
1. Introduction
Whistler-mode waves are commonly observed in space plasma environments and laboratory plasma exper-
iments (Van Compernolle et al., 2015), which occur naturally in the Earth's magnetosphere (Burtis & Helli-
well, 1969; Gao et al., 2014; Horne, 2005; Meredith et al., 2001; Tsurutani & Smith, 1974, 1977) and other 
magnetized planets (Harada et al., 2016; Horne et al., 2008; Hospodarsky et al., 2008). They are primarily 
responsible for producing the planetary radiation belts (Horne et al., 2005, 2008; Thorne et al., 2013) and 
auroral precipitation (Kasahara et al., 2018; Ni et al., 2008; Nishimura et al., 2010; Thorne et al., 2010) via 
accelerating and scattering electrons. Whistler-mode waves were first discovered on the ground over a cen-
tury ago (Preece, 1894), and were since frequently observed by ground-based detections (Stenzel, 1999). The 
existence of Earth-magnetosphere/ionosphere waveguide is widely accepted, which guides whistler-mode 
waves to reach the ground (Ohta et al., 1996; Stenzel, 1999). The most common waveguides are field-aligned 
density irregularities (also called density ducts) supported by theoretical and numerical works (Hanzelka 
& Santolík, 2019; Smith et al., 1960; Streltsov et al., 2006), which have been frequently detected by satel-
lite-based measurements (Carpenter et al., 2002; Darrouzet et al., 2009) and ground-based imaging tele-
scope (Loi et al., 2015). Density ducts can guide whistler-mode waves, which naturally lead to modulations 
of whistler-mode wave properties.

The properties of whistler-mode waves are essential to mediate energetic electron fluxes in the radiation 
belt (Artemyev et al., 2015; Mourenas et al., 2012), which have been thoroughly studied by satellite obser-
vations (Agapitov et al., 2013; Li et al., 2013; Santolik et al., 2014; Shue et al., 2019) and kinetic simulation 
in a dipole magnetic field (Lu et al., 2019). The whistler-mode waves are primarily emitted at the equatorial 
region (Lauben et al., 2002; LeDocq et al., 1998; Li et al., 2013; Santolik et al., 2005), and their wave normal 
angles become larger when propagating toward the higher latitude (Breuillard et  al.,  2012; Hanzelka & 
Santolík, 2019; Lu et al., 2019). However, how whistler-mode waves emit and propagate self-consistently 
in density ducts is still unknown. Here we present whistler-mode waves strongly modulated by two dif-
ferent density enhancements observed by Van Allen Probe measurements. With two-dimensional kinetic 
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simulations in a dipole magnetic field, we present the properties of whistler-mode waves trapped by en-
hanced density ducts, which are similar to above observations.

2. Observation and Data Analysis
During a quiet period of geomagnetic activity indicated by SYM-H and AE index (Figure 1a), Van Allen 
Probe-A (Mauk et al., 2013) detects whistler-mode waves in two density enhancements at L ∼ 6 and mag-
netic latitude (LAT) ∼ 14  in the dawnside on October 26, 2012 (Figures 1b and 1c), where L is the equa-
torial radial distance of the geomagnetic field in units of Earth Radius RE. The electron number density 
ne, inferred from the spacecraft potential (Wygant et  al.,  2013) (dashed line) and the upper hybrid fre-
quency (Kurth et al., 2015) (solid line), shows two density enhancements with different shapes and sizes 
(Figure 1b). We call them as flat-topped and bell-shaped density enhancements, respectively. Whistler-mode 
waves are detected by the waveform receiver instrument (Kletzing et  al.,  2013) over a frequency range 
below 0.5fce, where fce is the equatorial electron gyrofrequency. These whistler waves inside the density 
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Figure 1. (a) The SYM-H index and AE index. (b) The electron number density inferred from the spacecraft potential 
(dashed line) and the upper hybrid frequency (solid line) detected by RBSP-A. (c) Magnetic spectral intensity of chorus 
waves from the EMFISIS instrument. (d) The wave normal angles calculated from the waveform data. (e) The angles 
between the background magnetic field and the Poynting vectors. (f) and (g) The high-cadence wave dynamic spectra 
in the time durations marked by the black and blue arrows. (h) and (i) The corresponding wave normal angles. Only the 
angles corresponding to the polarization ratio > 0.6 and the ellipticity > 0.7 are displayed.
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enhancements are mostly intense and quasi-parallel with wave normal angles   30 , while these waves 
outside the density enhancements are weak and very oblique (Figures 1c and 1d), where θ is calculated by 
the singular value decomposition (SVD) method (Santolík et al., 2003). There are also some highly oblique 
whistler mode waves observed inside the density enhancement, which may be from outside since they can 
freely penetrate into the density enhancement (Streltsov et al., 2006) or locally excited (Li et al., 2016). Most 
interestingly, these quasi-parallel whistler waves have much larger amplitudes in the narrow regions inside 
both density enhancements: the region near the outer boundary inside the flat-topped density enhancement 
and the region in the center of the bell-shaped density enhancement (Figure 1c). The angles θpoyn between 
the Poynting vectors and the background magnetic field reveal that these waves propagate southward away 
from the equatorial region (Figure 1e). The high-cadence wave dynamic spectra (Figures 1f and 1g) corre-
sponding to the durations marked by the black and blue arrows, present that rising-tone chorus waves with 
small wave normal angles appear in both density enhancements (Figures 1h and 1i). Some information of 
the observed hot electrons during this event are presented in Figure S1 in the supporting information.

The two density enhancements may be field-aligned density structures (ducts) due to diffusive equilibrium 
(Bortnik et al., 2011). Their peak number densities are about 90 cm−3 and the surrounding number densities 
are about 40 cm−3. The equatorial radial widths of the regions where these quasi-parallel whistler waves 
appear (marked by shadows) are ∼580 km (equal to tens of wavelengths λw of a quasi-parallel whistler wave 
at 0.2fce) inside the flat-topped density enhancement and ∼25 km (several wavelengths λw) inside the bell-
shaped density enhancement.

3. Simulations of Whistler-Mode Waves in Density Ducts
3.1. Simulation Setup

We carry out two self-consistent particle-in-cell simulations to study the dynamics of whistler waves in the 
flat-topped and bell-shaped density ducts. The two-dimensional (2-D) general curvilinear particle-in-cell 
(gcPIC) code is used in this paper, which had been successful in studying excitation and propagation of 
whistler-mode chorus waves in the Earth's space plasma environments (Ke et al., 2017; Lu et al., 2019). The 
2-D gcPIC model allows three-dimensional electromagnetic fields and velocities but only 2-D spatial varia-
tions on the magnetic meridian plane. A dipole field is used as the background magnetic field and the field 
line can be expressed as p=r/cos2λ, where p is the distance from the magnetic equator to the Earth's center, r 
is the distance of the point to the Earth's center and λ is the magnetic latitude. The regions at L ∼ 6 with am-
bient densities n0 ≈ 40 cm−3 are corresponding to p ≈ 45,500de0 ( 0 /e ped c  is electron inertial length and 
  2

0 0/pe en e m  is electron plasma frequency, where c is the speed of light, e represents the elementary 
charge, em  is the mass of the electron and 0 is the permittivity vacuum), which is too large and thus requires 
too expensive computation resources. Hence we use a scaling simulation domain of p = 2,500de0 − 2,800de0 
and      30 30 . The value of  0/ Ω 14pe e  consistent with the observations is applied, where electron 
gyrofrequency 0 0 ,Ω /e eq m eeB m  and 0 ,eq mB  is the magnetic field on the location (p = 2,650de0,   0 ). 
There are two electron components: cold background electrons and anisotropic hot electrons for exciting 
whistler waves (Kennel & Petschek, 1966; Li et al., 2010; Tsurutani & Smith, 1974). A fixed ion background 
is setup to ensure plasma charge neutrality. The cold electrons are treated as a fluid with number density 
ne which is set equal along the same field line. We set up the density ducts by changing ne in the direction 
perpendicular to the magnetic field. For the flat-topped density duct in simulation case 1, its flat-topped part 
has e In n  and the equatorial radial width D = 80de0. Its inner and outer boundaries are set by the modified 
Gaussian function

 


  
    

  

2

0 0 2exp ,
2e I
pn n n n (1)

where n0 represents the background density outside the duct, ρ = 10de0 is the characteristic scale, and p  
indicates  1p p  (p1=2610de0) for the inner boundary and  2p p  (p2  =  2,690de0) for the outer boundary 
respectively. The bell-shaped density duct in simulation case 2 is also set by Equation 1 with    3p p p  
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(p3 = 2,650de0). We set  02In n , since the peak number densities ∼90 cm−3 in both observed density en-
hancements are approximately twice the outside densities ∼40 cm−3.

For simplicity, the hot electrons adopt a bi-Maxwellian distribution with temperature anisotropy 

 ||/ 4h hT T , number density 0/ 0.01hn n , and parallel thermal velocity || 0.09thv c at the magnetic equa-
tor. The parallel thermal velocity is corresponding to ∼2 keV close to the observed values (Figure S1). The 
temperature anisotropy is larger than observed values to easily generate waves in the simulations. Off the 
magnetic equator, hot electron distribution can be derived from Liouville's theorem (Summers et al., 2012). 
The simulation grid numbers are N|| = 4,000 along the field lines and   300N  along the curves orthogonal 
to the field lines. The time step is 0Ω Δ 0.04e t . A total of about 1.2 billion superparticles are used for hot 
electrons. The boundary conditions are absorbing boundary conditions for waves and reflecting boundary 
conditions for particles (Lu et al., 2019).

3.2. Simulation Results

The overview of simulation results displaying spatial-temporal evolution of excited whistler waves is shown 
in Figure 2. The spatial profiles of perpendicular (to the simulation plane) magnetic fluctuations 1 0 ,/ eq mB B  
in the Cartesian coordinates (x, z) at 0Ωe t = 700 and 2,100 are presented for simulation case 1 (Figures 2a 
and 2b) and case 2 (Figures 2e and 2f). The black solid line indicates the distribution of cold electron den-
sity on x at z = 0, and the dotted lines mark the edges of the density duct. The equatorial radial widths are 
defined as   04 120 eD d  for the flat-topped duct and   04 40 ed  for the bell-shaped duct, equal to ∼10 
λw and several λw respectively. The dashed line with central point near   15  is orthogonal to the field 
lines. The whistler waves are initially excited near the magnetic equator, and these waves inside the duct are 
weaker than that outside the duct (Figures 2a and 2e), which can be explained by the linear growth rates. 
During off-equatorial propagation, these whistler waves outside the ducts attenuate significantly at high 
latitudes, while these waves inside the ducts are trapped by the duct boundaries and become much more 
intense even at   15  (Figures 2b and 2f). Besides, these trapped waves gather near the outer boundary 
of the broad flat-topped duct and in the center of the narrow bell-shaped duct. The regions bounded by the 
approximate rectangles (Figures 2b and 2f) are zoomed in (Figures 2c and 2g), which show quasi-parallel 
wave packets inside the ducts and oblique wave packets outside the ducts. Figure 2d (2h) displays wave 
dynamic spectra at the locations P1 and P2 (P3 and P4) marked by two black dots in Figure 2c (2g), showing 
that the whistler waves trapped inside the ducts are much stronger than outside waves at high latitudes due 
to the less Landau damping and more nonlinear growth.

Figure 3 exhibits the wave power spectral density (PSD) of magnetic field fluctuations along the paths in-
dicated by the dashed lines in Figures 2c and 2g. The wave power spectral densities are integrated over the 
full simulation duration ( 0Ωe t = 0–2,500). The wave normal angles θ are obtained by SVD method (Santolík 
et al., 2003) and weighted by the PSD. Figures 3a and 3b show that PSD of whistler waves inside the ducts 
are much higher than that outside the ducts. These waves inside the ducts are mostly quasi-parallel with 
small θ while these waves outside are oblique with large θ up to ∼ 75  (Figures 3c and 3d). However, a small 
portion of highly oblique waves appear inside the density ducts near the boundaries, consistent with the 
observations. These very oblique waves are from the outside, which can penetrate into the enhanced den-
sity duct also predicted by the ducting theory (Streltsov et al., 2006). In addition, the more intense whistler 
waves appear around the outer boundary of the flat-topped duct but in the center of the bell-shaped duct. 
These results are well consistent with the observations.

Figure 4 presents the spatial profiles of the absolute values of 1 0 ,/ eq mB B  at 0Ωe t = 1,800, 1,900, and 2,000 
for simulation case 1. Inside the density duct, a wave packet at different times is circled by blue ellipses (Fig-
ures 4a–4c). This wave packet is initially on the field line L1 at 0Ωe t = 1,800, and then propagate toward high 
latitude and refract outward. It reaches the region outside the field line L1 at 0Ωe t = 2,000. The outward prop-
agation of these waves are mainly due to the magnetic field curvature, consistent with ray tracing simulations 
(Breuillard et  al.,  2012; Chen et  al.,  2013) and observation statistics (Santolík et  al.,  2010; Taubenschuss 
et al., 2016). This can explain why waves gather near the outer boundary inside the flat-topped density duct.
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To better understand the effects of the enhanced density duct on waves, we performed one additional simu-
lation (case 3) with cold electron density  02en n . The other simulation parameters are same as that in sim-
ulation case 1. The spatial profiles of 1 0 ,/ eq mB B  in simulation case 1 and case 3 at 0Ωe t = 2,000 are presented 
in Figures 5a and 5b, respectively. The same field line p = 2,680de0 is marked by black line in Figure 5a 
and blue line in Figure 5b. The PSD on each point along this field line integrated over 0Ωe t = 0–2,500 and 
 0/ Ωe  = 0.1–0.3 in case 1 (black line) and case 3 (blue line) are displayed in Figure 5c. The corresponding 
wave normal angles (weighted by PSD) are presented in Figure 5d. Just as expected, under the same initial 
conditions, the whistler mode waves trapped inside the enhanced density duct remain quasi-parallel and 
more intense than those unducted waves off the equator (Figures 5c and 5d).
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Figure 2. The spatial profiles of perpendicular magnetic field fluctuations 1 0 ,/ eq mB B  (perpendicular to the 
simulation plane) in the Cartesian coordinates (x, z) at 0Ωe t = 700 and 2,100 for (a) and (b) simulation case 1, and (e) 
and (f) simulation case 2. The black solid lines indicate the radial profiles of cold electron density along x at z = 0, 
and two dotted lines mark the edges of the density duct. (c) and (g) The enlarged view of the regions bounded by the 
approximate rectangles in Figures 2b and 2f. (d) and (h) Wave dynamic spectra at the locations P1, P 2, P3, and P4 
marked by black dots in Figures 2c and 2g.
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4. Discussion and Conclusions
Through Van Allen Probe data, we report one event that whistler-mode waves have markedly different 
properties between inside and outside the density enhancements. Whistler-mode waves inside the den-
sity enhancements are mainly quasi-parallel and much stronger than those outside waves that are very 
oblique. The density enhancements up to 90 cm−3 at L ∼ 6 are likely to be parts of a plume (Shi et al., 2019; 
Su et al., 2018), which can be narrow on the dawnside (Zhang et al., 2019). Actually, we have found a 
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Figure 3. (a) and (b) The wave power spectral density (PSD) of magnetic field fluctuations along the paths indicated 
by the dashed lines in Figures 2c and 2g. (c) and (d) The corresponding wave normal angles θ weighted by the PSD. The 
PSD and θ are integrated over the full simulation duration ( 0Ωe t = 0–2,500).

Figure 4. The spatial profiles of the absolute values of 1 0 ,/ eq mB B  at (a–c) 0Ωe t = 1,800, 1,900, and 2,000 for 
simulation case 1. The dotted line L1 represents a reference magnetic field line. The same wave packets at different 
times are marked by the blue ellipses.
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number of similar events detected by Van Allen Probes near dawn, and also shown another one in the 
supporting information (Figure S2). The large-amplitude whistler waves in the plumes are thought to be 
qualitatively explained by the linear theory through assuming whistler waves are parallel-propagating 
(Su et al., 2018). The larger linear growth rates is considered to be a probable cause of intensification of 
whistler-mode waves in density enhancements (Li et al., 2011). However, in this event, the whistler waves 
inside the density enhancements remain quasi-parallel at higher latitudes, which is not expected in a di-
pole magnetic field without the ducting effect. In our simulations, these waves outside the density ducts 
will become more oblique and experience strong Landau damping, while those inside ducted waves can 
remain quasi-parallel and gain more nonlinear growth. The simulations coincide with the observations 
very well.

Whistler-mode waves trapped (guided) by density ducts have been studied by ray-tracing simulations 
(Hanzelka & Santolík,  2019; Smith et  al.,  1960) and electron magnetohydrodynamics simulations 
(Streltsov et  al.,  2006,  2007). However, both methods are unable to reproduce wave excitation and 
nonlinear interactions with particles, which play a key role in wave evolution and the radiation belt 
dynamics. Therefore, we carried out 2-D kinetic simulations in a dipole magnetic field to study how 
whistler waves generate and evolve in the density ducts. Our simulation results show that whistler 
waves usually propagate toward high latitudes and refract outward in a dipole magnetic field due to 
the magnetic field curvature (Figure 4). Thus, these whistler waves inside the broad flat-topped density 
duct tend to move toward the outer boundary and will experience inward refraction when reaching the 
outer boundary because of high density gradient, resulting in wave congregating and propagating near-
ly along the field-aligned outer boundary. These whistler waves inside the narrow bell-shaped density 
duct are refracted by inner and outer boundaries (Smith et al., 1960), leading to wave concentrating 
and propagating in the central region of the duct. We also call that these whistler waves are trapped 
(guided) by the enhanced density ducts. These trapped waves are much intense than those unducted 
waves. First, these waves from different places are trapped in a spatially narrow channel, leading to 
concentration of wave energy. Second, these trapped waves remain quasi-parallel, thus undergo less 
Landau damping. Third, these trapped waves may get much more nonlinear growth due to the larger 
amplitude (Omura et al., 2009). Our simulation results show that these properties of the whistler waves 
trapped by the enhanced density ducts are well consistent with that in the observed density enhance-
ments. Our main conclusions are as follows:
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Figure 5. The spatial profiles of 1 0 ,/ eq mB B  in simulation case 1 (a) and case 3 (b) at 0Ωe t = 2,000. The black line and 
blue line mark the same field line p = 2,680de0. (c) The power spectral density (PSD) on each point along this field line 
integrated over 0Ωe t = 0–2,500 and  0/ Ωe  = 0.1–0.3 in case 1 (black line) and case 3 (blue line). (d) The corresponding 
wave normal angles (weighted by PSD) in case1 (black line) and case 3 (blue line).
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 1.  Whistler-mode waves can be trapped inside the enhanced density ducts and remain quasi-parallel prop-
agating supported by satellite observations and PIC simulations.

 2.  These trapped whistler-mode waves usually get much larger amplitudes than those waves outside the 
enhanced density ducts during propagation toward high latitudes due to less Landau damping, focusing 
effect, and more nonlinear growth.

3.  These trapped whistler-mode waves generally focus at a spatially narrow channel inside the enhanced 
density ducts due to the effects of magnetic field curvature and density gradient.

Whistler-mode waves, ubiquitous in planetary plasma space, play a key role in controlling energetic elec-
tron fluxes in the planetary radiation belt, which are highly regulated by the properties of whistler waves. 
The density irregularities, observed frequently in the radiation belt, are found to change largely the proper-
ties of whistler waves in present study, which may play an important role in modulating energetic electron 
fluxes in the radiation belt. Studying the effects of the trapped whistler waves on energetic electrons will be 
left for a future work.

Data Availability Statement
The Van Allen Probe data are publicly available from the website https://spdf.gsfc.nasa.gov/pub/data/
rbsp/. The SYM-H and AE index data are publicly available from the OMNI website (https://omniweb.gsfc.
nasa.gov). Simulation datasets for this research are available at the following link http://doi.org/10.5281/
zenodo.3859476.
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