
1.  Introduction
Whistler-mode chorus waves are intense and naturally generated electromagnetic emissions observed fre-
quently in the near-Earth space (Tsurutani & Smith, 1974; Horne et al., 2005; Thorne et al, 2010, 2013; Gao, 
Li, et al., 2014; An et al., 2019) and other magnetized planets (Gurnett et al, 1981, 1986; Scarf et al., 1979; 
Shprits et al., 2018). It has been well recognized that these waves play a pivotal role in the dynamics of plan-
etary radiation belts (Horne et al., 2005; Kennel & Petschek, 1966; Mozer et al., 2014; Reeves et al., 2013; 
Thorne et al, 2010, 2013), a zone of high-energy electrons that are trapped by the intrinsic magnetic fields. 
Satellite observations have shown that density ducts with cross-field plasma density enhancements (or deple-
tions) possibly exist frequently in the Earth's radiation belts (Angerami, 1970; Bell et al., 2009; Koons, 1989; 
Li, Bortnik, et al., 2011; Loi et al., 2015; Moullard et al., 2002; Smith & Angerami, 1968; Sonwalkar, 2006; 
Sonwalkar et al., 1994). The existence of these ducts can change the global distribution and properties of 
chorus waves, and thus significantly affect the dynamics of high-energy electrons in the radiation belt.

The possible guidance of whistler-mode waves in density ducts has drawn attention for over five decades 
(Smith & Angerami,  1968; Smith et  al.,  1960; Scarabucci & Smith,  1971; Karpman & Kaufman,  1982; 
Koons,  1989; Moullard et  al.,  2002; Bell et  al.,  2009; Li, Bortnik, et  al.,  2011). A number of theoretical 
(Smith et al., 1960; Scarabucci & Smith, 1971; Karpman & Kaufman, 1982) and simulation studies (Streltsov 
et al., 2006, 2007; Woodroffe et al., 2013; Streltsov & Bengtson, 2020) have demonstrated that whistler-mode 
waves can be spatially confined within a duct when its transverse scale size is comparable to or smaller 
than the perpendicular wavelength of the waves. However, in situ evidence for such a concept is still ab-
sent, because of incomplete measurements of electromagnetic fields (only one or two dimensions, Bryant 
et al., 1985; Cornilleau-Wehrlin et al., 1997) and reliable plasma density measurements (uncertainty within 
a factor of approximately 2, Li, Thorne, et al., 2010). As a result, previous observations only revealed the 
correlation between density variations and chorus wave occurrence (Koons, 1989; Li, Bortnik, et al., 2011; 
Moullard et al., 2002).

To thoroughly investigate chorus waves guided by density ducts, we have acquired the simultaneous meas-
urements of high-resolution three-dimensional electromagnetic fields—to obtain the full polarization 
properties of chorus waves, and sufficiently accurate plasma densities—to identify the density ducts, both 
using NASA's Van Allen Probes mission instrumentation (Kletzing et al., 2013; Wygant et al., 2013; Spence 
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et al., 2013). Based on the data, we will conduct theoretical wave propagation calculations. Here, we analyze 
in detail the trapping of whistler-mode chorus waves by density ducts with cross-field density enhance-
ments, and perform a quantitative comparison with existing wave propagation theory. As shown below, 
chorus waves, originating from nearby sources, display significantly different properties inside and outside 
density ducts.

2.  Data
Van Allen probes, previously called the “Radiation Belt Storm Probes” (RBSP) mission, are twin spin-sta-
bilized spacecraft (A and B) operating in near-equatorial, highly elliptical, and low-inclination orbits 
with perigees of approximately 1.1 ER  and apogees of approximately 5.8 ER . The instruments onboard 
the satellites provide accurate in situ measurements of the wave environment and particle fluxes in the 
Earth's inner magnetosphere. The Electric and Magnetic Field Instrument Suite and Integrated Science 
(EMFISIS Kletzing et al., 2013) onboard two probes provide high time-resolution electromagnetic fields 
(approximately 35,000 S/s), low-resolution dc magnetic fields (64 S/s), and high-frequency power spec-
tra (1/6 S/s). The low-resolution dc magnetic fields are treated as the background magnetic field, while 
the high-resolution wave magnetic fields are analyzed to obtain polarization information (such as the 
wave normal angle and Poynting flux) of chorus waves followed Means' method (Means,  1972). The 
background plasma density is estimated by the upper-hybrid wave band (Kurth et al., 2015) shown in the 
high-frequency power spectra, or inferred from the spacecraft potential (Wygant et al., 2013). The Ener-
getic Particle, Composition and Thermal Plasma Suite (ECT, Spence et al., 2013) consists of the Helium 
Oxygen Proton Electron (HOPE) Mass Spectrometer (Funsten et al., 2013), the Magnetic Electron Ion 
Spectrometer (MagEIS, Blake et al., 2013), and the Relativistic Electron Proton Telescope (REPT, Baker 
et al., 2013). The three instruments collectively cover the electron and ion energy spectra from eV to tens 
of MeV.

3.  Observation Results
We report RBSP-A spacecraft measurements during 06:10-06:35 UT on 30 January 2014. The spacecraft 
was in the inner magnetosphere at a magnetic latitude of −18.8° and a radial distance of approximately 5.7 
Earth radii (Figure 1a), when it encountered two density ducts at about 06:23 and 06:28 UT, characterized 
by a density increase up to a factor of two (Figure 1c). The density shown in Figure 1c is obtained from two 
different techniques: (1) inferred from the upper-hybrid frequency uhf  shown in Figure 1b (red line), and 
(2) inferred from the spacecraft potential (black line). The remarkable consistency between the two meas-
urements demonstrates a high reliability of the presence of density ducts. Angerami (1970) revealed that 
the width of ducts (in L-shell direction) ranges between 0.035 and 0.07 earth radii, about approximately 
200–450 km at the equator. Sonwalkar et al. (1994) also estimated the width as approximately 367 km at the 
equator. Here, the cross-field scale of two density ducts is estimated to be approximately 460 km based on 
the spacecraft velocity (approximately 2.56 km/s). The width is approximately 280 km in radial direction, 
and approximately 350 km in azimuthal direction, which is similar to previous results (Angerami, 1970; 
Sonwalkar et al., 1994).

In Figures 1d and 1e, there are intense electromagnetic waves in the whistler-mode frequency range, that 
is, with frequencies  0.1 0.5ce cef f f , both inside and outside the density ducts. Here, fce represents the 
equatorial electron cyclotron frequency. These whistler-mode waves, also called chorus waves, are captured 
by RBSP-A as they propagate southward from their source region (i.e., the magnetic equator), which is 
inferred from the anti-parallel orientation (  180poyn ) of the wave Poynting vector with respect to the 
background magnetic field (Figure 1f). It is generally accepted that chorus waves are generated from the 
anisotropic energetic electron population (from approximately 10 to 100 keV) at the magnetic equator with 
small wave normal angles (WNA 20 , Gary, Winske, & Hesse, 2000; Omura et al., 2008; Lu et al., 2019), 
and the wave propagation becomes more and more oblique as they propagate in the Earth's dipole magnetic 
field (Agapitov et al., 2013; Chen et al., 2013; Lu et al., 2019). As shown in Figure 1g all chorus waves outside 
the density ducts have quite large WNAs ( approximately 60 ) at the observation site, which is consistent 
with previous theoretical ray tracing and full kinetic simulation results (Chen et al., 2013; Lu et al., 2019). 
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However, chorus waves inside the density ducts exhibit distinctly different properties compared with waves 
outside. The whistler-mode spectra inside the density ducts are found to have much lower frequency values, 
which even reach down to approximately 0.20 cef  (Figure 1d). In addition, chorus waves below approximate-
ly 1500 Hz still have very small WNAs (Figure 1g), that is, only approximately 20 , even at such a relatively 
high magnetic latitudes (−18.8°). More interestingly, the chorus WNAs exhibit a frequency-dependence 
inside each density duct: chorus waves with higher frequencies only contain small WNAs over narrower re-
gions (Figure 1g), while the waves above approximately 1700 Hz are highly oblique, similar to those outside 
the density ducts (Figure 1g).
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Figure 1.  Event overview observed by RBSP-A. (a) The schematic of the location where RBSP-A captured this event. 
(b) The electric field power spectral density in the Waves HFR channel (The uhf  is given by the white line, denoting the 
wave mode with the average frequency weighted by the power at each time). (c) Electron density. (d) The spectrogram 
of magnetic power Bw,s and (e) electric power Ew,s, (f) Poyn, and (g) wave normal angle (). Here, WNA () represents 
the angle between the wave vector and background magnetic field, and Poyn is the angle between the Poynting vector 
and background magnetic field. In each panel, the dotted and dashed lines in white or black represent 0.2 fce and 0.5 fce, 
respectively, where fce represents equatorial electron cyclotron frequency.
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This chorus event provides in situ evidence of whistler-mode chorus waves guided by density ducts. In the 
remainder of this article, we will demonstrate that the details of this event can be well explained by the 
existing theories of whistler mode wave ducting.

During the interval of interest, RBSP-A also recorded several high time-resolution (approximately 30 μs) 
burst segments of electric and magnetic field vectors, and we conduct a polarization analysis for each burst 
segment by using the Means' method (Means, 1972). Two examples are provided in Figure 2: one is inside 
the density duct, and the other is outside the density duct, which also have been marked by red arrows in the 
bottom of Figure 1. Whistler-mode chorus waves in the Earth's magnetosphere typically have discrete fine 
structures, such as rising tones shown in Figure 2a. The spectra in event I can be considered as the superpo-
sition of two remarkably different groups of chorus waves according to their frequencies and WNAs. In one 
group, chorus waves have properties closely resembling those outside the density duct (i.e., event II), whose 
magnetic power peaks at about 1,800 Hz (Figure 2a) and WNAs are mainly larger than 60  (Figure 2b). In 
the other wave group, there are only quasi-parallel chorus waves with WNAs smaller than 30  (Figure 2b), 
and their power peaks at about 1,300 Hz (Figure 2a).

It is reasonable to assume that chorus waves inside and outside the ducts come from nearby wave gen-
eration sources at the magnetic equator, supported by their very close locations and the same southward 
propagating direction of the waves (Figures 1f and 2c). The energetic electrons that presumably drive the 
generation of the two regions almost have the same velocity distribution as shown in the RBSP observations 
(Figures 3a and 3b), which could be fitted into a multicomponent bi-Maxwellian as  i if f , where
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here v  and v  are the parallel and perpendicular velocities with respect to the background magnetic field. 

iT  and iT  are the parallel and perpendicular temperatures of the component i. The number density of each 
component is represented by in . All the parameters are presented in Table 1. The cold ( cT ,   5cT eV ) elec-
tron density cn  inside the duct (18.7 3cm ) is about twice as large as the value outside the duct (9.6 3cm ).  
Other fitting parameters are the same for the two distributions, since there is little difference between 
them. The warm electron distribution is fitted by summing three components (i.e., i = 3):  30.52cmwn , 

 52.4wT eV  and  / 1.32w wT T ;  3
1 0.044hn cm ,  1 2.42hT keV  and  1 1/ 1.42h hT T ;  3

2 0.0027hn cm ,  
 2 12.42hT keV  and  2 2/ 1.37h hT T .

Since chorus waves are typically generated from anisotropic electrons at the magnetic equator (Gary, Win-
ske, & Hesse, 2000; Lu et al., 2019; Omura et al., 2008), we need to transform the fitted local distribution 
into the equatorial electron distribution. The method employed in this study is the same as that in Summers 

CHEN ET AL.

10.1029/2020JA028814

4 of 11

Figure 2.  High-resolution whistler mode waves observed inside and out the duct. Two 6-s burst segments: one is inside 
the density duct (left), and the other is outside the density duct (right). (a) The spectrogram of magnetic power Bw,b, (b) 
WNA  , and (c) ratio Sz/S. S is the intensity of Poynting Flux and Sz is the parallel component.
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et al.  (2012), which is based on Liouville's theorem that the distribution function is preserved along the 
field line, with the conservation of the first adiabatic invariant (i.e., magnetic moment) and the particle 
total kinetic energy. The equatorial distribution parameters derived are:  30.63wn cm ,  52.4wT eV  and 

 / 1.62w wT T ;  3
1 0.059hn cm ,  1 2.42hT keV  and  1 1/ 1.89h hT T ;  3

2 0.0035hn cm ,  2 12.42hT keV  
and  2 2/ 1.76h hT T . The equatorial background magnetic field eqB  are 164.8 nT (inside) and 167.9 nT 
(outside), estimated assuming a simple dipole field. It is worth noting that this event is captured during a 
very quiet period (dynamic pressure <1.0 nPa, SYM-H index around approximately −15 nT, and AE index 
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Figure 3.  Electron pitch angle distribution and calculated chorus wave growth rates. (a), (b) The electron distributions 
as a function of pitch angle measured by the ECT during the two events in Figure 2. The electron distributions are 
indicated by the symbol “+,” and the solid lines are the fitting curves. (c), (d) The dispersion relations of unstable 
whistler mode waves for both events obtained from the linear model using input parameters listed in Table 2. The color 
bar denotes the linear growth rate. Here, “k” is wave number. And “λ” is electron inertial length, which is equal  
to c/ωpe.



Journal of Geophysical Research: Space Physics

<60 nT), so the simple dipole field is used in this study. Table 2 gives the parameters of the equatorial elec-
tron distribution in the same format as Table 1.

With a widely used linear model, such as BO (Xie, 2019), we find the electron density will modify the fre-
quencies of unstable whistler mode waves. Figures 3c and 3d illustrate the dispersion relation of unstable 
whistler modes for both events obtained from the linear model by the input equatorial distribution param-
eters. Linear theoretical results indicate that the unstable whistler waves inside the duct tend to have lower 
frequencies (Figure 3c). Outside the duct, the frequency of the most unstable whistler mode waves is about 
0.36 fce (approximately 1,700 Hz; Figure 3d), while the one inside the duct decreases to 0.30 fce (approximate-
ly 1,400 Hz; Figure 3c).

To understand the behavior of whistler-mode chorus waves inside the density duct, we employ the theoret-
ical model developed by Streltsov, Lampe, Manheimer, et al. (2006) with the quasi-longitudinal approxima-
tion given by

 
22

2
2 22 1 ,pece ff sin cos

f f
� (1)

where f  is the frequency of whistler-mode wave, and cef  and pef  are the electron gyrofrequency and plasma 
frequency, respectively. We confirm that the quasi-longitudinal approximation is valid for all whistler-mode 
chorus waves during the interval of interest in Figure 1. For simplicity, the duct is treated as a symmetric 
density hump across the background magnetic field but kept constant along the field line. Since the spatial 
scale of the density duct is only approximately 400 km, the background magnetic field is nearly uniform 
inside the density duct. Then the ducted whistler-mode waves should follow the quasi-longitudinal disper-
sion relation written as:


  

2 2
2

2

4
0,pece ffk k k

f c
� (2)

where k is the magnitude of the wave k vector which has perpendicular and parallel components k  and 
k  (defined relative to the background magnetic field), and c is the light speed. We focus on a specific wave 
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B (nT) nc (cm−3)  ,c cT T  (eV) nw (cm−3) wT  (eV)  /w wT T

Pin 262.3 18.7 5.0 0.52 52.4 1.32

Pout 267.1 9.6

nh1 (cm−3)  1hT  (keV)  1 1/h hT T nh2 (cm−3)  2hT  (keV)  2 2/h hT T

Pin 0.044 2.42 1.42 0.0027 12.42 1.37

Pout

Table 1 
The Fitting Parameters for Two Electron Distributions at Observation Sites: Pin is Inside the Duct, and Pout is Outside the Duct

Beq (nT) nc (cm−3)  ,c cT T  (eV) nw (cm−3) wT  (eV)  /w wT T

Pin 164.8 18.7 5.0 0.63 52.4 1.62

Pout 167.9 9.6

nh1 (cm−3)  1hT  (keV)  1 1/h hT T nh2 (cm−3)  2hT  (keV)  2 2/h hT T

Pin 0.059 2.42 1.89 0.0035 12.42 1.76

Pout

Table 2 
The Fitting Parameters for Two Electron Distributions at the Magnetic Equator: Pin is Inside the Duct, and Pout is Outside the Duct
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mode with frequency f , which remains unchanged during the propagation. A good approximation for the 
strong inhomogeneity across the magnetic field line leads to an almost constant ||k  during quasi-parallel 
propagation. Finally, we obtain a formula describing how k , essentially equivalent to the WNA, depends 
on the electron density en :

  
 

     
 

  
2 2 2 2

2
0

f .e ce
e

mn k k k k k
fe

� (3)

Here, em , e, 0 are the electron mass, electron charge, and vacuum permeability, respectively. Taking a 1100-
Hz whistler mode wave as an example, we calculate its k  according to Equation 2 with the local electron 
density en  (approximately 19.26 3cm ) and the power-weighted WNA approximately 27.8°) extracted from 
event I in Figure 2. Then, based on Equation 3, we can plot the blue curve for the 1100-Hz whistler mode 
wave with the fixed f and k  in Figure 4b.

For each curve, there are two critical densities: 


 
  

 

2

0 2
0

1e cem k fn
fe

 with   0k  and 


 
  

 


22

1 2
0 2
e cem k fn

fe
 with 


 k k . Here, 

k  corresponds to the Gendrin angle (
2

ce

farccos
f

, Gendrin, 1961). The electron density inside 

the duct peaks at inn  (∼19.4 3cm  for the first duct), and decreases to the ambient density outn  (∼10 3cm ). It is 
found that these densities satisfy   0 1out inn n n n  for all lower-band (<approximately 2,500 Hz) whistler 
waves. Inside the duct, if the whistler wave has a small 

 k k , that is, quasi-parallel propagating wave, 
then its k  continues to decline along the curve while propagating outward (Figure 4b). However, when the 
perpendicular wave number k  falls to zero, this whistler mode cannot propagate outward since there is no 
real solution of k  below 0n  (Figure 4b), but the wave will be reflected toward the center of the duct. There-
fore, this whistler mode wave will be confined within the region where the electron density en  is between 0n  
and inn  (i.e., ducted region), but it can still propagate along the field line and remain in quasi-parallel prop-
agation. This is why lower-frequency (<1,500 Hz) chorus waves inside density ducts still have very small 
WNAs after they reach the higher-latitude region (approximately 18.8 ) as displayed in Figures 1 and 2.

However, in the case of an oblique whistler wave (i.e., 
 k k ), the curve smoothly extends to low densities 

( outn ) with increasing k  (Figure 4b), meaning oblique whistler wave will not be confined by the density 
duct. Therefore, oblique whistler waves with WNAs larger than Gendrin angle can freely propagate inside 
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Figure 4.  Electron density as a function of the perpendicular wave number of whistler mode waves. Panel a is a zoom-
in view of the shaded region in panel. (b) Different colors indicate whistler mode waves with different frequencies, such 
as 800, 900, 1,000, and 1,100 Hz. For each whistler mode, the red diamond and black star represent two critical densities 

0n  and 1n  calculated based on the quasi-longitudinal dispersion relation. We have marked the density duct and ducted 
region by double-headed arrows.
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or outside density ducts. Here, we conclude that oblique chorus waves detected inside the duct (Figures 1d 
and 2a) are originally excited by outside sources, and then propagate into the duct after they become suf-
ficiently oblique at high latitudes. This is supported by the following arguments. Whistler waves excited 
inside the duct must be below approximately 2,300 Hz (or 0.5 cef ; Figure 3c), so they should be confined 
inside the duct with small WNAs as predicted in Figure 4b. On the other hand, both the magnetic power and 
frequencies of obliquely propagating chorus waves are nearly the same as those of waves detected outside 
the duct (Figures 1d and 2a), which can be well described by the linear results given in Figure 3d (outside) 
rather than Figure 3c (inside).

Figure 4a exhibits an expanded view of the shaded region in panel b. As was noted in panel b, a whistler 
wave with the frequency f  (<approximately 2,300 Hz) will be confined within the ducted region where 

 0 e inn n n . In Figure  4a, we further find the critical density 0n  is positively correlated with the wave 
frequency f , that is, the 0n  for 800, 900, 1,000, and 1,100-Hz whistler modes is about 17.32, 17.36, 17.40, 
and 17.44 3cm , respectively. Therefore, a whistler mode wave with a lower frequency can propagate further 
away from the center of the duct, meaning the ducted region of whistler mode is expected to become rela-
tively wider with lower wave f , which has been observed in Figure 1g. Figures 5a–5d illustrate the magnetic 
amplitudes of 800, 900, 1000, and 1100-Hz whistler waves as a function of time, which can also be consid-
ered as the spatial distribution of wave amplitudes since the density duct can be assumed to be a statistic 
structure during this short interval. For each whistler mode wave frequency, we calculate its magnetic am-
plitude by integrating magnetic power from both wave spectrum data ( ,w sB ; Figure 1d) and burst segments  
( ,w bB ; Figure 2a) recorded during this interval, denoted by line and dots, respectively. Although ,w bB  is larger 
than ,w sB  occasionally during some intervals, the trend of variation is very consistent (Figures 5a–5d). The 
ducted region for each wave is then determined to be the region where the magnetic amplitude is larger 
than the background (or outside) value. This has been shaded in gray in each panel. For 800 to 1100-Hz 
whistler waves, the ducted region is estimated as 125, 106, 82, and 61 km, respectively, corresponding to 
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Figure 5.  The temporal profiles of magnetic amplitude for whistler modes waves. Panel a–d present whistler mode 
waves with f = 800, 900, 1,000, and 1,100 Hz, respectively. In each panel, the amplitude is calculated by integrating 
magnetic wave power using the survey-mode WFR data (black line), or continuous-burst waveform data (averaged with 
1-s data; dots), and the shaded area is the ducted region for each whistler mode wave. Moreover, we plot the electron 
density en  (red line), theoretical 0n  (dashed line), and observed 

0n  (dotted line), respectively. The specific frequency 
ranges are approximately 796–892 Hz, approximately 892–1,001 Hz, 1,001–1,124 Hz, and 1,124–1,261 Hz for f = 800, 
900, 1,000, and 1,100, respectively.
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 0n  17.63, 18.09, 18.52, 18.71 3cm . As a reference, we plot the first density duct in each panel, and mark the 
theoretical 0n  for these four wave modes. It is important to note that there is a clear trend that the ducted 
region becomes narrower with the increasing wave frequency (Figures 5a–5d).

4.  Summary and Discussion
In this paper, we report the in situ observation of whistler-mode chorus waves guided by density ducts 
with small-scale density enhancements. We find chorus waves, originally excited inside ducts with WNAs 
smaller than the Gendrin angle at near equator region, are efficiently confined within the density ducts, 
and remain with small WNAs when they propagating toward high latitudes as predicted by theory. In 
contrast, chorus waves from an outside source become very oblique (i.e., WNAs larger than the Gendrin 
angle) during their propagation away from the equator, and then they can freely penetrate into (and 
out of) density ducts. Although there have been some previous observations showing the correlation 
between density variations and chorus wave occurrence (mith et al., 1968; Angerami, 1970; Koons, 1989; 
Sonwalkar et al., 1994; Moullard et al., 2002; Sonwalkar, 2006; Bell et al., 2009; Li, Bortnik, et al., 2011; 
Loi et al., 2015), we believe our study can provide significant evidence for the existence of density ducts 
in the Earth's magnetosphere.

Our analyses find that there are still some deviations between theoretical 0n  and observed 
0n —specifically, 

the observed 
0n  is always larger than the theoretical one. From 800 to 1,100 Hz, the deviation n (  0 0n n )  

increases from 0.31 to 1.27 3cm , which becomes very significant for higher-frequency chorus waves. We 
speculate that the deviation is mainly caused by the damping effect during the wave propagation, which 
has not yet been taken into consideration in existing theories. Recent observations (Artemyev & Moure-
nas, 2020; Min et al., 2014) and simulations (Gary, Liu, & Winske, 2011) have revealed that chorus waves 
with finite wave normal angles can accelerate electrons through a Landau resonance. That is, chorus 
waves will experience a certain level of damping even inside the density duct, leading to a narrower 
ducted region compared with the present theoretical one. Since whistler waves with a higher frequency 
tend to have a relatively stronger parallel electric field and experience stronger Landau damping (Gao, 
Lu, et al., 2016; Verkhoglyadova et al., 2010), the deviation n for higher-frequency waves becomes more 
significant. Therefore, the spatial scale of the ducted regions should be controlled by both the ducting 
and damping effects.

Chorus waves are the Earth's own “cyclotron accelerator” that accelerates radiation belt electrons 
(Horne et al., 2005; Mozer et al., 2014; Reeves et al., 2013; Thorne, Li, et al., 2013), and their distribu-
tion and properties can be effectively regulated by density ducts. Satellite observations have shown that 
density ducts with cross-field plasma density enhancements or depletions exist ubiquitously in space 
(Koons, 1989; Li, Bortnik, et al., 2011; Moullard et al., 2002). Therefore, we suggest that density ducts 
may play an important role in modulating energetic electron dynamics in the Earth's or other planetary 
radiation belts.

Recently, Streltsov and Bengtson (2020) also reported the localized packages of whistler waves trapped in-
side high-density ducts, and estimated the range of wavelengths that can be trapped by density ducts based 
on the measurement and ducting theory (Streltsov et al., 2006, 2007). In this study, we report a peculiar 
chorus event (remote from the magnetic equator, i.e., MLAT = approximately −18.8°), in which lower-band 
chorus waves inside and outside the density ducts are simultaneously observed. Based on the dispersion 
relation obtained from the linear model and ducting theory, we confirm that the quasi-parallel chorus waves 
can be efficiently confined within the density ducts, but the oblique chorus waves can freely penetrate into 
the density duct. Our study not only presents a clear comparison of chorus waves between ducted (inside) 
and nonducted (outside) by density ducts, but also provide significant evidence for wave ducting. Note that 
the ideal direct evidence of wave ducting requires the joint observation by two or more probes at distant 
latitudes along one field line, which is too difficult to satisfy with existing data. In this study, based on the 
Van Allen Probe data, we have conducted a quantitatively comparison between the ducting theory and ob-
servations, which well supports the ducting effects of the density enhancement. Although this is not ideal 
direct evidence, our results still provide significant observational support for the theory.
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Data Availability Statement
We also acknowledge the entire Van Allen Probes instrument team, and the data are available from the 
website: https://spdf.gsfc.nasa.gov/pub/data/rbsp/.
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