
1.  Introduction
In the magnetosphere, whistler waves and electron cyclotron harmonic (ECH) waves are commonly ob-
served (Breuillard et al., 2016; Gao et al., 2016; Huang et al., 2016, 2017; Lou et al., 2018; Wilder et al., 2016; 
Zhou et al., 2009, 2016). Whistler waves are electromagnetic waves which generally have a frequency below 
the electron cyclotron frequency ceE f  , and their property is shown as the right-handed circular polarization 
(Deng & Matsumoto, 2001; Graham et al., 2016; Gurnett et al., 1976; Stenzel, 1999). While ECH waves are 
electrostatic emissions that nearly propagate perpendicular to the magnetic field (Gurnett & Bhattachar-
jee, 2005; Lou et al., 2018), and their harmonic bands are frequently observed between the integral multiples 
of the electron cyclotron frequency   ce1E n f  , concentrated in the narrow bands near n f 1 2/

ce
 (Gurnett 

et al., 1979; Kennel et al., 1970). A series of observations showed that whistler waves and ECH waves are 
committed to electron scattering and precipitation (Horne et al., 2003; Kurita et al., 2014; Lou et al., 2021; 
Thorne et al., 2010).

Generally, whistler waves can be excited by the electron temperature anisotropies whose perpendicular tem-
perature is larger than parallel temperature (Graham et al., 2016; Kennel & Petschek, 1966), and electron 
beams (Bell & Buneman, 1964; Huang et al., 2016, 2017, 2020). In addition, Goldman et al. (2014) reported 
that the Čerenkov emission from electrostatic solitary waves can also excite the whistler waves. In contrast, 
it is believed that ECH waves can be driven by the electrostatic instability whose electron phase space densi-
ty  E f v  has a positive gradient in the perpendicular direction   f v/ 0 (Ashour-Abdalla & Kennel, 1978), 
such as the ring, loss cone, or shell electron velocity distribution (Li et al., 2020; Liu et al., 2018; Umeda 
et al., 2007; Wu et al., 2020).

Previous observations have shown that whistler waves and ECH waves are often observed in the magnetic 
reconnection of the magnetosphere (Deng & Matsumoto, 2001; Huang et al., 2016, 2017; Jiang et al., 2019; 
Wang et al., 2019; Wilder et al., 2016; Zhao et al., 2021; Zhong et al., 2021), especially in the separatrix region 
and electron diffusion region (EDR) (Cao et al., 2017; Huang et al., 2016; Li et al., 2020; Tang et al., 2013; 
Viberg et al., 2013; Zhou et al., 2011, 2016). Huang et al. (2016) reported two types of whistler waves in the 
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pileup region and separatrix region of magnetotail reconnection. They suggested that the waves in the pile-
up region may be generated by the electron temperature anisotropy, while the waves in the separatrix region 
were probably generated by the electron beam or Čerenkov emission from electrostatic solitary waves. In 
Huang et al. (2017), they presented the full image of whistler waves in the magnetotail reconnection region 
based on Cluster data, and found that the occurrence rate of the whistler waves is lager in the separatrix 
region and in the pileup region, but is very small in the vicinity of the x-line. Le Contel et al. (2016) showed 
whistler waves at ce0.5E f f  in the magnetopause reconnection, and these waves are propagated quasi-par-
allel or obliquely to the magnetic field toward the reconnection region. Graham et al. (2016) found that the 
large-amplitude whistler waves in the separatrix regions of magnetopause reconnection can be driven by 
the electron loss cone distributions. For the ECH waves, Zhou et al. (2016) found that ECH waves can exist 
at the magnetosheath separatrix region of magnetopause reconnection and the energy dissipation contrib-
uted by the ECH waves was negligible in the diffusion regions. Li et al. (2020) reported that the large-am-
plitude ECH waves around the EDR of magnetopause reconnection were driven by electron crescent dis-
tributions, and they suggested that the large amplitude ECH waves can effectively thermalize and scatter 
electrons. However, as we know, there is no report showing the simultaneous existence of whistler waves 
and ECH waves in the reconnection region. In this paper, we present the simultaneous observations of the 
whistler waves and the ECH waves in the magnetosphere separatrix region at the dayside magnetopause, 
and the electrons in this region display the loss-cone distribution. Based on the electron distributions and 
the linear theory, we infer that the whistler waves and the ECH waves are excited by the electron loss-cone 
instability. Our results provide more insights on the excitation of plasma waves in magnetic reconnection.

2.  Database and MMS Observations
In this paper, we mainly use the electric field, magnetic field, and plasma data of MMS at the burst mode 
(Ergun et al., 2016; Le Contel et al., 2014; Lindqvist et al., 2014; Pollock et al., 2016; Russell et al., 2016). On 
November 12, 2015, MMS was located at around (11.3, 2.0, −0.7)  ERE  (  ERE  is the Earth's radius) in the Geocen-
tric Solar Ecliptic (GSE) coordinate system and crossed the magnetopause current sheet at ∼05:57 UT. The 
largest separation between the four MMS satellites was ∼20 km at that time. Based on the minimum vari-
ance analysis of the MMS2 magnetic field (MVA; Sonnerup & Scheible, 1998), we obtain the local boundary 
normal coordinates with L = (0.2844, −0.0174, 0.9585), M = (−0.0628, 0.9974, 0.0367), and N = (−0.9566, 
−0.0706, 0.2826) relative to the GSE coordinates.

An overview of the magnetopause crossing in the local boundary normal coordinates is shown Figure 1. At 
around 05:57:02 UT, the magnetic field LE B  component reverses from ∼47 nTE  to ∼ −30 nTE  (Figure 1a) with an 
increased plasma density (Figure 1g) and a reduced electron temperature (Figure 1h) are detected, which 
indicates that the satellite crosses the magnetopause current sheet from the magnetosphere side to the mag-
netosheath side. As the spacecraft traverses the current sheet, the ion bulk flow iLE V  changes from a positive 
value to a negative value (Figure 1e). In the northward ion flow region (  0iLE V   ), the magnetic field compo-
nent ME B  varies from a positive value to a negative value, then back to a positive value again with the changes 
of LE B  (Figure 1a), which is consistent with the hexapolar Hall magnetic field of asymmetric reconnection 
in the PIC simulations of Sang et al. (2019). In this event, the ratio between the magnetosphere magnetic 
field and magnetosheath magnetic field is about 2, and their density ratio is about 1/14, which conforms to 
the generation condition of the hexapolar Hall magnetic field in the PIC simulations of Sang et al. (2019). 
When the spacecraft enters the southward ion flow region (  0iLE V   ), the magnetic field component ME B  re-
mains positive (Figure 1a). Based on the observed characteristics of the Hall magnetic field and the ion bulk 
flows, we conclude that the spacecraft crosses the ion diffusion region of magnetopause reconnection from 
the northward of the X-line to the southward, as shown in Figure 1k. Throughout the crossing, the electron 
bulk flow also reverses from a positive value to a negative value (Figure 1d), and a strong southward elec-
tron flow (  0eLE V   ) is observed in the magnetosphere side of the current sheet and the northward of X-line 
around 05:56:55 UT. Based on the Hall current system, in this side, the northward electron flows are the 
reconnection electron northward outflows, while the southward electron flows correspond to the inflowing 
electrons in the separatrix region. Therefore, the satellite crosses the magnetosphere separatrix region. In 
the magnetosphere separatrix region, the strong out-of-plane electron flow eME V  (negative) and ion flow iME V  
(positive) are observed (Figures 1d and 1f), and the speed of ion flow iME V  is up to ∼150 km/s ∼0.5  AE V  (where 
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AE V  is the ion Alfven speed given by V B B B B m n B m n BA i i
2

0 0    sp sh sp sh isp sh ish sp/    with subscripts “sp” 
and “sh” denoting the magnetosphere and magnetosheath), and there are no obvious out-of-plane flows 
near the X-line in the magnetosheath side, which is well consistent with the simulations of the asymmetric 
magnetic reconnection (Burch et al., 2016; Lapenta et al., 2017; Phan et al., 2016; Sang et al., 2019; Wang 
et al., 2017; Yu et al., 2019). In addition, the speed of inflowing electron approaches 2,000 km/s in the sep-
aratrix region, much larger than the outflow speed ( E  400 km/s, Figure 1d), and such strong speed of the 
inflowing electron has also been observed in the Yu et al. (2019).

In the magnetosphere separatrix region, the electric field has large fluctuations (Figure 1f), and we observe 
the existence of electrostatic and electromagnetic plasma waves from the electric and magnetic power spec-
trum (Figures 1i and 1j) during the time period 05:56:50–05:57:00 UT. The detailed analyses of the plasma 

Figure 1.  Overview of the magnetopause current sheet crossing. (a) Magnetic field BE  . (b–c) Electron and ion energy spectrum. (d–e) Velocities of electrons and 
ions in three directions. (f) Electric field EE  . (g) Electron and ion number densities. (h) Electron temperature. (i–j) The power spectrum of EE  and BE  , and the black 
curves are 0.5 ceE f  . (k) A schematic illustrator of the magnetopause crossing, in which the MMS trajectory is represented by the green curve, and the region in 
pale blue (yellow) indicates the negative (positive) ME B  . The vertical gray bar represents the crossing separatrix region.
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waves in this region are displayed in the Figure 2. From the omnidirectional electric and magnetic pow-
er spectrum (Figures 2a and 2b), a high-frequency electromagnetic emission is detected during the time 
period 05:56:51–05:56:56 UT, and its frequency is around ce750 z 0.6E H f  .Strong broadband electrostatic 
emissions are detected after 05:56:56 UT, and their parallel electric field has solitary bipolar structures (not 
shown). Thus, we think that the broadband emission is associated with the electrostatic solitary wave (Cat-
tell et al., 2005; Matsumoto et al., 2003; Wang et al., 2014; Yu et al., 2021). Figures 2c–2d show the wave 
angle, and the ellipticity of the high-frequency electromagnetic emission obtained from the spectral ma-
trix. The wave normal angle of the high-frequency electromagnetic emission varies from 20° to 40°, which 
means that its propagation is quasi-parallel or oblique. Furthermore, the ellipticity of the high-frequency 
electromagnetic emission is close to +1, indicating that it is a right-hand circular polarization. Based on 
these analyses, the high-frequency electromagnetic emission can be recognized as whistler waves with a 
narrow frequency band around ce0.6 750E f f   Hz.

In addition, the Poynting vector of the waves in the parallel direction is positive (  || 0E S   , shown in the Fig-
ure 2e). Therefore, the whistler waves in the magnetosphere separatrix region are propagating away from 
the reconnection x-line along the direction parallel to the magnetic field. Based on the observations, we 

Figure 2.  The observations of waves in the separatrix region. (a and b) The power spectrum of E and BE  . (c) Wave 
normal angle. (d) The ellipticity. (e) The Poynting vector in parallel direction ||E S  . (f–g) The pitch angle distribution of the 
electrons at energies 100–700 eV and 700 eV–20 keV. The black curves shown in (a–e) are ce0.5E f  .
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can use the averaging E/BE  to estimate the phase speed of the whistler waves phE v  , which is about 25,000–
30,000  km/s. The wave wavelength in the parallel direction is about || /  v fph 31 37   km based on 

750E f   Hz. Thus, the speed of the resonant electrons calculated by the gyroresonance condition is about 
 ||res ce || 15600 18700E v f f       km/s (Kennel & Petschek, 1966; Vaivads et al., 2007).

It is worth noting that a high-frequency electrostatic wave is simultaneously observed in the separatrix 
region when the whistler waves are detected (marked by red color bar on the top of Figure 2), and the 
details are showed in Figure  3. The high-frequency electrostatic waves are mainly observed during two 
sub-periods 05:56:51.00–05:56:51.55 UT and 05:56:53.20–05:56:53.75 UT, marked with A and B, respec-
tively. Figures 3a–3d show the power spectrum of ||E E  and E E from a low frequency (100 Hz) to near the 
electron plasma frequency (red curves). Unfortunately, the electric field power spectrum calculated by the 
electric field data in short bursts of 65,536 sample/s (hmfe) is only available in the period of B (  4096E f   
Hz, as shown in Figures 3a and 3c). From the power spectrum of the E E (Figures 3c and 3d), we can see 
that the high-frequency electrostatic waves exist as a series of harmonic bands separated by   ce1E n f  , and 
other properties of the high-frequency electrostatic waves at two sub-periods A and B are presented in 
Figures 3e–3i and Figures 3j-3n, respectively. In the sub-period 05:56:53.20–05:56:53.75 UT (B), the peaks 
of wave power are observed in a range between ∼1,500 Hz and 8,000 Hz, i.e., between the first and fifth 
harmonic of ceE f  (Figure 3j). The waveforms of the high-frequency ||E E  and E E are shown in Figure 3k, and 
the perpendicular electric field E E is much larger than the parallel electric field ||E E  . Figures 3m–3n present 
the diagrams of electric fields obtained by the MVA of high-frequency electric fields, in which max, int, and 
min represent the maximum, intermediate, and minimum variance direction of the electron field. From 
the electric field diagrams, we can see that the maximum variance direction of high-frequency electrostatic 
waves are approximately 87° ± 2° with respect to the background magnetic field BE  , and the wave fluctua-
tions exhibit an approximately linear polarization. All properties of the high-frequency electrostatic waves 
observed in the period of B are in accordance with the characteristics of the ECH waves. In the sub-period 
05:56:51.00–05:56:51.55 UT (A), the wave power is only observed in a range between the first and third har-
monic of ceE f  due to the lack of electric field data in short bursts of 65,536 samples/s, and other properties of 
these waves are similar to those observed in the sub-period B. Thus, the high-frequency electrostatic waves 
observed in the sub-periods A and B are the ECH waves.

In this separatrix region, the pitch angle distributions of the electrons are displayed in Figures 2f and 2g, 
in which the energy fluxes of low energy electron (100–700 eV) are shown as the field-aligned distribution 
(∼0° and/or ∼180°), but the energy fluxes of high energy electrons (700 eV–20 keV) are significantly en-
hanced around the perpendicular direction (∼90°). In order to analyze the generation of the whistler waves 
and the ECH waves, we study the detailed electron distribution where the power of these two waves is the 
highest. Figures 4a and 4b show the electron phase-space density  eE f v  as a function of electron velocity eE v  
for whistler waves and ECH waves in three directions, in which the black, red, and blue colors represent the 
perpendicular, antiparallel, and parallel directions, respectively. In this paper, we fit the electron distribu-
tions by summing up multiple components with the subtracted bi-Maxwellian distribution functions with 
drift velocity when the whistler waves and ECH waves are observed:

   
 

2 2 2 2 2
||

|| 3/2 2 2 2 2 2
th || || th th th

1
f , exp exp exp exp

1
d

th th

N v v v v vv v
v v v v v v 

  


   

                                             
� (1)

where v kT mth e|| ||
/ 2  and v kT meth  2 /  represent the parallel and perpendicular thermal velocities 

based on the parallel ||E T  and perpendicular temperature E T of electrons, respectively. E N denotes the number 
density and dE v  is the electron drift velocity. The parameters E  and E   are the loss cone depth and width, 
which can control the shape of the loss cone distribution. If 1E    or 0E    , Equation 1 is reduced to the 
drift bi-Maxwellian distribution. Table 1, and Table 2 list the fitting parameters of the whistler waves and 
the ECH waves, respectively.

For the whistler waves, the electron phase-space density  eE f v  at 180E    is larger than 0E    and 90E    
for the electron velocity 15000eE v    km/s, and then  eE f v  is significantly larger at 90E    for the 15000eE v   
km/s, forming a loss cone distribution at the magnetosphere side (Figure  4a). Figure  4c shows the 2-D 
electron velocity distribution when the whistler waves are observed, and it is consistent with the loss cone 
distribution. To investigate the instabilities, we use the dispersion equation solver BO (Xie, 2019) to solve 
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Figure 3.  The observations of electron cyclotron harmonic waves in the separatrix region during two sub-periods A (05:56:51.00–05:56:51.55 UT) and B 
(05:56:53.20–05:56:53.75 UT). (a and b) The power spectrum of the ||E E  and E E . (e–i) and (j–n) show the wave properties during sub-periods A and B, respectively. 
(e) and (j) are the power spectral density of E E . (f) and (k) are the electric fields in field-aligned coordinates (FAC). (g) and (l) are the zoom-in view of the 
electric field in FAC. (h) and (m) are the hodogram of maxE E  versus intE E  . (i) and (n) are the hodograms of maxE E  versus minE E  . The red lines in (h) and (n) denote the 
direction of the background magnetic field.
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the dispersion relation of whistler waves at 20E    , and we use the fitting parameters in Table 1 and the 
local magnetic field BE  as the input parameters. Figure 4e shows the dispersion relation and the growth 
rate of the whistler waves, from which we can see that the frequency of the wave mode at the maximum 
growth rate is ∼ ce0.6E   , and the corresponding phase speed is v kph   / 19000 km/s, which is similar to 
the observations.

For the ECH waves, the electron phase-space densities shown in Figures 4b and 4d also display the loss-
cone distribution, in which field-aligned distribution of the electrons is dominant at the low energy bands, 

Figure 4.  The electron distributions and dispersion relations. (a and b) Diagrams of the electron phase-space density  eE f v  verses electron velocity eE v  
for whistler waves (∼05:56:55.2 UT) and ECH waves (∼05:56:53.29 UT) in three directions, in which the black, red, and blue colors are the perpendicular, 
antiparallel, and parallel directions, respectively. The rhombuses represent the observed value, and the lines are the fitting result. (c and d) The 2-D electron 
velocity distribution functions for the whistler waves and electron cyclotron harmonic (ECH) waves, in which ||VE  is along BE  and 1VE   is along E E B  . (e) Dispersion 
relation of the unstable whistler waves and the growth rate, represented by black and red lines, respectively. (f) Dispersion relation of the unstable ECH waves.
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Component N (  3E m  ) dE v  (km/s) ||E T  (eV) E T (eV) E  E 

1 6.5E5 −1.0E6 45 30 1.0 0.0

2 1.5E5 0.0 110 110 1.0 0.0

3 1.0E4 −6.0E6 80 800 1.0 0.0

4 2.0E4 0.0 1,000 1,800 1.0 0.0

5 4.0E3 3.0E6 2,000 2,500 1.0 0.0

Note. E N is the number density. ||E T  and E T are the electron parallel and perpendicular temperatures.The parameters E  and E   are the loss cone depth and width, 
respectively.

Table 1 
The Electron Components Used to Fit the Measured Electron Distribution During 05:56:55.1–05:56:55.3 UT by Summation of Subtracted Bi–Maxwellian 
Distribution With Drift Velocity
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but the electrons become anisotropic at the high energy bands (especially at E∼700 eV corresponding speed 
eE v ∼15,000 km/s). Similarly, we use the dispersion equation solver BO to solve the dispersion relation of ECH 

waves, and we use the fitting parameters in Table 2 as the input parameters. Based on the observations, we 
set the wave normal angle to 89E    . From solvation of the dispersion relation for the model distribution 
(Figure  4f), we find several unstable ECH modes, and the maximum growth rate is about 5

ce4.3 10E   
between the third and fourth harmonics, consistent with the observation in Figure 3j. Therefore, we conjec-
ture that the whistler waves and the ECH waves may be generated by the electron loss-cone distributions 
in the separatrix region.

3.  Discussion and Summary
In this paper, we first present the simultaneous observation of the whistler waves and the ECH waves in 
the magnetosphere separatrix region. The whistler waves with a narrow band of about ce0.6E f  propagate qua-
si-parallel to the background magnetic field, and their wave normal angle is about 20 40E    . The Poynting 
vector of these waves in the parallel direction is positive, indicating that the whistler waves propagate away 
from the reconnection x-line in the direction parallel to the magnetic field. For the ECH waves, the wave 
power is observed in a range between the first and fifth harmonic of the electron cyclotron frequency ceE f  , 
and the wavevector kE  is nearly perpendicular to the background magnetic field by minimum variance anal-
ysis, which is 87 2E      . In addition, the electrons have a loss-cone distribution at the maximum power 
of these two waves. Based on the electron distributions and linear theory, we infer that the whistler waves 
and the ECH waves are generated by the electron loss-cone instability.

Generally, the wave spectrum of ECH waves will not be exactly at the half-harmonics of the electron cy-
clotron frequency n f 1 2/

ce
 . It can be concentrated in the upper half of the harmonic frequency band 

between n f 1 2/
ce

 and   ce1E n f  , or the lower half of the harmonic frequency band between ceE nf  and 
n f 1 2/

ce
 (Zhou et al., 2017). In our observations, the wave spectrums of ECH waves are mainly centered 

in the upper band, and based on the linear theory, the frequencies corresponding to the maximum growth 
rate calculated by the linear theory are also in the upper band, but they are slightly smaller than the obser-
vations. In Zhou et al. (2017), we know that the electron temperature, background density, and wave normal 
angle all play an important role to produce the different wave spectrum, in which the frequency correspond-
ing to the maximum growth rate will increase with the increase in the energetic electron temperature. Thus, 
we infer that the small deviations between the linear theory and the observation may be caused by the error 
of these parameters setting in the linear theory.

Data Availability Statement
The MMS data we used are available at the MMS data center (https://lasp.colorado.edu/mms/sdc/).

Component N (  3E m  ) dE v  (km/s) ||E T  (eV) E T (eV) E  E 

1 7.0E5 0.0 45 30 1.0 0.0

2 5.0E4 0.0 150 135 1.0 0.0

3 1.5E4 0.0 1,200 1,300 0.2 0.1

4 1.5E4 0.0 2,000 2,000 0.8 0.5

Note. E N is the number density. ||E T  and E T are the electron parallel and perpendicular temperatures.The parameters E  and E   are the loss cone depth and width, 
respectively.

Table 2 
The Electron Components Used to Fit the Measured Electron Distribution During 05:56:53.2–05:56:53.4 UT by Summation of Subtracted Bi–Maxwellian 
Distribution With Drift Velocity

https://lasp.colorado.edu/mms/sdc/
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