
1.  Introduction
As one of the most commonly observed plasma waves in the Earth’s inner magnetosphere, whistler-mode waves 
play an important role in governing electron dynamics therein (Burtis & Helliwell, 1969; Horne & Thorne, 1998; 
Horne et al., 2003; Tsurutani & Smith, 1974). They can not only produce relativistic electrons in the radiation belt 
(Meredith et al., 2001; Summers et al., 1998), but also lead to electron precipitation into the Earth’s upper atmos-
phere (Lorentzen et al., 2001; Nishimura et al., 2013; Thorne et al., 2010). Whistler-mode waves are considered to 
be excited around the magnetic equator by energetic electrons injected from the magnetotail, which typically have 
the temperature anisotropy with T ⊥ >T∥ (T⊥ and T∥ are the perpendicular and parallel temperatures concerning the 
background magnetic field) (Chen et al., 2017, 2021; Kennel & Petschek, 1966; Q. M. Lu et al., 2004; Santolík 
& Gurnett, 2003; Tsurutani & Smith, 1977). When these waves leave away from the source region around the 
magnetic equator, they usually evolve into chorus waves with a narrowband spectrum, which may exhibit rising, 
falling, or hooked tones (Helliwell, 1967; Pickett et al., 2005; Tsurutani & Smith, 1974). In general, the chorus 
waves with a rising tone are much more often observed than other kinds of spectrograms (Nunn et al., 1997). 
Satellite observations have shown that among the rising elements, there are occasionally one or several elements 
with a hooked spectrogram. Figure 1 presents three chorus wave events captured by Van Allen Probes-A, which 
all contain several quasi-parallel propagating rising-tone and hooked-tone (whose spectrogram exhibits as flat 
or downward chirping after the peak frequency) elements. The similar spectrograms have also been reported and 
described in detail in the previous work (Turner et al., 2017). The repetitive appearance of chorus elements is 
considered to be related to the injected energetic electrons (Q. Lu et al., 2021). Nevertheless, the formation of 
frequency chirping has not been fully understood yet.
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Numerous particle-in-cell (PIC) and Vlasov simulations have been dedicated to studying chorus waves in the 
Earth’s inner magnetosphere (Hikishima et  al.,  2009; Katoh & Omura,  2011; Ke et  al.,  2017,  2020; Nunn 
et al., 1997; Nunn & Omura, 2012; Q. Lu et al., 2019, 2021; Tao, 2014, 2017). Chorus waves with rising, fall-
ing, and hooked tones have been reproduced in one-dimensional (1-D) Vlasov simulations with the ambient 
magnetic field close to being a parabolic function of the distance from the equator, where the monochromatic 
whistler-mode wave is injected into the system as a pump wave (Nunn & Omura,  2012; Nunn et  al.,  1997). 
Rising-tone chorus waves have also been simulated in 1-D PIC simulations with the same ambient magnetic 
field (Hikishima et al., 2009; Tao, 2014, 2017), as well as in two-dimensional (2-D) PIC simulations in a dipole 
magnetic field (Q. Lu et al., 2019). The rising-tone chorus waves are considered to be associated with an electron 
hole in the wave phase space and negative resonance current, which is formed due to the nonlinear trapping of 
resonant electrons by the whistler-mode waves (Nunn, 1974; Omura et  al.,  2008). While, falling-tone chorus 
waves are believed to be associated with an electron hill and positive resonance current (Nunn & Omura, 2012; 
Omura et al., 2015). Then, what kind of structure in the electron phase space is formed in hooked chorus waves 
becomes a puzzle. In this letter, with the 1-D general curvilinear particle-in-cell (gcPIC) δf simulation model, we 
at first reproduce chorus waves with a hooked tone in the dipole magnetic field, and then the associated structure 
in the electron phase space is characterized in detail.

2.  Simulation Model and Initial Setup
To investigate the frequency chirping in chorus waves, we adopt the 1-D gcPIC-δf simulation model in a 
dipole magnetic field. The δf method is a low-noise technology (Hu & Krommes, 1994; Parker & Lee, 1993; 
Sydora, 2003; Tao et al., 2017), in which the full particle velocity distribution f can be divided into f = f0 + δf 
(where f0 is the equilibrium distribution), and the perturbed distribution function δf will be updated. Compared 
with conventional PIC simulations, the δf method can significantly reduce the noise level by calculating δf directly 
from particles (Q. Lu et al., 2021; Sydora, 2003; Tao et al., 2017). In our study, the absorbing boundary is applied 
for electromagnetic fields, while the reflecting boundary condition has been employed for particles. There are 
two electron components: cold and energetic electrons, which are all moving in the motion of Lorentz force. 
Especially, the energetic electrons are injected continuously into the system due to an azimuthal drift. Because of 
ω ≫ Ωi (where ω is the wave frequency and Ωi is the ion gyrofrequency), the ions are assumed to be motionless. 
Other details of this model can be found in Q. Lu et al. (2021).

Initially, the energetic electrons satisfy a bi-Maxwellian distribution. The temperature anisotropy and number 
density of the energetic electrons at the equator are T⊥eq/T||eq = 6 and nheq/nc0 = 0.006 (where nc0 is the number 
density of cold electrons, which is assumed to be uniformly distributed in the simulation domain), and the paral-
lel plasma beta of energetic electrons is 𝐴𝐴 𝐴𝐴||ℎ0 = 𝑛𝑛ℎ0𝑇𝑇||0∕(𝐵𝐵

2
0𝑒𝑒𝑒𝑒
∕2𝜇𝜇0) = 0.001 (corresponds to the parallel thermal 

Figure 1.  Three chorus chirping events captured by Van Allen Probe A at L = 5–6, in which the top row represents the spectrograms of magnetic power, and the 
bottom row shows the wave normal angles.
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velocity v||th/VAe = 0.442, where VAe is the electron Alfven speed). The elec-
tron distributions along the magnetic field can be obtained with Liouville's 
theorem (Summers et al., 2012). The ratio of cold electron plasma frequency 
to electron gyrofrequency is ωpe/Ωe0 = 5.0 (where 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝 =

√
𝑛𝑛𝑐𝑐0𝑒𝑒2∕𝑚𝑚𝑒𝑒𝜀𝜀0 and 

Ωe0 = eB0/me are defined on the background magnetic field B0 at the equa-
tor). These are typical values at the L-shell around 6. However, to save 
computational source, the topology of the magnetic field in the simulations 
is roughly equal to that at L = 0.5. The latitude ranges from about −27.6° 
to 27.6°. We use 4,000 cells in total, with the cell length of 0.34de (where 
de  =  c/ωpe is the electron inertial length). There are about 4,000 particles 
per cell on average.  The energetic electrons with a temperature anisotropy 
are injected continuously into the simulation domain, whose azimuthal drift 
is determined by a time scale 𝐴𝐴 𝐴𝐴𝐷𝐷 . Here 𝐴𝐴 Ω𝑒𝑒0𝜏𝜏𝐷𝐷 is assumed to be 5,000 in our 
simulation. The  time step is set as Ωe0∆t = 0.04 to accurately resolve the 
electron dynamics.

3.  Simulation Results
The whistler-mode waves are excited by temperature anisotropic electrons at 
the equator, where the amplitudes are quite small. Then, the waves propagate 
toward polar regions, and their amplitudes become larger and larger until 
saturate in the latitude range of λ = 10° ∼ 15° (not shown). To investigate 
the frequency-time spectrogram of whistler-mode waves, a sliding short-time 
Fourier analysis has been conducted to fluctuation magnetic field δB⊥1/B0 
(where δB⊥1 is one perpendicular component of the fluctuating magnetic 
field), with a time window of 1024 points and a time step of 4 points. Figure 2 
describes the power spectral density of δB⊥1 at the latitudes of λ = (a) 0°, 
(b) 5°, (c) 10°, (d) 15°, and (e) 20°. Except at the latitude λ = 0°, the spec-
trograms exhibit quasi-monochromatic emissions with three discrete chorus 
elements, together with a much weaker background whistler-mode wave. The 
three chirping elements are denoted by the red segment  at Ωe0t = 5800–7400 
(element A), the magenta one at Ωe0t  =  6700–8400 (element B), and the 
blue one at Ωe0t  =  9500–11300 (element C), respectively. The elements 
A and B have a rising frequency chirping. While element C has a hooked 
spectrogram: its frequency first increases with time before Ωe0t  ≈  10200, 
and then decreases after Ωe0t  ≈  10600. During the propagation from low 
latitudes (Figure  2b) to higher latitudes (Figure  2e), the hooked spectro-
gram keeps almost unchanged, except that the wave amplitude gets larger. 
The discrete  and repetitive spectrograms with rising and hooked tones 
are consistent with those observed in the inner magnetosphere (Figure 1). 
We will further analyze the typical characteristics of the hooked element 
in  comparison with those of a rising-tone chorus element.

A detailed view of the frequency chirping in the chorus elements has been displayed in Figure 3, where the wave-
forms of perpendicular fluctuating magnetic field δB⊥1/B0 at λ = 10° for (a) element A during Ωe0t = 6100–6900, 
and (b) element C during Ωe0t = 9500–11300 have been shown. The frequency and amplitude of wave circles in 
both elements are varying with time. To calculate the wave frequencies, the time interval of each wave cycle has 
been identified, by recording its start and stop time through the zero crossing of δB⊥1/B0 (Tsurutani et al., 2020). 
The frequencies are the inverse of these time intervals, and have been denoted by blue crosses in Figures 3c 
and 3d. Note that only the wave cycles with peak amplitudes greater than 0.002 have been shown. The mean 
frequency values in each 200𝐴𝐴 Ω−1

𝑒𝑒0
 interval have also been estimated, which are represented by the black aster-

isks in the panels with black lines connecting them. During the interval of Ωe0t ≈ 6220–6800 (Figure 3c), the 
frequencies of element A increase monotonously with time, changing from ∼0.25Ωe0 to ∼0.39Ωe0. The corre-
sponding chirping rate in element A is estimated as Γ ≈ 2.52 × 10 −4𝐴𝐴 Ω2

𝑒𝑒0
 . While the frequencies of electron C 

Figure 2.  The ω-t spectrogram of δB⊥1 at the latitude of λ=(a) 0°, (b) 5°, (c) 
10°, (d) 15°, and (e) 20°. The three chirping elements have been denoted by 
the three segments in different colors in panel (c).
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(Figure 3d) first increase with time before Ωe0t ≈ 10200 (with a chirping rate of Γ ≈ 3.38 × 10 −4𝐴𝐴 Ω2
𝑒𝑒0

 ), then remain 
almost unchanged during Ωe0t ≈ 10200–10600, and decrease slowly after Ωe0t ≈ 10600 (with a chirping rate of 
Γ ≈ −2.01 × 10 −4𝐴𝐴 Ω2

𝑒𝑒0
 ).

How does the electron phase space density changes along with the excitation of the hooked-tone chorus wave 
has never been reported before. So, we further analyze the temporal evolution of (a) resonance current JB and 
(b) parallel velocity distribution δf(v||)/f0 around λ = 5° in Figure 4. Here, JB is defined as 𝐴𝐴 𝐴𝐴𝐵𝐵 =

∑
⃖⃗𝑣𝑣 ⋅ ⃖⃖⃖⃖⃗𝛿𝛿𝛿𝛿 (where 

𝐴𝐴 ⃖⃗𝑣𝑣 is the electron velocity, and 𝐴𝐴 ⃖⃖⃖⃖⃗𝛿𝛿𝛿𝛿 is the fluctuating magnetic field), and δf(v||)/f0 is estimated by using the elec-
trons for v⊥/VAe = 2–3 and ζ = π (ζ is the angle between v⊥ of electron and wave magnetic field). The time 
periods when rising-tone and hooked-tone chorus elements appear are denoted by the shadows at Ωe0t = 5900–
8000 and  Ωe0t = 9200–10800 in the two panels, respectively. After the excitation of whistler-mode waves at 
Ωe0t ≈ 5800, δf(v||) has positive values around v||/VAe = ±2, which survive till the end of the simulation (Figure 4b). 
The enhanced phase space density is caused by the pitch angle scattering from perpendicular direction to parallel 
direction by whistler-mode waves. Along with the generation of two rising-tone elements, there are clear elec-
tron holes forming at v||/vAe = −1.2 ∼ −0.4 in the phase space, and the corresponding JB < 0 (Figure 4a). This is 
consistent with theoretical analysis in Nunn (1974) and Omura et al. (2008), which has indicated that the nonlin-
ear interactions between chorus waves and resonant electrons can cause electron holes and negative resonance 
currents. Interestingly, we find that the electron hole (at v||/vAe = −1.0 ∼ −0.5) and negative JB are also formed 
when the hooked-tone element appears. The electron holes can be better identified in the v||-ζ space in Figures 4c 
and 4d), in which the panel (c) is at Ωe0t = 9700 during upward chirping, while the panel (d) is at Ωe0t = 10500 

Figure 3.  The temporal profile of δB⊥1 in (a) element A and (b) element C, and (c) and (d) shows the corresponding wave 
frequency in each element.
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during downward chirping. As shown in both panels, the number density of trapped electrons inside the resonant 
island is much lower than that of the surrounding untrapped electrons, indicating that the electron hole is formed 
no matter whether the wave frequency is upward chirping or downward chirping.

4.  Conclusions and Discussion
With a 1-D gcPIC-δf simulation in a dipole magnetic field, we investigate the repetitive chorus emissions in the 
Earth’s inner magnetosphere, excited by energetic electrons with a temperature anisotropy. The chorus waves 
contain a series of discrete elements with frequency chirpings when they leave away from the equator. Along with 
two rising-tone elements, we identify one element with a hooked spectrogram, whose frequency first increases 

Figure 4.  The temporal evolution of (a) resonant current JB, (b) electron distribution δf(v||)/f0 at ζ = π and v⊥/VAe = 2–3. The 
distributions of δf(v||)/f0 in the ζ-v|| space at (c) Ωe0t = 9700 and (d) Ωe0t = 10500.
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with time, and then decreases. This is consistent with satellite observations, which have shown that there is occa-
sionally one or several hooked-tone spectrograms combined with rising-tone elements (Figure 1). Furthermore, 
we find that the electron holes occur simultaneously with the formation of both rising-tone and hooked-tone 
chorus elements.

The generation mechanism of chorus frequency chirping has been widely investigated in previous studies (Katoh 
& Omura, 2011; Ke et al., 2020; Nunn, 1974; Omura et al., 2008; Q. Lu et al., 2019; Tao, 2014). Theoretical 
studies have shown that the nonlinear interactions between whistler-mode waves and resonant electrons can 
produce electron holes or hills in the phase space (Nunn, 1974; Omura et al., 2008). The electron holes can cause 
upward chirping due to negative resonant currents, while a download chirping is driven by electron hills and 
positive currents. This has been further supported by numerical simulations, in which the electron holes (Nunn 
& Omura, 2015; Tao et al., 2017) or hills (Nunn & Omura, 2012; Nogi & Omura, 2021; Nogi et al., 2020)  are 
formed. By pumping a triggering wave at the equator, Nogi et  al.  (2020) and Nogi and Omura  (2021) have 
produced the downward frequency chirping and electron hills in the phase space, which is consistent with 
the theoretical predictions proposed by Nunn  (1974) and Omura et  al.  (2008). While in our simulation, the 
waves  are  self-consistently excited by anisotropic electrons, exhibiting an upward chirping followed by a down-
ward chirping (known as a hooked spectrogram). When the downward chirping appears, there are clear electron 
holes formed, and the corresponding resonance currents are negative (Figure 4). This cannot be well accounted 
for by the current theoretical model of chorus waves, which may invoke a new theoretical model for the excitation 
of hooked chorus waves, or even for both the rising-tone and falling-tone chorus waves. Moreover, our study 
presents an important clue that the electron hole may also produce the falling-tone chorus element, providing a 
novel idea for theoretical analysis.

Data Availability Statement
The simulation data are archived in https://dx.doi.org/10.12176/01.99.01727.
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