
1. Introduction
Magnetic reconnection is a process of rearrangement of magnetic field line topologies in plasmas during which 
magnetic energy is converted to particle kinetic energy (Birn & Priest, 2007; Yamada et al., 2010). A stand-
ard model has been proposed based on numerical simulations to describe magnetic reconnection in space, in 
which  magnetic diffusion occurs both in a larger-scale ion diffusion region and a smaller-scale electron diffusion 
region (e.g., Birn et al., 2001; Hesse et al., 2001; Ma & Bhattacharjee, 2001; Pritchett, 2001; Shay et al., 2001). 
The standard model predicts that the ion diffusion region is usually characterized by bi-directional ion outflows 
and the Hall electric- and magnetic fields (e.g., Fu et al., 2006; Hoshino et al., 2001; Huang et al., 2010; Lu 
et  al.,  2010), which has been observed by in-situ spacecraft in Earth's magnetotail (e.g., Borg et  al.,  2005; 
Eastwood et  al.,  2010; Nagai et  al.,  2001; Øieroset et  al.,  2001). Simulations further show that the electron 
diffusion region, which is embedded at the center of the ion diffusion region, is characterized by fast elec-
tron outflow jets, electron crescent velocity distribution, nonzero magnetic-to-particle energy conversion j ⋅ E′ 
(here E′ = E + Ve × B is the nonideal electric field), etc. (e.g., Hesse et al., 2014; Shay et al., 2007; Zenitani 
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et al., 2011), and these characteristics have also been confirmed by spacecraft detections of the electron diffusion 
region in Earth's magnetotail (e.g., Torbert et al., 2018).

Standard reconnection has also been observed to occur in Earth's turbulent magnetosheath (e.g., Retinò 
et al., 2007; Stawarz et al., 2022). However, Phan et al. (2018) recently find that magnetic reconnection in the 
magnetosheath can exhibit only the electron dynamics, whereas the ion dynamics are absent. Such electron-scale 
magnetic reconnection without ion coupling is therefore referred to as electron-only reconnection (e.g., Pyakurel 
et al., 2019). Further studies have shown that electron-only reconnection occurs pervasively in turbulent plasmas, 
not only in the magnetosheath (Lu et al., 2021; Stawarz et al., 2019, 2022) but also at Earth's bow shock (Gingell 
et al., 2019, 2020).

Magnetic reconnection in the magnetotail, as mentioned above, has been observed to be in accord with the 
standard reconnection model with electron- and ion dynamics coupling. However, electron-only reconnection 
also exists in the magnetotail as detected by the Magnetospheric Multiscale (MMS) spacecraft on 17 June 2017 
(Hubbert et al., 2021, 2022; Lu et al., 2020; Wang et al., 2020). By performing a two-dimensional (2-D) particle-
in-cell (PIC) simulation, Lu et al. (2020) show that electron-only reconnection in the magnetotail is a transition 
phase from quiet current sheet to standard reconnection. Such a transition is the onset of magnetotail reconnection 
caused by the electron tearing mode instability (Pritchett, 2005a, 2005b, 2010; Birn & Hesse, 2014; Hesse & 
Schindler, 2001; Liu et al., 2014; Pritchett & Lu, 2018). However, Farrugia et al. (2021) argue that the MMS 17 
June 2017 event is not an electron-only reconnection event but a standard reconnection event. Given the above 
controversy, here we study the transition from quiet current sheet to electron-only reconnection and then to stand-
ard reconnection using a 2-D PIC simulation, and then we use the simulation results to show that the MMS 17 
June 2017 event is an electron-only reconnection event.

2. Simulation Model
We use a 2-D PIC simulation model. To put our simulation in a context of in-situ spacecraft observations, we use 
a current sheet coordinate system (L, M, N). The simulation is performed in the L-N plane, and M is the out-of-
plane direction. The size of the simulation domain is −32di ≤ L ≤ 0, −8di ≤ N ≤ 8di, where di is the ion inertial 
length evaluated using unit density n0. The initial configuration is the Lembège-Pellat current sheet (Lembege & 
Pellat, 1982) with magnetic potential A0M (L,N) = −B0δln{cosh[F(L)(N/δ)]/F(L)} and density n(L,N) = n0F 2(L)
sech 2[F(L)(N/δ)] + nb, where F(L) = exp[ϵ(L + 16di)/δ], and ϵ = (BN/B0)N = 0. We adopt the current sheet half-width 
δ = 2di, the background density nb = 0.2n0, and ϵ = 0.04. The ion-to-electron mass ratio is mi/me = 400. Uniform 
initial electron and ion temperatures are adopted, with 𝐴𝐴 𝐴𝐴𝑖𝑖0 = 0.4167𝑚𝑚𝑖𝑖𝑉𝑉

2

𝐴𝐴
 and 𝐴𝐴 𝐴𝐴𝑒𝑒0 = 0.0833𝑚𝑚𝑖𝑖𝑉𝑉

2

𝐴𝐴
 , where VA is the 

Alfvén velocity evaluated using B0 and n0. The grid size is ΔL = ΔN = di/64, the time step is 𝐴𝐴 Δ𝑡𝑡 = 0.00025Ω
−1

𝑖𝑖0
 , 

and the speed of light is c = 40VA.

An external driver is imposed by adding an out-of-plane electric field 𝐴𝐴 𝐴𝐴𝑀𝑀 = �̂�𝐴𝑀𝑀 (𝑡𝑡)𝑆𝑆(𝐿𝐿) at the N boundaries. 
Here 𝐴𝐴 �̂�𝐸𝑀𝑀 (𝑡𝑡) describes the time evolution of the driver, and S(L) describes the spatial distribution of the driver. We 
adopt 𝐴𝐴 �̂�𝐸𝑀𝑀 (𝑡𝑡) = 2𝑎𝑎𝑎𝑎𝑎𝑎0 tanh(𝑎𝑎𝑡𝑡)∕cosh

2
(𝑎𝑎𝑡𝑡) and S(L) = sech 2[(L + 16di)/DL]. The parameter a determines the size 

of the field line deformation region from the top and bottom N boundaries, the parameter ω dictates the timescale 
of the driver, and DL is the half-width of the driver. We use DL = 5di, a = 2di and ω = 0.05Ωi, where the ion 
cyclotron frequency Ωi = eB0/mi. Open boundary conditions are used at the L boundaries. The unit density n0 is 
represented by 376 particles per cell, and about 1.5 × 10 9 particles per species are employed at the initial time.

3. Simulation Results
Figure 1a shows the initial configuration is the Lembège-Pellat current sheet with a nonzero normal magnetic 
field BN = 0.04B0 at the neutral plane N = 0. This normal magnetic field, although small, prevents magnetic recon-
nection from occurring because it stabilizes both the electron tearing mode (Galeev & Zelenyi, 1976) and the ion 
tearing mode (Lembege & Pellat, 1982; Pellat et al., 1991). Because of the external driver, the current sheet thins, 
and the current density increases, therefore, a thin current sheet is formed, for example, at Ωit = 63 (Figure 1b). 
According to the magnetic field topology, magnetic reconnection has not started yet at this time. At Ωit = 68, the 
magnetic field topology has changed, which indicates occurrence of magnetic reconnection (Figure 1c). However, 
this is the early phase of reconnection because the topological change is minor (the change in magnetic flux at 
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the reconnection site from Ωit = 63 to Ωit = 68 is ΔΨ = 0.034B0di). Recon-
nection then becomes dramatic, for example, at Ωit = 100 (Figure 1d), with a 
significant topological change in the magnetic field (the change in magnetic 
flux at the reconnection site from Ωit = 63 to Ωit = 100 is ΔΨ = 1.714B0di). 
Thus, magnetotail reconnection has three main phases – quiet current sheet, 
preliminary reconnection, and well-developed reconnection.

In the quiet current sheet at Ωit  =  63. Because of the external driver, the 
normal magnetic field BN at the center of the current sheet decreases to around 
zero but is still positive, about 0.001B0 (Figure 2a, black curve), which allows 
occurrence of reconnection through the electron tearing mode instability. The 
thickness of the quiet current sheet is sub ion scale (Figure 3i, black curve). 
Therefore, a large fraction of the ions become demagnetized, whereas the 
electrons are mostly magnetized, forming a charge separation and thus an 
in-plane Hall electric field EL and EN (Figures 2 and 3b, black curves). The 
Hall electric field leads to an E × B drift in the -M direction. Because the elec-
trons are mostly magnetized, they follow the E × B drift (Figures 2 and 3h, 
black curves), and the ions are demagnetized and do not follow the E × B 
drift but follow the slower diamagnetic drift in the +M direction (Figures 2f 
and 3f, black curves). The above different motion between the electrons and 
ions supports the current density that is mostly carried by the electrons in the 
quiet current sheet (e.g., Lu et al., 2016, 2018a; 2019a). The plasma density 
peaks at the center of the current sheet (Figure 3d, black curve). At the center 
of the current sheet, the ion temperature does not increase (Figure 3j, black 
curve), but the electron temperature slightly increases (Figure  3k, black 
curve). The energy conversion j ⋅ E′ is about zero in the quiet current sheet 
(Figures 2 and 3l, black curves).

As the current sheet further thins and the normal magnetic field BN further 
decreases, magnetic reconnection begins to occur. In the preliminary recon-
nection at Ωit = 68, BN breaks through zero from positive to negative at the 
center of the current sheet (Figure  2a, red curve). The Hall electric field 
persists and some fine structure of EL emerges (Figures 2 and 3b, red curves). 
Because reconnection is preliminary at this time, there is a weak reconnec-
tion electric field formed on top of the background convection electric field 
(Figures 2c and 3c, red curves). The ion flow pattern is identical to that in 
quiet current sheet (compare black and red curves in Figures 2e, 2f and 3e, 

and 3f), whereas the electron flow pattern changes after reconnection occurs (compare black and red curves in 
Figures 2g, 2h and 3g, and 3h), especially that the electron outflow VeL at Ωit = 68 becomes bi-directional on top 
of that in quiet current sheet (Figure 2g). Moreover, compared to quiet current sheet, the ion temperature does not 
change (compare black and red curves in Figures 2j and 3j), but the electron temperature changes (compare black 
and red curves in Figures 2k and 3k). Because of reconnection, the energy conversion from the magnetic field to 
the plasmas becomes nonzero (j ⋅ E′ ≈ 0.02) at the reconnection site (Figures 2 and 3l, red curves). Because only 
electrons respond to the early phase of reconnection, whereas the ions do not, this early phase of reconnection is 
referred to as electron-only reconnection.

Reconnection then grows fast and becomes well-developed. In the well-developed reconnection at Ωit = 100, the 
Hall electric field EL and EN becomes stronger than that in quiet current sheet and electron-only reconnection 
(Figures 2 and 3b, blue curves) because charge separation, that is, the Hall effect, is enhanced. From electron-only 
reconnection to this well-developed reconnection, the reconnection electric field EM is spread and enhanced to 
∼0.1 (Figures 2c and 3c, blue curves). The ion dynamics begins to emerge and couple with reconnection, as 
shown by the enhanced ion flows (Figures 2e, 2f and 3e, and 3f, blue curves). The ion coupling is also manifested 
in the ion heating at the center of the reconnection site and even more pronounced in the flow exhausts (Figures 2j 
and 3j, blue curves). There is a decrease in the ion temperature at the plasma sheet boundary layer |N| > 2.5di 
(Figure 3j, blue curve) caused by betatron cooling due to the decrease in magnetic field from the two previous 

Figure 1. Out-of-plane current density jM (in unit of en0VA) in the L-N plane 
in the (a) initial current sheet (Ωit = 0), (b) quiet current sheet (Ωit = 63), (c) 
preliminary reconnection (Ωit = 68), and (d) well-developed reconnection 
(Ωit = 100). The black curves represent the magnetic field lines in the L-N 
plane. In our simulation, the current density is in unit of en0VA.
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phases to standard reconnection (Figure 3a). For the electron dynamics, the electron flows are further enhanced, 
and the outflow VeL becomes super-Alfvénic (Figures 2g, 2h and 3g, and 3h, blue curves), and the electrons are 
heated at the center of the reconnection site and more pronounced in the flow exhausts (Figures 2k and 3k, blue 
curves). The plasma density is evacuated at the center of the reconnection site (Figure 2d, blue curve). The energy 
conversion j ⋅ E′ is enhanced to ∼0.2 (Figures 2 and 3l, blue curves) at the center of the reconnection site. This 
well-developed reconnection is the standard reconnection that has been well-documented in literature.

4. MMS 17 June 2017 Event
The MMS spacecraft cross an electron-only reconnection event in the normal direction on 17 June 2017 in Earth's 
magnetotail (Hubbert et al., 2021, 2022; Lu et al., 2020; Wang et al., 2020). In this event, the MMS spacecraft 
observe fast electron flows in the L and M directions, whereas the ion flows do not increase. However, Farrugia 
et al.  (2021) argue that this event is a standard reconnection event, and the reason why the spacecraft do not 
observe any ion flow increase in this event is that the spacecraft traverse close to the reconnection site where 
the ion outflow reverses. Farrugia et al. (2021) also obtain a fast reconnection rate of ∼0.077 for the MMS 17 
June 2017 event based on the reconnection electric field EM, which is close to the reconnection rate of standard 
reconnection. However, the reconnection electric field EM is usually tens of times smaller than the normal electric 
field EN (e.g., Torbert et al., 2018), therefore, even a small inaccuracy in the choice of the (L, M, N) coordinate 
system yields a large error of EM.

Because of the ambiguity and inaccuracy of the above quantities, we need better criteria to differentiate elec-
tron-only reconnection from quiet current sheet and standard reconnection in the magnetotail. Our simulation 

Figure 2. L-profiles, at N = 0, of (a) BN, (b) EL, (c) EM, (d) ni, ne, (e) ViL, (f) ViM, (g) VeL, (h) VeM, (i) jM, (j) Ti, (k) Te, and j ⋅ E′ in quiet current sheet at Ωit = 63 (black 
curves), electron-only reconnection at Ωit = 68 (red curves), and standard reconnection at Ωit = 100 (blue curves). In our simulation, the magnetic field is in unit of B0, 
the electric field is in unit of VAB0, plasma density is in unit of n0, the velocity is in unit of VA, the temperature is in unit of 𝐴𝐴 𝐴𝐴𝑖𝑖𝑉𝑉

2

𝐴𝐴
 , and j ⋅ E′ is in unit of 𝐴𝐴 𝐴𝐴𝐴𝐴0𝑉𝑉

2

𝐴𝐴
𝐵𝐵0 .
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results show that the energy conversion j ⋅ E′ is around zero in quiet current sheet but nonzero in electron-only 
reconnection, which can be used to differentiate electron-only reconnection from quiet current sheet. Moreover, 
the ion temperature Ti peaks in standard reconnection but does not increase in electron-only reconnection, there-
fore, it can be used to differentiate electron-only reconnection from standard reconnection. In addition to the 
above information from snapshots, we further show time histories of reconnection outflows and the two criteria,  
j ⋅ E′ and Ti, in Figure 4. The occurrence of electron-only reconnection starts from Ωit ≈ 67 with an abrupt 
increase in the electron outflow VeL (Figure 4a) and an emergence of nonzero j ⋅ E′ (Figure 4b). Electron-only 
reconnection then evolves into standard reconnection at Ωit ≈ 78, after which the ion outflow ViL and the ion 
temperature Ti increases rapidly (Figures 4c and 4d).

To compare with spacecraft observations, in Figure 5, we plot j ⋅ E′ and Ti versus BL (a proxy of distance to the 
center of current sheet, BL = 0). The energy conversion j ⋅ E′ is around zero in quiet current sheet but nonzero in 
electron-only reconnection and standard reconnection (Figures 5a, 5c and 5e), and the ion temperature does not 
change across quiet current sheet and electron-only reconnection but peaks at the center of standard reconnection 
(Figures 5b, 5d and 5f). Note that the ion heating is an intrinsic characteristic of standard reconnection, no matter 
externally-driven reconnection in the magnetotail current sheet (e.g., Lu et al., 2018b) or spontaneous reconnec-
tion in the Harris current sheet (Drake et al., 2009a, 2009b; Lu et al., 2019b). Therefore, Farrugia et al. (2021), 
using an initial configuration of the Harris current sheet, should have also seen the ion heating in their simula-
tions (although they do not show). Following the above rationale, we plot j ⋅ E′ and Ti in the MMS 17 June 2017 
event in Figures 5g and 5h, respectively. The data is from the MMS spacecraft mission (Burch et al., 2016; Ergun 
et al., 2016; Lindqvist et al., 2016; Pollock et al., 2016; Russell et al., 2016). One can see that in this event, j ⋅ E′ 
is nonzero at the center, and Ti does not increase, so this event is a magnetotail electron-only reconnection event.

Figure 3. N-profiles of (a) BL, (b) EN, (c) EM, (d) ni, ne, (e) ViN, (f) ViM, (g) VeN, (h) VeM, (i) jM, (j) Ti, (k) Te, and j ⋅ E′ in quiet current sheet at Ωit = 63 (black curves), 
electron-only reconnection at Ωit = 68 (red curves), and standard reconnection at Ωit = 100 (blue curves). The profiles at Ωit = 63 are along L/di = −19.2, where BN at 
N = 0 minimizes, and the profiles at Ωit = 68 and Ωit = 100 are along L/di = −17.4 and L/di = −16.8, respectively, where BN at N = 0 breaks through zero from positive 
to negative.
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5. Conclusions and Discussion
The main conclusions are summarized as follows:

1.  In the magnetotail, because of a strong external driver, quiet current sheet 
with a sub ion scale thickness and a small BN is formed, and then elec-
tron-only reconnection emerges in this current sheet. In electron-only 
reconnection, electron flows and electron temperature increase, whereas 
ion flows and ion temperature do not change. The energy conversion  
j ⋅ E′ becomes nonzero and peaks around the electron-only reconnection 
site, whereas j ⋅ E′ is about zero in quiet current sheet. This criterion of 
j ⋅ E′ can be used to differentiate electron-only reconnection from quiet 
current sheet.

2.  Electron-only reconnection then proceeds to standard reconnection 
with significant enhancements in the reconnected magnetic field, the 
Hall electric field, the reconnection electric field, the energy conversion  
j ⋅ E′, electron flows, and electron temperature. In standard reconnection, 
ion dynamics emerges with an increase in ion flows and ion tempera-
ture. The increase in ion temperature can be used as a criterion to differ-
entiate electron-only reconnection from standard reconnection in the 
magnetotail.

3.  In the MMS 17 June 2017 event, j ⋅ E′ is nonzero and ion temperature 
does not increase. Based on the above two criteria, we justify that this 
event is an electron-only reconnection event in the magnetotail.

We show that electron-only reconnection can be the early phase of magne-
totail reconnection when reconnection is preliminary and overlooked by the 
ions. Such magnetotail electron-only reconnection is different from that in 
turbulent plasma environments, for example, the magnetosheath, in which 
reconnection is electron-only because it is confined to a small region so that 
ions do not respond to it (e.g., Phan et al., 2018; Pyakurel et al., 2019, 2021; 
Stawarz et al., 2022). In magnetotail electron-only reconnection, the sub ion 
scale electron current sheet is embedded in a thicker ion scale current sheet 
(Figure 3i), which is different from that in turbulence electron-only recon-
nection. Moreover, turbulence electron-only reconnection usually produces 
super-Alfvénic electron outflows, but the electron outflow in magnetotail 

electron-only reconnection is much slower (not necessarily super-Alfvénic) because the electrons are not suffi-
ciently accelerated in the preliminary reconnection. Also note that in magnetotail electron-only reconnection, 
there is some nonzero but weak ion flow, ViL ≈ 0.1VA, corresponding to about tens of km/s in the magnetotail. 
This weak ion flow is caused not by reconnection but by the background plasma environment, such as the external 
driver or convection in the neighborhood.

The time- and spatial scales of magnetotail electron-only reconnection determine how likely it is to be observed 
by MMS. As shown in Figure 4, the duration of magnetotail electron-only reconnection is about 𝐴𝐴 10Ω

−1

𝑖𝑖
 , corre-

sponding to ∼5–10 s for the typical magnetotail parameters, and its spatial scale is sub ion scale (∼100 km). The 
high-resolution MMS measurements are capable to resolve this. Note that the 5–10 s duration is long enough 
for MMS to cross through the electron-only reconnection (the 17 June 2017 crossing duration is ∼2 s) before it 
evolves into standard reconnection. Moreover, theoretical analyses and simulations have shown that the electron 
tearing mode responsible for magnetotail electron-only reconnection has a large wavenumber in the L direction, 
kLdi ∼ 1 (e.g., Brittnacher et al., 1995; Lu et al., 2019b; Pritchett et al., 1991). Therefore, it should not be difficult 
for MMS to detect magnetotail electron-only reconnection. And indeed, Hubbert et al. (2021, 2022) have reported 
more than ten electron-only reconnection events in the magnetotail.

The nonzero energy conversion j ⋅ E or j ⋅ E′ exists not only in reconnection but also in other magnetotail 
processes and structures, such as dipolarization fronts (e.g., Khotyaintsev et al., 2017; Shu et al., 2021). The 
present study focuses on reconnection, but for more general circumstances of nonzero energy conversion, one 

Figure 4. Time histories of (a and c) the maximum electron and ion outflows 
in the L direction VeL and ViL at N = 0 and (b and d) the maximum energy 
conversion j ⋅ E′ and ion temperature Ti at L = LR. Here LR is where BN at 
N = 0 minimizes before reconnection and reverses after reconnection.
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needs to consider other specific characteristics (e.g., sharp increase in Bz for dipolarization fronts) for differ-
entiation. Note that the demonstration in the present study is mostly qualitative, and to have a more quantita-
tive sense, for typical magnetotail values of B0 = 20 nT and n0 = 0.3 cm −3, the corresponding j ⋅ E′ is about 

𝐴𝐴 0.03𝑒𝑒𝑒𝑒0𝑉𝑉
2

𝐴𝐴
𝐵𝐵0 ∼ 0.02 nW∕m3 in electron-only reconnection and about 𝐴𝐴 0.2𝑒𝑒𝑒𝑒0𝑉𝑉

2

𝐴𝐴
𝐵𝐵0 ∼ 0.12 nW∕m3 in standard 

reconnection, and the ion temperature Ti is about 𝐴𝐴 0.43𝑚𝑚𝑖𝑖𝑉𝑉
2

𝐴𝐴
∼ 2.9 keV in pre-reconnection current sheet and 

electron-only reconnection and about 𝐴𝐴 0.51𝑚𝑚𝑖𝑖𝑉𝑉
2

𝐴𝐴
∼ 3.4 keV in standard reconnection. However, it is important 

to note that the above Ti depends on its initial value, distribution, and background value, and the exact value of 
j ⋅ E′ obtained from PIC simulations can be underestimated because the mass ratio and speed of light in PIC 
simulations are smaller than realistic. Moreover, in spacecraft observations, the values of Ti, j ⋅ E′, etc. also vary 
in different events because the environmental plasma parameters and spacecraft trajectories are different. For the 
above reasons, here we preferentially focus on the qualitative and distinct differences because they are simulation 
setup agnostic and applicable for more observational events.

Data Availability Statement
The simulation data is archived in https://doi.org/10.6084/m9.figshare.19262366.v2. The MMS spacecraft 
data are publicly available at the MMS science data center (https://lasp.colorado.edu/mms/sdc/public/about/
browse-wrapper/).
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