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Abstract Electron beams are considered to be important free energy sources for the excitation of various
plasma waves at quasi‐perpendicular shocks. In this article, we perform a two‐dimensional particle‐in‐cell
simulation of a low‐plasma‐β quasi‐perpendicular shock. The magnetic field at the shock ramp has a large
gradient, where upstream electrons and ions are separated due to their different gyro‐radius. This charge
separation induces a sub‐ion scale electric field at the shock ramp. The electric drift of electrons in this field can
induce an electron shear flow, resulting in the excitation of Kelvin‐Helmholtz instability and the generation of
electron vortices. These vortices further cause charge separation at their centers, resulting in a large electrostatic
field. The electrons trapped in these vortices can gain energy from the parallel component of the electric field,
which eventually leads to field‐aligned electron beams. Our results provide a novel process for generating
electron beams at low‐plasma‐β quasi‐perpendicular shocks.

Plain Language Summary Satellite observations suggest that electron beams are vital components
at quasi‐perpendicular shocks, but their formation mechanism in low‐β plasma remains unclear. Using advanced
numerical simulations, we investigated how these electron beams are formed. We discovered that at the shock
front, ions can penetrate deeper into the shock ramp than the electrons because of their larger gyro‐radius, which
causes charge separation and induces a sub‐ion scale electric field. The electric drift of electrons in this field can
further lead to the emergence of vortices due to the electron Kelvin‐Helmholtz instability. Electrons trapped in
these vortices can be accelerated in the direction parallel to the magnetic field. Field‐aligned electron beams are
then formed. Our findings can provide new insights into how electron beams are formed in low‐plasma‐β
environments.

1. Introduction
Collisionless shock waves ubiquitously exist in space and astrophysical plasma, which can be separated into two
categories according to the angle between the upstream magnetic field and the shock normal (θBn) (Bale
et al., 2005; Balogh & Treumann, 2013; Burgess et al., 2005): quasi‐parallel shocks (θBn < 45°) and quasi‐
perpendicular shocks (θBn > 45°). In the solar system, quasi‐perpendicular shocks have been extensively studied
through in situ observations (Balogh & Treumann, 2013; Stone & Tsurutani, 1985; Tsurutani & Stone, 1985).
Plasma waves are commonly detected by spacecraft at these quasi‐perpendicular shocks, such as Langmuir waves
and electrostatic waves, which are believed to be excited by field‐aligned electron beams (Bale et al., 1999;
Gurnett et al., 1979; Pulupa et al., 2010; Williams et al., 2005). Moreover, the occurrence of type II solar radio
bursts is also related to field‐aligned electron beams at quasi‐perpendicular shocks driven by coronal mass
ejections (CMEs) (Bale et al., 1999; Holman & Pesses, 1983; Jebaraj et al., 2021; Maloney & Gallagher, 2011;
Melrose, 1980, 2017; Morosan et al., 2019). Recently, with high‐resolution satellite measurements, field‐aligned
electron beams have been directly observed at quasi‐perpendicular shocks (Lindberg et al., 2023; Wilson
et al., 2016). These beam electrons may be further scattered upstream and downstream by plasma waves and
eventually accelerated to high energy (Bell, 1978; Drury, 1983).

Shock drift acceleration (SDA) has been regarded as the primary mechanism for generating electron beams at
quasi‐perpendicular shocks (Amano et al., 2022;Wu, 1984). In SDA, part of the upstream electrons is reflected by
the shock and gain energy through their gradient drift anti‐parallel to the upstream motional electric field
(Emotional = − V × B). However, a large number of shocks in the solar system occur in low‐plasma‐β envi-
ronments, such as the CME‐driven shocks (Bale et al., 2016; Maguire et al., 2020; Maloney & Gallagher, 2011;
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Morosan et al., 2019; Shen et al., 2022). Thermal electrons can hardly be directly accelerated by SDA in low‐
plasma‐β environments (Holman & Pesses, 1983; Jebaraj et al., 2021), which makes the generation of electron
beams inexplainable. In this article, we present a novel process for generating electron beams at a low‐plasma‐β
quasi‐perpendicular shock using a two‐dimensional (2D) particle‐in‐cell (PIC) simulation. For the first time, we
find that the electron Kelvin‐Helmholtz instability (EKHI) can be excited by the electron shear flow at the shock
ramp. Electron vortices are formed by this instability and cause charge separation at their centers. Thermal
electrons can be directly accelerated by the parallel component of the electric field while drifting together with the
vortices. These accelerated electrons eventually form field‐aligned beams at the shock ramp.

2. Simulation Model
We use an open‐source electromagnetic PIC code called Smilei (Derouillat et al., 2018) to investigate quasi‐
perpendicular shocks. The simulation is carried out in the x − y plane. The size of the simulation domain is
Lx × Ly = 122.88di0 × 10.24di0, where di0 =

c
ωpi0

is the ion inertial length. Periodic condition is applied in the

y direction. To create the shock, we employ the injection method (Matsukiyo & Scholer, 2012). Particles are
continuously injected from the left boundary (x = 0) with a bulk velocity in+x direction (Vin = 3VA0, where VA0
is the Alfvén speed), and are specularly reflected at the right boundary (x = Lx). The formation of the quasi‐
perpendicular shock is mediated by a modified two‐stream instability (MTSI) between the injected and re-
flected ions, which makes the formation time much less than an ion gyro‐period (Tci =

2π
Ωi0

, where Ωi0 =
eB0
mi

is
the ion gyro‐frequency) (Zhang et al., 2021, 2024). The shock moves in –x direction after its formation. The
upstream magnetic field is set with an out‐of‐plane component: B0 = (B0 cos θBn,0, B0 sin θBn), where
θBn = 85° is the shock normal angle. We adopt the ion‐to‐electron mass ratio of mi me = 100, the upstream
plasma βi = 0.1, βe = 0.2, and the light speed c = 50VA0. The size of the computational cell is
dx = dy = 0.01di0, and each cell contains 80 computational particles initially. The simulation is pushed at a
timestep of Ωi0Δt = 1 × 10− 4.

3. Results
The shock propagates leftward with a speed of about 1.8VA0 after it is detached from the right boundary, which
means the Alfvén Mach number (MA) is about 4.8 in the shock rest frame. The simulation parameters
(MA ≈ 4.8,βe = 0.2) are typical for shocks in the solar corona and the near‐sun solar wind. Movies S1 and S2
show the evolution of the nonstationary shock structure from Ωi0t = 10.0 to 17.0, where a periodic reappearance
of a new shock front ahead of the shock can be observed. This is the typical reformation process of quasi‐
perpendicular shocks (Biskamp & Welter, 1972; Lembège & Dawson, 1987; Lembège & Savoini, 2002; Yang
et al., 2020). According to Hellinger et al. (2002), the parameters used in our simulation also meet the conditions
for shock reformation. The fully developed shock structure at Ωi0t = 16.6 is illustrated in Figure 1. There exist
two shock fronts due to shock reformation. The old shock front locates at x

di0
≈ 96.1, while a new one is situated at

x
di0

≈ 94.5. In the ramps of both the old and new shock fronts, the strength of the magnetic field and plasma density
increase rapidly. When the upstream particles encounter the ramps, the electrons are magnetized, while the ions
can be considered as unmagnetized because their gyro‐radii are comparable to the scale of the magnetic field
gradient. Therefore, the electrons experience more deceleration than the ions, which generates a charge separation
in the shock ramps at a scale smaller than the ion gyro‐radius. The existence of an ion‐scale electric field at the
ramp of quasi‐perpendicular shocks has been confirmed by previous shock simulations and observations (Joh-
lander et al., 2023; Scholer et al., 2003; Walker et al., 2004; Wilson et al., 2021; Yang et al., 2009). The ion‐scale
negative Ex caused by this charge separation can be observed at the ramps of both the new and the old shock front,
which are around 93.5 < x

di0
< 95.0 and 96.0 < x

di0
< 96.3 as shown in Figure 1a. At the new shock ramp, the

negative Ex has a width of about 1.5di0. At the old shock ramp, as the compression becomes stronger and the
magnetic field gradient becomes larger, the electric field occurs at sub‐ion scales (about 0.2di0). The electic field
at the shock ramps can lead to the electric drift of electrons in the y direction (Vdye = −

ExBz
B2 ) (Figure 1b). For

convenience, we define the sub‐ion scale electric field at the old shock ramp as Eramp, and focus on the physical
processes at this place.

Due to the existence of Eramp, the electric drift of electrons creates a sub‐ion‐scale electron velocity shear layer at
the old shock ramp, which is unstable to EKHI. In the selected area within the dashed box in Figures 1a and 1b
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(95.5 ≤ x
di0
≤ 97.5; 6 ≤ y

di0
≤ 9), the electron velocity in the y direction remains close to the electric drift ve-

locity Vdye (Figure 1c) at most positions. At the center of the shear layer (x = 96 to 96.15di0), vey becomes smaller
than vdye, which is due to the gradient of electron pressure in the shock ramp causing additional electron
diamagnetic drift (vD =

∇pe×B
eneB2 , see Figure S1 in Supporting Information S1). The difference in Vey between the

shock ramp and the downstream region is about 2.5VA0 (Figure 1c). As Eramp has a width of about only 0.2di0, the
ion motion is demagnetized, and the ion shear flow is much weaker (Figure 1c). The EKHI has two different
modes: the electrostatic (ES) mode (Che, 2024) and the electromagnetic (EM) mode (Che & Zank, 2023). Here, as
the electrons are magnetized and the effects of the out‐of‐plane magnetic field can not be neglected, we consider
the EMmode. The shear flow is mainly in the y direction, therefore the threshold for the excitation of EKHI can be
written as (Che & Zank, 2023):

|Vey1 − Vey2| >

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ne1 + ne2

4πmene1ne2
(B2

y1 + B2
y2)

√

. (1)

where Vey is the electron flow velocity in the y direction, ne is the electron density, and the subscripts 1 and 2
represent physical quantities at two different positions on the x axis. Then, we use the subscript “M” to represent
the physical quantities at the position where Vey is maximum ( x

di0
= 96.1) in the selected area, and the instability

criterion is obtained:

Figure 1. The 2D structure of the shock at simulation time Ωi0t = 16.6. (a) The electric field Ex. (b) The electron flow
velocity in the y direction Vey. The solid lines in (a, b) represent the magnetic field strength averaged over the y axis:

B =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

B2
x + B2

y + B2
z

√

. (c) The ion flow velocity, the electron flow velocity, and the electric drift velocity in the y direction

within the dashed box averaged over the y axis: Viy, Vey, and Vdye. The critical shear velocity VKH in Equation 2 for EKHI to
grow is also plotted. Positions with Vey < VKH are unstable for the shear layer.
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Vey < VeyM −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
neM + ne

4πmeneMne
(B2

yM + B2
y)

√

. (2)

We can further define the right‐hand side of Equation 2 as VKH, which is the threshold for the instability. Both the
left and right boundaries of the electron shear layer are unstable (Vey < VKH) to the EKHI (Figure 1c). The
growth of the rippled structures of the electron shear layer caused by this instability can also be observed in
Movies S1 and S2.

As the EKHI evolves, electron vortices are formed within the electron shear layer, which is shown in Figure 2a.
These vortices have a diameter of about 0.1di0 and are distributed apart from each other by about 0.2 to 0.5di0,
they move together with the shear flow along +y direction at a speed of about 2.6VA0 (see Movie S3). This
suggests that the wavelength of the EKHI is on electron inertial scales (2–5de0), which is consistent with the
theory of the EM mode EKHI (Che & Zank, 2023). This wavelength is much larger than the Debye scale, which
allows us to rule out the possibility that the observed instability is either the Buneman instability or the ES EKHI.
The EKHI can effectively transport the electrons across the shear layer and cause charge separation at sub‐ion
scales (Lee et al., 2015). Low‐density electrons upstream of the shock ramp are transported downstream by
the electron vortices, resulting in a decrease in the electron density at the vortex centers. At the same time, because
the ions are demagnetized and almost do not react to these small‐scale electron vortices, charge separation occurs.
Positive charges are cumulated at the centers of the vortices (Figure 2a). As a result, a strong electric field
diverging from the vortex centers is formed (Figure 2b). Note that this electric field around the vortices (Evortex)
has a magnitude of about 20VA0B0, which is much stronger than Eramp shown in Figure 1a.

Figure 3b shows the distribution of electron velocity in the direction parallel to the magnetic field within one
representative electron vortex at 96.11 ≤ x

di0
≤ 96.23, 8.28 ≤ y

di0
≤ 8.43. Notably, a distinct beam component is

observed at p∥
meVA0

≈ 20. We further define those electrons with large parallel momentum, p∥
meVA0

> 19, as the beam
electrons, and their spatial distribution is shown in Figure 3a. These beam electrons are concentrated at the centers
of electron vortices. This indicates that the vortices act as a source of producing electron beams at the shock ramp.

Figure 2. Enlarged view of the area within the dashed box in Figure 1 (95.5 ≤ x
di0
≤ 97.5; 6 ≤ y

di0
≤ 9). (a) The charge

density ρ = e(ni − ne) , with the arrows representing the in‐plane electron flow velocity. (b) The intensity of the in‐plane

electric field Ep =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E2
x + E2

y

√

, with the arrows representing its direction.
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After their formation, these beam electrons leave the vortices and move downstream, resulting in the “tail”
distributions downstream of the vortices in Figure 3a.

To comprehend the generation of field‐aligned electron beams in the electron vortices, we tracked 6 × 106

electrons in our simulation. We can analyze the electron motion by using the guiding center approximation:

vguide = v∥b̂ + vde + vcur + vgra, (3)

where v∥ is the parallel velocity (the component of the velocity parallel to the magnetic field), vde = E×B
B2 is the

electric drift velocity, vcur =
v 2

∥ b̂
Ωce

× ( b̂ · ∇ b̂) is the curvature drift velocity, and vgra =
v 2

⊥ b̂
2Ωce

× ∇B
B is the grad‐B

drift velocity. Figure 4 illustrates the motion of a representative electron accelerated in one of the vortices. At first,
this electron enters the shock ramp and drifts in the y direction due to Eramp (Figure 4a). During this period
(Ωi0t < 16.3), the trajectory of this electron closely matches the electric drift motion of its guiding center
(Figure 4c, ∆x = x(t) − x(t0) ≈ ∫t0

t vde,xdt; ∆y = y(t) − y(t0) ≈ ∫t0
t vde,ydt), and there is no obvious energy

increase (Figure 4a). Thereafter, once the electron encounters the electron vortex at ( x
di0

≈ 96.5; y
di0

≈ 7.5), it is
trapped around the vortex. During this period (Ωi0t > 16.3), the curvature of the magnetic field in the vortex
leads to additional drift of the electron in the x direction. The electron motion in the y direction is mainly the
electric drift (∆y ≈ ∫t0

t vde,ydt), while the motion in the x direction consists of both electric drift and curvature drift
(Figure 4c, ∆x ≈ ∫t0

t vde,x + vcur,xdt). As the trapped electron drifts together with the vortex, it is accelerated
rapidly to ε

meV2
A0

≈ 400 (Figures 4b, Movie S4). According to Equation 3, the energy change of the electron can be

decomposed into different parts (Northrop, 1963):

Figure 3. (a) The number density of the beam components nb (which is defined by electrons with large momentum parallel to
the magnetic field: p∥

meVA0
> 19). The green lines are the contours of charge density ρ, which mark out the locations of electron

vortices. (b) The blue line represents the normalized parallel momentum distribution for electrons in the vortex marked out by
the blue dashed box in (a) (96.11 ≤ x

di0
≤ 96.23; 8.28 ≤ y

di0
≤ 8.43), and the orange line shows the background electron

distribution in 96.11 ≤ x
di0
≤ 96.23, 0 ≤ y

di0
≤ 10.24 for comparison.
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dε
dt

≈ vguide ·E = E∥v∥ + vgra ·E + vcur ·E (4)

The first term in Equation 4 is the acceleration by the parallel electric field. The second term corresponds to
perpendicular heating or cooling due to the grad‐B drift. The third term drives parallel acceleration and arises
from the first‐order Fermi mechanism (Dahlin et al., 2014; Fu et al., 2006;Wang et al., 2017). Figure 4d shows the
contribution of these three terms and the energy change of the electron (∆ε). First, ∆ε is consistent with the sum of
these three components, which means the guiding center approximation is reasonable here. The contribution of

Figure 4. (a, b) Trajectory of an electron accelerated in the electron vortex overlaid on the electric field parallel to the
magnetic field (E∥) at Ωi0t = 16.3 and Ωi0t = 16.7. Each bipolar structure of E∥ exhibits the position of an electron vortex.
The black dot represents the position of the electron. Its trajectory back in 0.3Ω− 1

i0 is expressed by the colored lines, whose color
represents the electron's energy at the corresponding position. (c) The displacement of the selected electron in the x and y
direction (Δx = x(t) − x(t0)), and the displacement of the electron's guiding center obtained from the integrations of the drift
velocities in Equation 3. (d) Integrations of the terms in Equation 4, and the energy change of the selected electron
(Δε = ε(t) − ε(t0)). Two vertical dashed lines indicate the time points shown in (a, b) (Ωi0t = 16.3 and Ωi0t = 16.7).
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vgra ·E can be neglected. The charge separation at the vortex center generates an electric field component parallel
to the magnetic field, resulting in a dipole parallel electric field structure around the vortex (Figures 4a and 4b).
During the acceleration in the vortex, the work is primarily done by this parallel electric field, while the vcur ·E
term does negative work. In summary, beam electrons are accelerated by the parallel electric field while drifting
together with the electron vortices.

The presented simulation configuration with an out‐of‐plane component of the magnetic field may limit the
possibilities of other kinetic instabilities, which can not be included due to their parallel propagation. This might
lead to an overestimation of the electron acceleration in the direction parallel to the magnetic field. We have
calculated the displacement of the tracked electron in Figure 4 in the z direction by integrating its velocity
(sz = ∫ vzdt). During its acceleration by the parallel component of Evortex (from Ωi0t = 16.3 to 16.7), the
displacement of the tracked electron in the z direction is about 6di0. The dominant parallel‐propagating wave
activity at the ramp of low‐Mach‐number low‐plasma‐beta quasi‐perpendicular shocks is considered to be the
Alfvén ion cyclotron wave (AIC) (McKean et al., 1995, 1996). The wave number k of AIC at the shock front is
found to be around 0.5d− 1i0 (Hao et al., 2014; McKean et al., 1996), then the corresponding wavelength is
λAIC ≈ 12.56di0, which is larger than the displacement of the accelerated electron along the z axis. This means the
acceleration process we proposed would not be significantly affected in the three‐dimensional configuration.
However, the motions of accelerated electrons might be modulated by parallel‐propagating waves, which will be
an interesting topic for future three‐dimensional shock simulations with compatible parameters.

To quantitatively analyze the acceleration efficiency of beam electrons by electron vortices, we identify all the
beam electrons ( p∥

meVA0
> 19) that are accelerated during Ωi0t = 15.2 to 17.0. The relation between their

displacement parallel to the magnetic field (s∥ = ∫ v∥dt) and their energy gain (∆ε) during the acceleration is
shown in Figure 5. A clear correlation can be observed, in which ∆ε increases as s∥ becomes larger. Since beam
electrons are primarily accelerated by the parallel component of Evortex, their energy gain in the vortex can be
expressed as:

∆ε ≈ − e∫E∥v∥dt ≈ − eE∥s∥, (5)

where E∥ is the average parallel electric field acting on the electrons in the vortex. The slope of the distribution of

beam electrons in Figure 5 (k ≈ 272meV2
A0

di0
) indicates that E∥ is approximately − 2.72VA0B0 according to Equation 5.

Figure 5. Distribution of the energy change of beam electrons (∆ε) as a function of their displacement in the direction parallel
to the magnetic field (s∥ = ∫ v∥dt) during acceleration. The electrons displayed in this figure are accelerated at the electron
vortices during Ωi0t = 15.2 to 17.0.
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4. Discussion and Conclusions
We have proposed a novel process to generate electron beams at the ramp of a low‐plasma‐β quasi‐perpendicular
shock. At the magnetic field gradient of the shock ramp, electrons and ions are separated due to their different
gyro‐radius. This charge separation generates a sub‐ion scale electric field at the shock ramp (Eramp). The electric
drift of electrons in Eramp then creates a shear flow layer. The shear layer is unstable to EKHI, where electron
vortices are formed as the instability develops. The electron vortices transport low‐density upstream electrons into
the high‐density downstream environment, while ions do not respond to these small‐scale structures. This causes
strong charge separation at the vortex centers. The electric field around the vortices (Evortex) creates a parallel
electric field, which directly accelerates thermal electrons. At last, field‐aligned electron beams are generated by
these vortex‐accelerated electrons at the shock ramp. This acceleration mechanism can not only directly accel-
erate thermal electrons, but also shows comparable efficiency with the traditional SDA mechanism. The overall
picture may play an important role in producing electron beams at CME‐driven shocks in the solar corona and
near‐sun solar wind.

In the SDA mechanism, part of the upstream electrons are mirror‐reflected by the shock and accelerated by the
motional electric field Emotional. The resulting average momentum gain of the accelerated electrons is
∆p ∼ 2meVA0MA

cos θBn
(Amano et al., 2022). This means the average energy gain of SDA in our simulation is

∆ε ∼ 6000meV2
A0, while the average energy gain of the vortex‐accelerated electrons is about 2300meV2

A0
(Figure 5). However, to enter the SDA process, electrons must be distributed outside the shock's loss cone
initially. In low‐plasma‐β environments, thermal electrons can hardly be directly accelerated by SDA. In the
process we proposed, thermal electrons are directly accelerated by the parallel component of Evortex when they get
trapped in the electron vortices, which does not need any prerequisites.

Data Availability Statement
The simulation data used to plot the figures in this article can be downloaded from “National Space Science Data
Center, National Science and Technology Infrastructure of China” (Guo, 2024).
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