤ 0.025), the propagation of the dominant wave mode tends to
have a larger normal angle.19,20 One of the most typical properties
of whistler-mode waves is the power gap around half the electron
gyrofrequency, which can separate the waves into two frequency
bands.21–25

Satellite observations have shown that the whistler-mode waves
are usually along with electron beams in the parallel velocity.23,26

Then, Sauer et al.24 have suggested that these electrons can lead to
the formation of a power gap in the whistler-mode waves. However,
their results are only predicted by the linear theory. In this study,
we want to extend their work by performing a parameter study to
find that which is the key factor to determine the frequency of the
power gap. Our results are supported by both linear theory analysis
and particle-in-cell (PIC) simulations.

This paper is organized as follows. Section II describes the mod-
els and initial setup. The theoretical and simulation results are illus-
trated in Sec. III, and Sec. IV presents the principle conclusions and
some discussions.

II. THEORETICAL AND PIC SIMULATION MODEL
In this paper, the plasma consists of three populations: cold

electrons, hot electrons, and protons. The cold electrons are
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TABLE I. The plasma parameters for cases 0–13.

Case VD1/VAe VD2/VAe nbm/nh (%) β∥bm β∥bi T�bi/T∥bi

0 . . . . . . 0.00 . . . 0.09 4.0
1 0.6 0.6 1.80 0.0196 0.09 4.0
2 0.4 0.4 1.80 0.0196 0.09 4.0
3 0.8 0.8 1.80 0.0196 0.09 4.0
4 0.6 0.6 0.90 0.0196 0.09 4.0
5 0.6 0.6 3.60 0.0196 0.09 4.0
6 0.6 0.6 1.80 0.0100 0.09 4.0
7 0.6 0.6 1.80 0.0324 0.09 4.0
8 0.6 0.6 1.80 0.0196 0.05 4.0
9 0.6 0.6 1.80 0.0196 0.13 4.0
10 0.6 0.6 1.80 0.0196 0.09 3.0
11 0.6 0.6 1.80 0.0196 0.09 5.0
12 0.6 0.0 1.80 0.0196 0.09 4.0
13 0.6 0.8 1.80 0.0196 0.09 4.0

isotropic, whose temperature (Tc) is the same as that of protons,
while hot electrons have a temperature anisotropy with beam-like
shapes in the parallel velocity distribution. The number densities
of cold and hot electrons are nc and nh, respectively, which satisfy
nc + nh = n0 (where n0 is the total electron number density). In our
study, the number density of hot electrons is fixed at nh/n0 = 15%27

and the plasma beta of cold electrons is βc = 2μ0n0kBTc/B2
0 = 10−4

(where μ0 is the permeability of vacuum). The ratio of the plasma
frequency to electron gyrofrequency is given as ωpe/Ωe = 4.028

(where ωpe =
√

n0e2
/meε0 and Ωe = eB0/me), and the light speed is

c = 4VAe (where VAe = B0/
√μ0n0me is the electron Alfven speed).

The velocity distribution of hot electrons satisfies the following
function:

f h = nbi(2πT∥bi/me)
−3/2
(T�bi/T∥bi)

−1

× exp(−mev2
∥/2T∥bi −mev2

�/2T�bi)

+ nbm(2πT∥bm/me)
−3/2
(T�bi/T∥bm)

−1

× exp(−mev2
�/2T�bi −me(v∥ − VD1)

2
/2T∥bm)

+ nbm(2πT∥bm/me)
−3/2
(T�bi/T∥bm)

−1

× exp(−mev2
�/2T�bi −me(v∥ + VD2)

2
/2T∥bm), (1)

where v∥ and v� are the velocities parallel and perpendicular to
the background magnetic field. The hot electrons can be consid-
ered to have three components: a bi-Maxwellian component (with
the subscript “bi”), with the number density of nbi and tempera-
ture anisotropy of T�bi/T∥bi, and two beam-like components (with
the subscript “bm”), which have the same number density nbm and

FIG. 1. The normalized velocity distribu-
tions in the (a) parallel and (b) perpen-
dicular directions of the hot electrons,
and (c) dispersion relations and (d) linear
growth rates of whistler-mode waves in
case 1 and case 0, which are denoted by
blue solid and black dotted lines, respec-
tively. The blue asterisks in (c) and (d)
mark the frequency and wave number of
the wave mode with the minimum growth
rate between two growth peaks, and the
gray dashed line in (d) denotes γ = 0.
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FIG. 2. The (a) dispersion relations
and (b) growth rates of case 1 (VD
= 0.6VAe), case 2 (VD = 0.4VAe),
and case 3 (VD = 0.8VAe), which are
denoted by green, blue, and red lines,
respectively. The wave modes with
the minimum growth rate between two
peaks are also marked by the asterisks
in each colors.

satisfy nbi + 2nbm = nh. VD1 and VD2 are the positions of beam-
like shapes in the parallel and anti-parallel directions. A linear the-
ory model, named as the kinetic plasma dispersion relation solver
(PDRK),29 has been employed to calculate the dispersion relation
and linear growth rate. Here, we only show the wave modes with
wave vectors along the background magnetic field since the waves
always have the largest growth rate in the parallel direction in
our cases (i.e., θ = 0○). Other wave normal angles have also been
checked, while our main conclusions remain unchanged.

A 1D PIC simulation model with periodic boundary condi-
tions has been employed to investigate the excitation of whistler-
mode waves, which allows spatial variations only in the x direction.
The protons are motionless (i.e., the mass ratio between the pro-
ton and electron is infinite) since the ion cyclotron frequency is
much lower than the frequency of whistler-mode waves.17,18 The
background magnetic field is along the x axis. The number of grid
cells is 2048 with the grid size of Δx = 0.20VAe/Ωe, and the total
simulation time is 1500Ω−1

e with the time step as Δt = 0.025Ω−1
e .

FIG. 3. The growth rates of whistler-
mode waves in (a) case 1 (nbm/nh
= 1.8%, green line), case 4 (nbm/nh =

0.9%, blue line), and case 5 (nbm/nh
= 3.6%, red line) and (b) case 1 (β

∥bm =

0.0196, green line), case 6 (β
∥bm = 0.01,

blue line), and case 7 (β
∥bm = 0.0324,

red line).

FIG. 4. The growth rates of whistler-
mode waves in (a) case 1 (β

∥bi =

0.09, green line), case 8 (β
∥bi = 0.05,

blue line), and case 9 (β
∥bi = 0.13, red

line) and (b) case 1 (T�bi/T∥bi = 4.0,
green line), case 10 (T�bi/T∥bi = 3.0,
blue line), and case 11 (T�bi/T∥bi = 5.0,
red line).
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We uniformly set an average of 6000 macroparticles per cell per
species.

III. THEORETICAL AND SIMULATION RESULTS
In this paper, we will show the spectra of whistler-mode

waves excited by an electron bi-Maxwellian distribution plus par-
allel beams. The influences of VD1, VD2, nbm/nh, β∥bm (the parallel
plasma beta for the beam-like component, β∥bm = 2μ0n0kBT∥bm/B2

0),
β∥bi (the parallel plasma beta for the bi-Maxwellian component,

β∥bi = 2μ0n0kBT∥bi/B2
0), and T�bi/T∥bi are investigated. The detailed

parameters for each case are listed in Table I.
In case 1, the position of the beam-like component is VD1

= VD2 = VD = 0.6VAe, whose number density is nbm/nh = 1.80%.26

The parallel plasma betas of the beam-like component and the
bi-Maxwellian component are β∥bm = 0.0196 and β∥bi = 0.09, and
the temperature anisotropy of the bi-Maxwellian component is
T�bi/T∥bi = 4.0.28 Figure 1 shows the normalized velocity distribu-
tions of the hot electrons in the (a) parallel and (b) perpendicular
directions and the (c) dispersion relation (ω–k) and (d) linear growth
rate (γ) of case 1, which are denoted by blue solid lines. The gray

FIG. 5. The normalized velocity distribu-
tions of the hot electrons in (a) parallel
and (b) perpendicular directions of case
12. (c) and (d) display the dispersion
relation and growth rate of the whistler
mode waves parallelly propagating (dot-
ted lines) and anti-parallelly propagat-
ing (solid lines) along the background
magnetic field. The asterisks mark the
wave mode with the minimum growth
rate between two growth peaks.

FIG. 6. The same format as Fig. 5, but
for case 13, including the velocity distri-
bution in (a) parallel and (b) perpendicu-
lar directions and the (c) dispersion rela-
tion and (d) growth rate of whistler-mode
waves.
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dashed line in Fig. 1(d) denotes γ = 0. For reference, we also plot
a bi-Maxwellian velocity distribution with T�bi/T∥bi = 4.0 (hereafter
referred to as case 0) and the corresponding dispersion relation and
growth rate in this figure, represented by black dotted lines. The two
dispersion relations are almost the same [Fig. 1(c)], except that the
blue line has been a little bit distorted near ω/Ωe = 0.48. When it
comes to the growth rate in Fig. 1(d), the dominant wave mode in
case 0 has the frequency as ω/Ωe = 0.58 (with the wave number of
kVAe/Ωe = 1.28). Meanwhile, the growth rate of the waves in case
1 has two peaks at about ω/Ωe = 0.41 (with kVAe/Ωe = 0.88) and at
about ω/Ωe = 0.41 (with kVAe/Ωe = 1.31), leaving a clear gap around
the frequency of ω/Ωe = 0.48 (with kVAe/Ωe = 1.01, marked by the
blue asterisks). In the gap, the growth rate is negative, indicating that
the wave modes cannot be excited here.

Cases 2 and 3 illustrate the influences of the position of beam-
like shapes on the wave spectra. Compared with case 1, in case 2,

VD1 = VD2 = VD = 0.4VAe, and in case 3, VD1 = VD2 = VD = 0.8VAe,
while the other parameters are kept the same. Figure 2 shows the (a)
dispersion relations and (b) growth rates of the whistler-mode waves
in cases 1–3. The variation of VD almost does not change the disper-
sion relation, except a little bit distorted. Unless otherwise stated, we
will not show the dispersion relations hereafter since they remain
almost unchanged for most of cases. However, the positions of the
frequency gap are quite different. In cases 1, 2, and 3, the frequency
gaps between two growth peaks are about ω/Ωe = 0.48, ω/Ωe = 0.58,
and ω/Ωe = 0.41, which are denoted by blue, green, and red asterisks,
respectively. It is interesting to find that the position of the frequency
gap increases with the decrease in VD.

Compared with case 1, cases 4 and 5 change the values of
nbm/nh. Figure 3(a) shows the growth rate for case 4 (nbm/nh
= 0.90%), case 1 (nbm/nh = 1.80%), and case 5 (nbm/nh = 3.60%). The
variation of nbm/nh has little influence on the position of the gap

FIG. 7. The temporal evolution for the spectra of δB2
t /B

2
0 in (a) case 1 and (b) case 0. The dotted line in (a) represents the wave number kVAe/Ωe = 1.01. The dispersion

relations of the spectrograms in (c) case 1 and (d) case 0 during Ωet = 400–550, where the black lines represent the dispersion relation curves from the linear theory analysis.
In (c), the dominant wave modes in the two bands are denoted by the white and magenta stars. Meanwhile, the dominant mode in case 0 (d) is marked by a white star.
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(ω/Ωe ∼ 0.48). However, it has a great influence on the linear growth
rate. The growth rates for case 6 (β∥bm = 0.01), case 1 (β∥p = 0.0196),
and case 7 (β∥p = 0.0324) are illustrated in Fig. 3(b). The position of
the gap still remains almost unchanged.

Figure 4(a) illustrates the effects of β∥bi. Compared with case
1 (β∥bi = 0.09), β∥bi decreases to 0.05 in case 8 and increases to 0.13
in case 9. There are still two positive peaks, and their growth rates
get larger with the increase in β∥bi. Nevertheless, the variation of
β∥bi almost has no influence on the position of the gap. Cases 10
and 11 show the influences of T�bi/T∥bi. The growth rates for case
10 (T�bi/T∥bi = 3.0), case 1 (T�bi/T∥bi = 4.0), and case 11 (T�bi/T∥bi
= 5.0) are illustrated in Fig. 4(b). Similarly, the position of the gap
still remains almost unchanged.

The beam-like components in the parallel and anti-parallel
directions are symmetric (i.e., VD1 = VD2) in the former cases. We
have further investigated the growth rate in the two directions when
VD1 is different from VD2. Figure 5 shows the [(a) and (b)] normal-
ized velocity distribution of the hot electrons, (c) dispersion rela-
tion, and (d) growth rate for case 12, in which there is only one
beam-like component (VD1 = 0.6VAe). In Figs. 5(c) and 5(d), the
parallel propagating and anti-parallel propagating waves are repre-
sented by dotted and solid lines, respectively. The existence of the
beam-like shape in the parallel direction will lead to a frequency gap
(ω/Ωe = 0.48 and kVAe/Ωe = −1.02, represented by the blue aster-
isks) for the corresponding wave modes in the anti-parallel direc-
tion. Figure 6 is plotted in the same format with that of Fig. 5, but
for case 13, which contains two asymmetric beam-like components
(VD1 = 0.6VAe, while VD2 = 0.8VAe). As illustrated in Figs. 6(c) and
6(d), the gap in the parallel direction is caused by the beam-like com-
ponent in the anti-parallel direction, and vice versa. The frequency
gap for the corresponding wave modes in the parallel direction (with
ω/Ωe = 0.41 and kVAe/Ωe = 0.89) is different from that in the anti-
parallel direction (with ω/Ωe = 0.48 and kVAe/Ωe = −1.02). There-
fore, the beam-like shape in one direction will lead to the formation
of frequency gap in the opposite direction.

Even though theoretical analysis has shown the influences of
the beam-like component, PIC simulations are still necessary to
support these predictions. The temporal evolution for the spectra
of whistler-mode waves in case 1 and case 0 has been investigated
first. Figure 7 shows the k–t spectrograms of the transverse fluc-
tuating magnetic fields δB2

t /B2
0 (δB2

t = δB2
y + δB2

z ) in (a) case 1 and
(b) case 0. The dotted line in Fig. 7(a) denotes the wave number
kVAe/Ωe = 1.01 at the predicted frequency gap ω/Ωe = 0.48. Obvi-
ously, there is a clear power gap around kVAe/Ωe = 1.01 in Fig. 7(a),
which can divide the spectrum into two bands and still exist until the
end of the simulation. Meanwhile, the spectrum in Fig. 7(b) has only
one continuous band. The dispersion relations of the spectra in (c)
case 1 and (d) case 0 in the time range Ωet = 400–550 have also been
shown in Fig. 7, where the black lines in each panel represent the dis-
persion relation curves from the linear theory prediction [Fig. 1(c)].
In case 1, the dominant wave modes with the maximum magnetic
power in the two bands are located at [1.29(VAe/Ωe)

−1, 0.59 Ωe]
and [0.85(VAe/Ωe)

−1, 0.38 Ωe], which have been marked by the
white and magenta stars in Fig. 7(c), respectively. The white star in
Fig. 7(d) denotes the dominant wave mode in case 0, with kVAe/Ωe
= 1.27 and ω/Ωe = 0.59. In Figs. 7(c) and 7(d), the dominant wave
modes are close to the dispersion relation curves predicted from
linear theory.

We have further investigated the influence of the position of
beam-like shapes on the wave spectra. Figure 8 shows the temporal
evolution of the wave spectra in (a) case 2 and (b) case 3. The dotted
line in Fig. 8(a) represents the wave number kVAe/Ωe = 1.30 at the
predicted frequency gap ω/Ωe = 0.58, while that in Fig. 8(b) denotes
kVAe/Ωe = 0.89 at ω/Ωe = 0.40. There are two bands of waves in
both cases, leaving a clear power minimum around kVAe/Ωe = 1.30
and kVAe/Ωe = 0.89, respectively. The position of the gap increases
with the decrease in the position of beam-like shapes, which is
consistent with the linear theory analysis (Fig. 2).

We have then performed another simulation case to investi-
gate the influence of asymmetric beam-like components. Figure 9

FIG. 8. The k–t spectrograms of δB2
t /B

2
0 in (a) case 2 (with VD/VAe = 0.4) and (b) case 3 (with VD/VAe = 0.8), where the dotted lines denote kVAe/Ωe = 1.30 and

kVAe/Ωe = 0.89, respectively.
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FIG. 9. The temporal evolution of the spectra in the +x and −x directions for case
13, where the black dotted lines denote the wave numbers of kVAe/Ωe = 0.89 and
kVAe/Ωe = −1.01, respectively.

illustrates the temporal evolution of δB2
t /B2

0 in the +x and −x direc-
tions for case 13. The dotted lines denote kVAe/Ωe = 0.89 and
kVAe/Ωe = −1.01, respectively. In the parallel direction, the power
gap is around kVAe/Ωe = 0.89, while another power gap is around
kVAe/Ωe = −1.01 in the anti-parallel direction. This result can ver-
ify the linear theory analysis, which has predicted that the beam-like
component in one direction can lead to the formation of frequency
gap in the spectra of waves propagating in the opposite direction.

IV. CONCLUSIONS AND DISCUSSION
In this paper, we have investigated the whistler-mode waves

excited by an electron bi-Maxwellian distribution plus parallel
beams. The growth rate has two positive peaks, but is negative
around the gap, indicating that the waves should exhibit a two-band
spectrum. We have further performed a parameter analysis to inves-
tigate the influences of different parameters on the wave spectra and
found that the position of beam-like shape (VD) can play the most
important role in determining the frequency of power gap, which
will decrease as VD increases. Moreover, the beam-like shape on one
direction can lead to the formation of frequency gap in the waves
propagating in the opposite direction. Our results are supported by
both theoretical analysis and PIC simulations.

Previous literature studies have indicated that the Landau
damping can lead to the formation of a two-band spectrum in the

whistler-mode waves.30–32 Specifically, Omura et al.31 have suggested
that the waves will experience strong nonlinear damping via Lan-
dau resonance around 0.5Ωe, as they propagate to higher latitudes.
Then, a test particle simulation has been performed to support this
theory.32 However, in our study, the waves are parallel propagating
and there is no parallel electric fields. Therefore, the Landau damp-
ing will not take effect. The power gap in the wave spectra is caused
by the mode splitting of beam-like electrons, which can create a for-
bidden area in the ω–k plane33 after the beam electrons are included
in the system. These beam-like distributions are usually observed
along with whistler-mode waves in the Earth’s magnetosphere.23,26

However, their generation mechanism is still an open question and is
left to further investigation. Our study can provide a comprehensive
understanding of the effects of beam-like electrons on the spectrum
of whistler-mode waves.
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