
1.  Introduction
Whistler-mode waves are very common electromagnetic emissions falling within the frequency range of 
0.1–0.8 𝐴𝐴 𝐴𝐴ce (where 𝐴𝐴 𝐴𝐴ce is the equatorial electron gyrofrequency) in the Earth's magnetosphere. They are also 
known as chorus waves, appearing as a series of repetitive coherent emissions (Gao et al., 2022; Lu et al., 2021). 
There usually exists a power gap around 0.5𝐴𝐴 𝐴𝐴ce in the spectrum, dividing the spectrum into lower and upper 
bands (Gao et al., 2014, 2019; Li et al., 2019; Santolik et al., 2003; Tsurutani & Smith, 1974, 1977; Yagitani 
et al., 2014). They have attracted more and more attention due to their important role in accelerating seed elec-
trons (∼100 keV) to relativistic energies (>1 MeV) and scattering low-energy (0.1–30 keV) electrons to precipi-
tate into the upper atmosphere (Horne et al., 2005; Liu et al., 2015, 2020; Lorentzen et al., 2001; Ni et al., 2008; 
Thorne et al., 2010, 2013; Tsurutani et al., 2013; Xiao et al., 2009, 2015). The efficiency of interactions between 
whistler-mode waves and electrons is strongly determined by wave properties, and one of them is the wave normal 
angle (WNA; Ni et al., 2011; Shprits & Ni, 2009; Verkhoglyadova et al., 2010). In the Earth's magnetosphere, 
both quasi-parallel (WNA𝐴𝐴 𝐴 45◦ ) (Burton & Holzer, 1974; Goldstein & Tsurutani, 1984; Li et al., 2011, 2013; 
Tsurutani et al., 2020) and oblique (WNA 𝐴𝐴 𝐴 45◦ ) (Agapitov et al., 2013; Gao et al., 2016; Li et al., 2011, 2013; 
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Liu et al., 2021; Mourenas et al., 2014) whistler-mode waves have been widely observed. Although quasi-parallel 
whistler-mode waves typically have the much larger magnetic amplitudes (Li et  al.,  2011), previous studies 
pointed out oblique whistler-mode waves play a crucial role in electron dynamics as well as quasi-parallel waves 
(Artemyev, Agapitov, et al., 2015, 2016; Li et al., 2014; Mourenas et al., 2012). For example, based on Cluster 
data, Artemyev, Agapitov, et al. (2015) proposed that oblique whistler-mode waves may carry up even more wave 
energy involved in wave-particle resonant interactions.

However, the source region and generation mechanism of oblique whistler-mode waves are still under debate. 
Generally, there are two major potential generation mechanisms of oblique whistler-mode waves in the liter-
ature (Artemyev et al., 2016; Chen et al., 2013; Gao et al., 2016; Ke et al., 2017; Li, Mourenas, et al., 2016; 
Lu et al., 2019; Mourenas et al., 2015; Zhou et al., 2019). Both theoretical and simulation results showed that 
whistler-mode waves are initially excited by anisotropic energetic (∼10s keV) electrons with small WNAs near 
the magnetic equator (Nunn, 1971; Omura et al., 2008; Santolik et al., 2014; Tsurutani et al., 1979; Tsurutani & 
Smith, 1977), and then propagate toward higher latitudes and the wave vector gradually turns oblique mainly due 
to the inhomogeneity of background magnetic field (Chen et al., 2013; Ke et al., 2017; LeDocq et al., 1998; Lu 
et al., 2019; Taubenschuss et al., 2016). In this scenario, oblique whistler-mode waves are caused by the propaga-
tion effect and preferentially occur at higher latitudes with the propagating direction toward the poles (Agapitov 
et al., 2013; Haque et al., 2010; Li et al., 2013). Besides, oblique whistler-mode waves may be locally excited by 
anisotropic energetic electrons if there simultaneously exists a beam-like/plateau population around the phase 
velocity of wave in the parallel velocity distribution of electrons (Artemyev et al., 2016; Gao et al., 2016; Li, 
Mourenas, et al., 2016; Mourenas et al., 2015). This beam-like population may either suppress the severe Landau 
damping of oblique whistler-mode waves or directly provide the free energy to excite oblique waves. Therefore, 
these waves can have the equatorward propagating direction, besides the poleward direction (Li et  al.,  2013; 
Taubenschuss et al., 2016).

In this paper, using nearly 7-year (August 2012–December 2018) of Van Allen Probe-A plasma wave data, we 
present a statistical analysis of lower-band (<0.5𝐴𝐴 𝐴𝐴ce ) and upper-band (>0.5𝐴𝐴 𝐴𝐴ce ) oblique whistler-mode waves in 
the Earth's magnetosphere. We clearly find there are two main populations with different favored latitudes, and 
the dependences of their favored latitudes on magnetic local time (MLT) are quite distinct. The statistical results 
are also compared with the ray tracing results. Our study provides direct observational support for the generation 
mechanism and corresponding source region of oblique whistler-mode waves in the Earth's magnetosphere.

2.  Data Sources and Ray Tracing Method
The Van Allen Probes, including two identical probes (A and B), are orbiting around the Earth with the perigee 
of ∼1.1𝐴𝐴 𝐴𝐴𝐸𝐸 (radius of the Earth), apogee of ∼5.8𝐴𝐴 𝐴𝐴𝐸𝐸 , and inclination of 10𝐴𝐴 ◦ (Kessel et al., 2013; Mauk et al., 2013). 
This mission was launched on 30 August 2012, and both probes are equipped with the Electric and Magnetic 
Field Instrument Suite and Integrated Science (EMFISIS) suite which provides vastly improved measurement of 
whistler-mode chorus waves in the inner magnetosphere (Kletzing et al., 2013). In this study, we have collected 
the survey mode data from the waveform receiver (WFR) of EMFISIS from August 2012 to December 2018. 
The survey mode data provide the wave power spectrum ranging from 10 Hz to 12 kHz and a complete spectrum 
matrix every 6 s. The spectral matrices data set has been processed in the field-aligned coordinate system to get 
polarization parameters of whistler-mode waves. The tri-axial fluxgate magnetometer (MAG) is used to obtain 
the local electron cyclotron frequencies (Kletzing et al., 2013). The AE index is obtained from OMNI website 
with 1-min resolution, which is used to estimate the plasmapause position (O'Brien & Moldwin, 2003).

To investigate the propagation of whistler-mode waves in the Earth's magnetosphere, a ray tracing program is 
implemented by solving Hamilton's equations (Haselgrove,  1955; Kimura,  1966). In this program, the linear 
dispersion relation in cold plasma is used for whistler-mode waves. The background magnetic field is obtained 
from the T89 model (Tsyganenko, 1989), where the field configuration depends on the geomagnetic Kp index. 
The background plasma density follows an empirical model, which is incorporated by the equatorial density 
model (Carpenter & Anderson, 1992) and a field-aligned density model (Chen et al., 2012; Denton et al., 2002).

3.  Observation Results
Figure 1 presents the power spectrum measurement during nearly one orbit of Van Allen Probe-A, including (a) 
the magnetic spectrum, (b) electric spectrum, (c) ellipticity, (d) WNA, and (c) Pf flag, respectively. In each panel, 
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the black solid, dotted, and dashed lines denote the frequencies of 0.1, 0.5, and 1 𝐴𝐴 𝐴𝐴ce , respectively. To exclude 
plasmaspheric hiss (Zhou et al., 2016), we only consider whistler-mode waves outside the plasmapause, which is 
shaded in gray in Figure 1a. The Pf flag (−1 or 1) denotes the propagating direction of waves: −1 for the equa-
torward propagating direction and 1 for the poleward propagating direction (also done in Gao et al., 2017). At 
each time point, that is, every 6 s, we checked every frequency bin between 0.1 and 1 𝐴𝐴 𝐴𝐴ce , and recorded the data 
point only if the corresponding magnetic power was >𝐴𝐴 10

−8 𝐴𝐴 nT
2
∕Hz and ellipticity was 𝐴𝐴 𝐴 0.7 (nearly right-handed 

circularly polarized; Verkhoglyadova et al., 2010). The data points satisfying the above criteria have been shown 
in Figures 1c–1e. Then, according to the WNA shown in Figure 1d, we further classify these data points into 
quasi-parallel whistler-mode waves (WNA 𝐴𝐴 𝐴 45◦ ) and oblique waves (WNA 𝐴𝐴 𝐴 45◦ ). It is worth noting that the 
Gendrin angle may be a natural delimitation between quasi-parallel and oblique waves (Agapitov et al., 2018; 
Albert, 2017; Li, Santolik, et al., 2016), but the 𝐴𝐴 45◦ is chosen here for convenience in both selecting events and 
further comparing ray tracing simulations with observations. Finally, we have collected over 6 million data points 
for oblique whistler-mode waves during August 2012 and December 2018 using Van Allen Probe-A data.

The measurement coverage of Van Allen Probe-A is presented in Figures 2a and 2d, where bins with less than 600 
time points, that is, 1 hr, have been discarded. The satellite provides good coverage over all MLTs and between 
the L-shells of 3–6.5 (Figure 2a). Due to the low inclination of satellite, measurements are limited to magnetic 
latitudes (MLATs) of 𝐴𝐴 ± 20◦ (Figure 2d). Figures 2b and 2e display the occurrence rate of lower-band oblique 

Figure 1.  An overview of power spectrum measurement during nearly one orbit of Van Allen Probe-A, including (a) the 
magnetic spectrum, (b) electric spectrum, (c) ellipticity, (d) wave normal angle, and (c) Pf flag, respectively. In each panel, 
the black solid, dotted, and dashed lines denote the frequencies of 0.1, 0.5, and 1 𝐴𝐴 𝐴𝐴ce , respectively. The shaded region in panel 
a is outside the plasmapause.
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whistler-mode waves in the L-MLT and MLAT-MLT planes, respectively. Here the occurrence rate in each bin 
is defined by the ratio between the number of time points of oblique whistler-mode waves and satellite measure-
ments. Note that there may be more than one data points (with different frequencies) selected at the same time 
point, so we only count once for such data points to avoid duplicated counting.

In Figure 2b, it is found lower-band oblique whistler-mode waves can occur from the midnight to dusk sector, but 
they are generally found at larger L-shells on dayside. Interestingly, the oblique chorus MLAT dependence grad-
ually increases with increasing MLT (i.e., from midnight to noon; Figure 2e). Specifically, the favored latitude of 
lower-band oblique waves reaches up to 𝐴𝐴 ± 20◦(and possibly beyond) at noon but is limited to 𝐴𝐴 ± 10◦ at midnight. 
The distribution of upper-band oblique waves is shown in Figures 2c and 2f. Upper-band oblique waves preferen-
tially occur in the dawn sector (Figure 2c). Oblique chorus has low occurrence rates from the noon to dusk sector. 
The strong dependence of oblique chorus' predominant latitudes on MLT is also found in Figure 2f but within a 
narrower range of latitude. There is a sharp drop in the occurrence rate at 𝐴𝐴 ± 5◦ (or 𝐴𝐴 ± 10◦ ) at midnight (or noon).

Using the wave propagating direction (i.e., the Pf), we further divide the oblique waves into two categories, 
such as poleward (Pf = 1) and equatorward (Pf = −1). Based on previous simulation and observation works, 
whistler-mode waves with the equatorward propagating direction are generally considered to be locally excited 
within the source region (Ke et al., 2017; Li et al., 2013; Taubenschuss et al., 2016). Figures 3a and 3b display 
the distribution of equatorward propagating oblique waves, while Figures 3c and 3d present the distribution of 
poleward propagating oblique waves. The equatorward propagating oblique waves are mainly distributed near the 
magnetic equator in the midnight sector (22–6 hr), suggesting oblique whistler-mode waves can be locally excited 
near the magnetic equator (source region). But their occurrence rate is much lower than poleward propagating 
oblique waves. Just as expected, poleward propagating oblique waves preferentially appear at higher latitudes, and 
there is a clear drop of occurrence rate at the equator. Moreover, there also exists the remarkable dependence of 
favored MLATs on MLT similar to that in Figures 2e and 2f.

For comparison, we also present the distribution of quasi-parallel whistler-mode waves in Figure 4 following 
the same format as Figure 3. Unlike lower-band oblique waves, the quasi-parallel waves with the equatorward 

Figure 2.  The measurement coverage of Van Allen Probe-A in the (a) L-magnetic local time (L-MLT) and (d) magnetic latitude-magnetic local time (MLAT-MLT) 
planes. The occurrence rate of lower-band oblique whistler-mode waves in the (b) L-MLT and (e) MLAT-MLT planes, respectively. Panels c and f show the occurrence 
of upper-band oblique whistler-mode waves in the same format. The bin size in top row and bottom row is 𝐴𝐴 0.5𝑅𝑅𝐸𝐸 × 1 hr (𝐴𝐴 𝐴𝐴𝐸𝐸 is the Earth's radius) and 𝐴𝐴 1◦ × 1 hr , 
respectively.
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propagating direction preferentially occur on the dayside over a broad range of MLATs (Figure  4a), that is, 
from −𝐴𝐴 20◦ to 𝐴𝐴 20◦ . Similarly, the poleward propagating quasi-parallel waves also usually appear on the dayside 
(Figure 4c), which is quite different with that shown in Figure 3c. The equatorward propagating upper-band 
quasi-parallel waves mainly occur on the nightside (Figure  4b), similar to that shown in Figure  3b, but the 
poleward propagating upper-band quasi-parallel waves favor the lower MLATs than upper-band oblique waves 
(Figure 4d). If not separating oblique and quasi-parallel waves, the clear dependence of favored MLATs on MLT 
will become blurred due to their quite different distributions.

Here we propose that the generation and corresponding distribution of poleward propagating oblique waves 
shown in Figures 3c and 3d are caused by the propagation effect. The ray tracing method has been widely used to 
study the wave propagation (Breuillard et al., 2012, 2015; Chen et al., 2013), and we use this method to explain 
the observed MLT dependence of the favored MLATs of poleward propagating oblique waves. In our simulations, 
the background magnetic field is obtained from the T89 model for simplicity, and we fix the Kp index as 4 to 
represent a geoactive period. The whistler-mode wave is launched at the magnetic equator at L = 6 over different 
MLTs. The plasmapause is estimated at L = 3.76, which is far away from the launching waves. The frequency 
of whistler-mode wave ranges from 0.1 to 0.8 𝐴𝐴 𝐴𝐴ce , and its initial WNA is set as 𝐴𝐴 0◦ . As an example, Figures 5a 
and 5b present the simulation results at the midnight (MLT = 0 hr). As expected, the background magnetic field 
is stretched from the standard dipole field in Figure 5a. After the parallel whistler-mode waves are launched, 
they propagate toward the higher latitudes and turn oblique. In Figure 5b, we have marked the threshold latitude 
where the WNA of each wave becomes larger than 𝐴𝐴 45◦ for the first time. The higher-frequency wave becomes 
oblique, that is, WNA 𝐴𝐴 𝐴 45◦ , at the smaller latitude. We also present the observed favored latitudes of poleward 
propagating lower-band and upper-band oblique waves as a function of MLT in Figures 5c and 5d, respectively, 
where the gray diamonds denote the median value with the first and third quartiles as error bars. Here all selected 

Figure 3.  The occurrence rate of equatorward propagating (a) lower-band and (b) upper-band oblique waves in the magnetic 
latitude-magnetic local time (MLAT-MLT) plane. The occurrence rate of pole propagating (c) lower-band and (d) upper-band 
oblique waves in the MLAT-MLT plane.
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data points (including those chosen at the same time point) are involved. For comparison, the threshold latitudes 
of lower-band and upper-band waves at different MLTs, obtained from ray tracing simulations, are also plotted in 
Figures 5c and 5b, respectively. For both lower-band and upper-band oblique whistler waves, the favored latitude 
of poleward propagating waves generally increases with the MLT (i.e., from 0 to 12 hr). The unexpected drop at 
MLT = 10 hr in Figure 5c should be caused by the limited latitude of Van Allen Probe-A. The threshold latitudes 
of each whistler mode also present a quite similar trend with the increasing MLT, which is due to the decreasing 
inhomogeneity of background magnetic field from midnight to noon. There is a good agreement between the 
observations and ray tracing simulations, so it is reasonable to draw the conclusion that the poleward propagating 
oblique whistler-mode waves are mainly a result from wave propagation.

4.  Summary and Discussion
In this study, we have thoroughly investigated lower-band (<0.5𝐴𝐴 𝐴𝐴ce ) and upper-band (>0.5𝐴𝐴 𝐴𝐴ce ) oblique 
whistler-mode waves in the Earth's magnetosphere by analyzing nearly 7-year (August 2012–December 2018) 
Van Allen Probe-A data. We find poleward propagating oblique whistler-mode waves preferentially occur at rela-
tively larger latitudes, and their occurrence latitudes increase with increasing MLT. Upper-band oblique waves 
are typically observed at lower latitudes than lower-band waves in the same MLT. The ray tracing simulations 
are in agreement with the observations. Therefore, we propose that obliquely propagating chorus waves are 
caused by the propagation effect, and the strong MLT dependence of their favored latitudes is due to the differ-
ent inhomogeneity of background magnetic field over MLT. There also exist some equatorward propagating 
oblique waves, which are mainly confined within 𝐴𝐴 ± 5◦ in the midnight sector. These waves are considered to be 
locally excited. Since the poleward propagating waves have much larger occurrence rates, propagation effects are 
believed to be the dominant generation mechanism of oblique whistler-mode waves in the Earth's magnetosphere.

There exist two major generation mechanisms of oblique whistler-mode waves in the Earth's magnetosphere, 
such as local excitation and propagation effects (Chen et al., 2013; Gao et al., 2016; Lu et al., 2019; Mourenas 

Figure 4.  The distribution of quasi-parallel whistler-mode waves with the same format as Figure 3.



Journal of Geophysical Research: Space Physics

GAO ET AL.

10.1029/2022JA030804

7 of 10

et al., 2015). In this study, based on the propagating direction of waves, we roughly distinguish the generation 
mechanism of oblique whistler-mode waves captured by Van Allen Probe-A during August 2012 to Decem-
ber 2018. The statistical results and ray tracing simulations suggest that the majority of oblique whistler-mode 
waves should be caused by propagation effects. Oblique chorus is preferentially observed away from the equa-
tor. Locally excited oblique waves are also found mainly near the equator and preferentially occur around the 
midnight (22–6 hr), where the energetic electrons are usually injected during substorms. This region may provide 
the optimal condition for locally exciting oblique whistler-mode waves, such as the anisotropic energetic electrons 
and beam-like electron population. Here, the beam-like electron population may be caused by the time domain 
structures (TDS), which are also usually observed around the midnight (Artemyev, Rankin, & Blanco, 2015; 
Malaspina et al., 2014; Mozer et al., 2015). It is worth noting that we cannot exclude other potential mecha-
nisms for generation of oblique waves, such as nonlinear wave-wave coupling (Chen et al., 2017; Fu et al., 2017; 
Gao et  al.,  2017). Besides, Tsurutani et  al.  (2009) found the equatorward propagating oblique whistler-mode 
waves at L ∼ 7 and high MLATs based on the GEOTAIL wave data (Nagano et al., 1996). Similarly, Agapitove 
et al.  (2013) and Santolik et al.  (2014) also showed that there also exist some weak oblique waves above the 
MLAT of 40°. However, these waves were considered to be generated in the minimum B pocket off the equator, 
and might not reach the range of ±20° (the concerned latitudes of this study) due to possible Landau damping.

The preferred latitudes of poleward propagating oblique whistler-mode waves are strongly dependent on MLT, 
which may be a consequence of the day-night asymmetry of Earth's magnetic field configuration. At midnight, 

Figure 5.  (a) The background magnetic field (black line) and trajectories of eight rays (color coded) at the midnight 
(magnetic local time [MLT] = 0 hr). (b) The wave normal angle as a function of magnetic latitude during the propagation of 
each whistler-mode wave. The threshold latitude of each mode is marked by square. The favored latitudes (gray diamond) 
of poleward propagating (c) lower-band and (d) upper-band oblique waves as a function of MLT, where the gray diamonds 
denote the median value with the first and third quartiles as error bars. In panel a, the plasmapause location is marked by the 
diamond. In panels c and d, the color coded square denotes the threshold latitude obtained from ray tracing simulations.
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the background magnetic field is heavily stretched from the standard dipole field, then the whistler-mode wave 
turns oblique at very low latitude, especially for upper-band wave. These waves may damp rapidly. At noon,  the 
whistler-mode waves become oblique at higher latitudes due to the more solar wind compressed background 
magnetic fields. More importantly, we find oblique whistler-mode waves seem to be confined within the 
low-latitude regions. For upper-band oblique waves, they have the very low occurrence rate above 𝐴𝐴 ± 15◦ . For 
lower-band oblique waves, based on the trend shown in Figures 3c and 4c, we can estimate that lower-band 
oblique waves may be confined within 𝐴𝐴 ± 25◦ . Therefore, if no other process is involved, after excitation at the 
equator, it is difficult for whistler-mode waves to reach high latitudes (>𝐴𝐴 30◦ ) since they quickly become oblique 
and experience severe Landau damping. However, recent studies reveal that small-scale density ducts (density 
peak or trough) can efficiently trap whistler-mode waves and enable them to propagate high latitudes with the 
small WNA (Chen, Gao, Lu, Tsurutani, Li, et  al., 2021, 2021b; Ke et  al., 2021). Thus, trapping of waves in 
density ducts may explain the existence of some high-latitude whistler-mode waves.

There already exist several statistical studies of whistler-mode waves based on Cluster data and Van Allen Probes 
data (Agapitov et al., 2013, 2018; Artemyev et al., 2016; Li, Santolik, et al., 2016; Santolik et al., 2014), and they 
have established a useful wave model for further studying the electron dynamics in the Earth's magnetosphere. 
However, unlike this study, they did not separate quasi-parallel and oblique waves in the statistical studies, so the 
clear dependence of favored MLATs on MLT (Figures 2 and 3) was not found. Besides, we also separate these 
waves based on their frequency and propagating direction, and find they have different generation mechanisms 
and source regions. We should mention that the determination of magnetic equator is not exactly accurate, and 
some poleward propagating waves may be selected as equatorward propagating waves. For the same reason, some 
equatorward propagating waves could be counted as poleward propagating waves, so the effect of inaccurate 
equator location should be greatly weakened in our statistical study.

Data Availability Statement
The entire Van Allen Probes data set is publicly available at https://spdf.gsfc.nasa.gov/pub/data/rbsp/. The Van 
Allen Probes data analysis is carried out using the publicly available SPEDAS software (http://spedas.org). The 
ray tracing simulation data can be accessed via https://dx.doi.org/10.12176/01.99.02673.
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