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Abstract Magnetospheric whistler waves are of fundamental importance in the formation of radiation belts
and the generation of diffuse aurorae. Their propagation has been widely studied using satellite observations and
numerical simulations because of their direct impact on the interactions with electrons. Although ray‐tracing
models have elucidated the propagation paths, wave normal angles (WNAs), and linear growth/damping of
whistler waves, their nonlinear evolution, requiring kinetic simulation models, still remains unclear. In this
study, we utilize gcPIC simulations to study whistler wave propagation in a dipole magnetic field, and compare
the results with ray‐tracing simulations. Ray‐tracing simulations show that a parallel whistler wave gradually
becomes oblique and experiences increasing linear damping during its propagation from the magnetic equator to
high latitudes. Particle‐in‐cell simulations display nearly identical propagation paths and WNAs, but the
amplitude evolution shows substantial differences. At lower latitudes, whistler waves will experience extra
substantial damping compared with ray‐tracing results, which is due to nonlinear Landau and cyclotron
resonances. This difference becomes more pronounced when the wave amplitude is larger. Surprisingly, at
higher latitudes, whistler waves will experience less damping, attributable to the electron plateau/beam
distributions resulting from Landau trapping. Our study demonstrates the crucial role of nonlinear resonances
and reshaped electron distributions in modeling the evolution of whistler waves in the Earth's magnetosphere.

1. Introduction
Whistler‐mode waves, frequently observed in the Earth's magnetosphere, are one of the most intense electro-
magnetic waves, which play a dominant role in the dynamics of electrons in the Earth's radiation belts (Bortnik &
Thorne, 2007; Horne et al., 2005; Summers et al., 2007; Thorne et al., 2010). They are capable of accelerating
100 s keV electrons to relativistic energies in the radiation belt (Reeves et al., 2013; Thorne et al., 2013) and
scattering ∼1–30 keV electrons into the loss cone that precipitate into the polar upper atmosphere (Gao
et al., 2023; Ni et al., 2008; Thorne et al., 2010). Whistler‐mode waves, outside the plasmapause, are typically
referred to as chorus waves, falling within a frequency range of 0.1–0.8 fce (where fce is the equatorial electron
gyrofrequency) and typically divided by a power gap at ∼0.5 fce into lower and upper bands (H. Chen, Gao, Lu,
Sauer, et al., 2021; Fu et al., 2014; Gao et al., 2019; Li et al., 2011; Omura et al., 2009; Tsurutani & Smith, 1974).
Whistler‐mode chorus waves exhibit quasi‐periodic and discrete rising/falling tones or hiss‐like emissions (Gao
et al., 2022; Li et al., 2012; Lu et al., 2021), which are associated with nonlinear resonant interactions. It's widely
accepted that most of whistler waves are generated near the geomagnetic equator (Lauben et al., 2002; LeDocq
et al., 1998; Li et al., 2009; Santolik et al., 2005) via the cyclotron resonance with anisotropic energetic electrons
injected into the inner magnetosphere (Anderson & Maeda, 1977; Li et al., 2008; Tsurutani & Smith, 1977).
Whistler waves are mainly quasi‐parallel waves in their source regions, and they propagate nearly along the
background magnetic field (Agapitov et al., 2013; Santolik et al., 2014; Taubenschuss et al., 2016).

The propagation of whistler waves in the Earth's magnetosphere has been extensively studied with satellite
observations and numerical simulations for several decades (Agapitov et al., 2011; Artemyev et al., 2016; Bortnik
et al., 2007; Katoh, 2014; Ke et al., 2017, 2021; Li et al., 2011; Lu et al., 2019). Satellite statistics have revealed
that whistler waves are observed as two wave populations: One population remains quasi‐parallel at latitudes up
to 30°; the other part gradually becomes oblique as the latitudes increase (Agapitov et al., 2011, 2013). The quasi‐
parallel wave population is likely attributable to the ducted propagations of whistler waves, which are trapped by
density ducts (R. Chen, Gao, Lu, Chen, et al., 2021; Hanzelka & Santolík, 2019; Ke et al., 2021, 2024; Streltsov &
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Bengtson, 2020). The oblique wave population is consistent with the nonducted propagation of whistler waves
demonstrated in numerous simulations (Bortnik et al., 2007; Breuillard et al., 2012; Lu et al., 2019). Whistler
wave propagation directly impacts how the waves interact with electrons due to the changing wave properties,
especially nonlinear interactions, and thereby influences the energy transfer between whistler waves and electrons
(Artemyev et al., 2016; Hsieh et al., 2020, 2022; Kang et al., 2024; Ke, Gao et al., 2022a; Ke, Lu, , 2024). For
instance, in comparison with parallel (or ducted) whistler waves, oblique whistler waves can easily accelerate
energetic electrons through Landau resonance and thus decay significantly (Artemyev et al., 2013; Gan
et al., 2023; Hsieh & Omura, 2018; Kang et al., 2024; Shen et al., 2021). Therefore, unraveling the propagation
characteristics of whistler waves has implications for comprehending the dynamic evolution of radiation belt
electrons.

Ray‐tracing and full‐wave models have been widely applied to investigate whistler wave propagation in the
Earth's magnetosphere (Bortnik et al., 2007; Katoh, 2014; Ke, Lu, et al., 2022; Xu et al., 2020). Full‐wave models
ignore resonant interactions. Ray‐tracing models, in combination with the linear theory, can describe the linear
evolution of the waves along the propagation path (Brinca, 1972; L. Chen et al., 2013; Kang et al., 2021).
However, ray‐tracing models neither include nonlinear resonant interactions nor involve the variations of particle
distributions, which are also crucial for the wave evolution and thus require kinetic simulation models. In recent
years, several two‐dimensional (2‐D) kinetic simulation models have been developed to investigate the generation
and propagation of whistler waves (Lu et al., 2019; Silva et al., 2017; Wang et al., 2024; Wu et al., 2015).
Nevertheless, detailed and quantitative analyses of the nonlinear evolution of whistler waves remain scarce. In
this study, we utilize the 2‐D gcPIC simulation model to simulate the propagation of whistler waves, quantify the
wave evolution, and compare the results with ray‐tracing simulations.

2. Simulation Model
A 2‐D gcPIC simulation model (Lu et al., 2019) was utilized to investigate the propagation of whistler waves in
the Earth's magnetosphere. In the simulation model, a monochromatic whistler wave was launched at the mag-
netic equator in a dipole magnetic field, and the hot electrons were set to have a lower temperature anisotropy.
Under these conditions, these hot electrons cannot excite whistler waves self‐consistently, and the pump whistler
wave is also unable to trigger chorus waves with frequency chirping. This study focuses on the propagation of
whistler waves and their nonlinear damping, rather than nonlinear growth.

In our simulation system, the plasma consists of fixed protons, cold electrons, and hot electrons. The cold
electrons are regarded as a fluid, while the hot electrons are treated as particles. Initially, the cold electron fluid
has a uniform distribution, with a number density of n0 and a bulk velocity of zero. The hot electrons, subject to a
bi‐Maxwellian distribution, have a temperature anisotropy of T⊥eq/T‖eq = 1.7, and a number density of
nheq/n0 = 0.02 at the magnetic equator. The parallel thermal velocity of hot electrons is vth‖/c = 0.1 (where c is
the speed of light). We use a simulation domain of xeq/de0 = 1950 − 2050 (where xeq is x at the equator and
de0 = c/ωpe) in the magnetic meridian plane, within the magnetic latitude range of |λ| ≤ ∼ 20°. The ratio of the
electron plasma frequency ωpe to the electron gyrofrequency Ωe0 is ωpe/Ωe0 = 5, which is a typical value in the

Earth's inner magnetosphere especially at L ≈ 6. Here, Ωe0 =
eB0eq,m

me
, and B0eq,m is the background magnetic field

at the central location (x = 2000de0, λ = 0°). Actually, the electron inertia length de0 = c/ωpe is usually a few
kilometers (km) at L ≈ 6 in the Earth's inner magnetosphere. Thus, L ≈ 6 corresponds to ∼10, 000 de0. We use a
scaled‐down simulation domain (xeq/de0 ≈ 2000) to save computational time.

A parallel whistler wave with a frequency of ω/Ωe0 = 0.4 (or 0.35) is launched from an equatorial source region
at xeq/de0 = 1970 − 2030 during the time interval of Ωe0t = 0 − 700. The wave amplitude remains constant
Bw = Bw0 during Ωe0t = 100 − 600, and increases from 0 to Bw0 following a hyperbolic sine function within
Ωe0t = 0 − 100, and decreases from Bw0 to 0 following the similar function within Ωe0t = 600 − 700.
Bw0/B0eq,m in particle‐in‐cell (PIC) simulation Runs 1–3 are 0.02, 0.04, and 0.06 respectively. In our simulations,
the boundary conditions for waves are absorbing, and those for particles are reflecting. The grid numbers are
N‖ × N⊥ = 4000 × 300, the time step is Ωe0 ∆ t= 0.04, and the number of particles per cell is about 2,000. A 2‐
D ray‐tracing model (Ke, Lu, et al., 2022) has also been employed to describe the propagation of such whistler
wave for comparison with the PIC simulation results.
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3. Simulation Results
Figure 1 presents an overview of the propagation of the whistler wave with ω/Ωe0 = 0.4 in a dipole magnetic
field in simulation Run 1. Figures 1a and 1b show the spatial profiles of the perpendicular magnetic component
B⊥1 (perpendicular to the simulation plane) of this whistler wave at Ωe0t = 700 and 1,200. Evidently, the whistler
wave packet propagates from the equator to λ ≈ 15° almost along the magnetic field lines (dotted line). Its
propagation path is highly consistent with the wave raypath (solid line) given by the ray‐tracing model. In
addition, the wave packet normal is quasi‐parallel to the background magnetic field B0 near the equator, but has a
large angle with B0 at high latitude. The wave normal angles (WNAs) θ of the wave packet are calculated along
the solid line, which are almost identical to those given by the ray‐tracing model (shown in Figure 2). The WNAs
increase with the increase of the magnetic latitude, reaching ∼60° at λ = 15°. The resonance cone angle is much

larger than the WNA at λ< 15°, reaching ∼73° at λ = 15°. The Gendrin
angle increases from∼37° to∼55°when the wave propagates from λ = 0° to
λ = 15°. Furthermore, the waveform indicates that the wavelength of the
whistler wave becomes shorter at higher latitudes, which is consistent with the
dispersion relationship of whistler waves. In both the PIC and ray‐tracing
simulations, the propagation paths and WNAs of the whistler wave display
a nearly identical pattern.

However, there is a significant difference in the amplitude evolution of the
whistler wave between the two types of simulations. In the ray‐tracing
simulation, the linear growth rate is estimated using the initial electron dis-
tribution, which is assumed to remain constant in subsequent evolution. In
Figure 3a, the relative magnetic amplitude Bw/Bw0 of the whistler wave is
calculated along the wave raypath (shown in Figure 1) in the ray‐tracing
simulation, as well as in each PIC simulation Run. Additionally, the change
rate of the relative amplitude Bw/Bw0 with respect to the magnetic latitude λ is
also obtained and presented in Figure 3b. In the ray‐tracing simulation, the
relative amplitude Bw/Bw0 gradually reduces as the latitude λ rises (the dotted
line in Figure 3a), meanwhile, the change rate of Bw/Bw0 with respect to λ
gradually increases and saturates at λ ≈ 13° (the dotted line in Figure 3b).
Here, the relative amplitude is evaluated by integrating the local linear growth

Figure 1. (a), (b) Spatial profiles of the perpendicular magnetic component B⊥1 of the whistler wave with ω/Ωe0 = 0.4 at
Ωe0t = 700 and 1,200 in Run 1. The dotted and solid lines denote the middle magnetic field line and the raypath of such a
whistler wave emitting from the central location. Three asterisks mark the magnetic latitudes of λ = 5°, 10°, and 15°.

Figure 2. The wave normal angles (WNAs) θ along the raypath in the ray‐
tracing simulation (the solid line) and in the PIC simulation Run 1 (the
asterisk line). The Gendrin and resonance cone angles (θG and θR) are
marked by black and red dotted lines. In PIC simulations, θ is estimated as the
average WNA of the waveform with the initial amplitude Bw0.
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rate of the wave along its raypath. In PIC simulation Runs 1–3, the relative
amplitude Bw/Bw0 of the whistler wave also gradually reduces with the in-
crease of λ, but the drop of Bw/Bw0 is greater than that in the ray‐tracing
simulation at λ ≤ 15°, and the larger the initial amplitude Bw0, the greater
the drop (Figure 3a). At lower latitudes (λ < ∼ 9°), the change rate of
Bw/Bw0 with respect to λ also gradually increases but increases more rapidly
than that in the ray‐tracing simulation, and as the initial amplitude Bw0 be-
comes larger, the change rate becomes greater. Unexpectedly, at higher lat-
itudes, the change rate δ(Bw/Bw0)/δλ starts to decrease and drops rapidly
when λ > 12.5°, and the change rate is even smaller than that in the ray‐
tracing simulation at λ > 12.5° (Figure 3b).

To further explain the wave amplitude evolution, we calculate the linear
growth rate in the ray‐tracing simulation as well as the dot product of the
current density J and the wave electric field E in each PIC simulation, and
present the results in Figure 4. In our simulations, we assume a lower tem-
perature anisotropy of hot electrons, which causes the linear cyclotron growth
rate γG (the gold line) of the wave to be close to 0. Moreover, the linear
Landau damping rate γL (the black line) of the wave increases as the latitude λ
rises since the wave gradually becomes oblique (Figure 4a). In addition, the
linear growth rates of anomalous and second‐order cyclotron resonances
(m = − 1, 2) are almost zero, which are ignored in our ray‐tracing results. The
power dissipation of J ·E represents the energy transfer between the whistler
wave and the electrons. We only show the perpendicular components of J ·E
because J‖ ·E‖ is nearly zero in our PIC simulations, which is consistent with
previous simulation work (Hsieh & Omura, 2018). Figures 4b and 4c presents
J −

⊥ ⋅E⊥ (J +
⊥ ⋅E⊥) along the wave raypath in PIC simulations, where E⊥ is the

perpendicular electric field of the wave, normalized by its initial electric field
amplitude Ew0. Here, J −

⊥ (J +
⊥ ) is the perpendicular component of current

density contributed by the electrons moving equatorward (poleward), in the unit of J0 = en0VAe (where
VAe = B0eq,m/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ0n0me

√
). Generally, J −

⊥ ⋅E⊥ is mainly contributed by the cyclotron resonance. The contribution
of the anomalous cyclotron resonance is included in J +

⊥ ⋅E⊥, but its resonant velocity v m= − 1 = (ω + Ωe)/ k∥ is
more than three times the Landau resonant velocity vL = ω/ k∥. As a result, the value of
J +

⊥ (v∥ > v m= − 1 − vL) ⋅E⊥ has been estimated and is close to zero. Therefore, the Landau resonance primarily
contributes to J +

⊥ ⋅E⊥. Besides, we artificially add magnetic perturbations in the form of a whistler mode at the
equator to trigger whistler eigenmodes, which then propagate toward the north and south poles. The artificial
wave source leads to large J +

⊥ ⋅E⊥ around the equator. This study mainly focuses on the propagation of whistler
waves off the equator. Thus, Figure 4 only shows J ·E at the latitude λ ≥ 1°.

At lower latitudes, J −
⊥ ⋅E⊥ is mainly positive in Runs 1–3, and as the initial amplitude Bw0 of the wave becomes

larger, J −
⊥ ⋅E⊥ becomes greater, which suggests that nonlinear cyclotron resonance contributes more to the wave

damping for the stronger whistler wave. However, at higher latitudes, J −
⊥ ⋅E⊥ is mainly negative in Runs 1–3, but

it is close to 0 in Runs 2 and 3 (Figure 4b). In Figure 4c, J +
⊥ ⋅E⊥ is mainly positive, and it first gradually rises and

then rapidly drops, reaching the peak at λ ≈ 11° in each Run. This indicates that the Landau damping of the wave
gradually increases at lower latitudes and then decreases rapidly at higher latitudes. Interestingly, as the initial
amplitude Bw0 of the wave becomes larger, J +

⊥ ⋅E⊥ becomes greater at lower latitudes but becomes smaller at
higher latitudes. This result suggests that the stronger whistler wave experiences greater nonlinear Landau
damping at lower latitudes. Based on the analysis of J ·E, we can conclude that the amplitude of the whistler wave
undergoes greater attenuation at lower latitudes because of nonlinear cyclotron and Landau resonances, and
undergoes weaker attenuation at higher latitudes mainly due to weaker Landau damping.

At higher latitudes, the variation in the hot electron distribution is mainly responsible for the less damping of the
whistler wave. Figure 5 shows the parallel velocity distributions of hot electrons (the blue lines) at λ = 5°, 10°,
and 13° at Ωe0t = 700, 1,100, and 1,300 respectively in Run 2. These selected times are the moments when the
wave passes through these latitudes. Compared with the initial parallel velocity distribution function f0 (the black

Figure 3. (a) The relative magnetic amplitude Bw/Bw0 of the whistler wave
with ω/Ωe0 = 0.4 along the wave raypath in the ray‐tracing simulation (the
dotted line) and in PIC simulation Runs 1–3, and (b) the change rate of Bw/Bw0
with respect to the magnetic latitude λ. Here, Bw is estimated as the average
magnetic amplitude of the waveform with the initial amplitude Bw0.
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line), the variations of the parallel velocity distribution function f mainly take
place near the Landau resonant velocity vL. The variations of the function f
are minor at λ = 5° (Figure 5a), whereas a plateau distribution appears near
vL at λ = 10° (Figure 5b). When the whistler wave passes through λ = 13°, a
beam distribution occurs at around vL (Figure 5c). The WNA θ of the wave is
about 58° at λ = 13°. The occurrence of the electron plateau and beam dis-
tributions in the parallel velocity contributes to the slowdown of the wave
damping at higher latitudes. According to the linear theory, the linear Landau
damping rates γL of the whistler waves with θ ≈ 58° at ω/Ωe0 ≈ 0.25 − 0.4
are estimated based on the initial electron distribution and the electron dis-
tribution at Ωe0t = 1,300 at λ = 13°. The linear Landau damping rates under
the electron distribution with beam populations are about 30%–40% of those
under the initial distribution (Figure 5d).

In order to investigate the formation mechanism of the plateau/beam distri-
bution, we track the trajectories of the beam electron component with
⃒
⃒v‖ − vL

⃒
⃒/VAe < 0.1 at λ = 13° in Run 2 (Figure 5c), and find that these

electrons can be classified into two groups: trapped electrons and untrapped
electrons. The parallel velocities v‖, the kinetic energies Ek, and the pitch
angles (PA) of a trapped electron and an untrapped electron in Run 2 are
presented in Figure 6. The dotted line marks the Landau resonant velocity vL.
This trapped electron is Landau‐resonantly trapped by the whistler wave from
near the equator to higher latitudes. Meanwhile, its parallel velocity fluctuates
around the line of Landau resonant velocity, its kinetic energy increases from
∼7.5 to∼10 keV, and its PA fluctuates and decreases slightly. This untrapped
electron only resonates with the whistler wave briefly. Its parallel velocity
gradually decreases as the latitude increases and satisfies the Landau resonant
condition at λ ≈ 13°. Its kinetic energy remains nearly constant, and its PA
increases as the latitude increases. Interestingly,∼70% of these electrons with

⃒
⃒v‖ − vL

⃒
⃒/VAe < 0.1 are trapped electrons. The proportion drops to less than 50% for electrons with

⃒
⃒v‖ − vL

⃒
⃒/VAe < 0.2. Although trapped electrons get energy from the wave, untrapped (especially phase

bunched) electrons tend to provide energy to the wave (Artemyev et al., 2014). Therefore, nonlinear Landau
resonances form the electron beam distribution, as well as the electron plateau distribution, which in turn inhibit
Landau damping of the wave at higher latitudes.

To verify the generality of the results, we conducted another PIC simulation (Run 4) with the frequency of the
whistler wave set as ω/Ωe0 = 0.35. Figures 7a and 7b show the spatial profiles of the perpendicular magnetic
component B⊥1 of this whistler wave at Ωe0t = 700 and 1,200. During its propagation, the waveform first deviates

Figure 4. (a) The linear cyclotron growth rate (the gold line) and the linear
Landau damping rate (the black line) of the whistler wave in the ray‐tracing
simulation, and (b) J −

⊥ ⋅E⊥ and (c) J +
⊥ ⋅E⊥ along the wave raypath in PIC

simulation Runs 1–3. J −
⊥ (J +

⊥ ) is contributed by the electrons moving
equatorward (poleward).

Figure 5. (a–c) The parallel velocity distributions of hot electrons (the blue lines) at λ = 5°, 10°, and 13° at Ωe0t = 700,
1,100, and 1,300 respectively in Run 2. The black line indicates the initial parallel velocity distribution function f0 in each
panel. f0,max is the maximum value of the function f0. The dotted line marks the local Landau resonant velocity vL, and (d) the
linear Landau damping rate of whistler waves with θ ≈ 58° based on the initial electron distribution (the black line) and the
electron distribution at Ωe0t = 1,300 (the blue line) at λ = 13°.
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slightly outward before deviating inward. The propagation path of the
waveform is consistent with the raypath given by the ray‐tracing simulation.
The WNAs in the two simulations also closely match (not shown). Figures 7c
and 7d display the relative magnetic amplitude Bw/Bw0 of this whistler wave
along the wave raypath and the change rate of Bw/Bw0 with respect to λ,
respectively. Specifically, the dotted lines represent the results in the ray‐
tracing simulation, while the solid lines stand for those in the PIC simula-
tion. Compared with the results in the ray‐tracing simulation, in the PIC
simulation (Run 4), the whistler wave decays more significantly at lower
latitudes, but the wave damping rate reduces rapidly at higher latitudes. These
results are similar to those in PIC simulation Runs 1–3.

4. Conclusions and Discussion
In this study, two‐dimensional (2‐D) gcPIC simulations have been carried out
to study the propagation of a whistler wave in a dipole magnetic field. The
propagation characteristics of the whistle wave are quantitatively calculated
and compared with the ray‐tracing simulation results. During its propagation,
the amplitude evolution of the whistler wave in PIC simulations differs
significantly from that in ray‐tracing simulations. The primary conclusions
are summarized as follows.

1. Both the PIC and ray‐tracing simulation models display a nearly identical
pattern of the propagation path and WNA of a whistler wave in a dipole
magnetic field.

2. At lower magnetic latitudes, the whistler wave in the PIC simulation ex-
periences greater damping than that in the ray‐tracing simulation due to
nonlinear Landau and cyclotron resonances, especially for the stronger
whistler wave.

3. At higher magnetic latitudes, the whistler wave in the PIC simulation undergoes weaker damping than that in
the ray‐tracing simulation because of the electron plateau/beam distributions formed by Landau trapping of the
whistler wave.

Previous observational and simulation studies have also shown that the oblique propagation of whistler waves can
lead to electron plateau/beam distributions in the parallel velocity (Agapitov et al., 2015; Ke, Gao, et al., 2022;
Wu et al., 2024). However, the influence of these distributions in turn on the evolution of these waves has not been
studied thoroughly. Some other studies have shown that the electron plateau/beam distributions in the parallel

Figure 6. (a–c) The parallel velocities v‖, the kinetic energies Ek, and the
pitch angles PA of a trapped electron and an untrapped electron in Run 2.
The dotted line marks the Landau resonant velocity vL.

Figure 7. (a), (b) Spatial profiles of the perpendicular magnetic component B⊥1 of the whistler wave with ω/Ωe0 = 0.35 at
Ωe0t = 700 and 1,200 in Run 4, (c), and (d) are similar to Figures 3a and 3b.
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velocity play a key role in the excitation and propagation of oblique whistler waves by suppressing Landau
damping (Li et al., 2016; Ma et al., 2017; Mourenas et al., 2015), but their sources have not been elucidated
(Artemyev & Mourenas, 2020). However, in contrast to these previous studies, our simulations demonstrate that
nonlinear Landau trapping of the whistler wave forms the electron plateau/beam distributions, which in turn
inhibit Landau damping of the wave at higher latitudes.

In this study, we focus on the propagation of a whistler wave and the wave damping during its propagation. Thus,
we assume a relatively low temperature anisotropy of hot electrons in our simulation models, which leads to a
nearly zero linear cyclotron growth rate. Nevertheless, nonlinear cyclotron resonances contribute to the wave
damping at lower latitudes for stronger whistler waves in our PIC simulations. The whistler wave may trigger
rising‐tone chorus waves when the temperature anisotropy of hot electrons becomes larger, and in this case,
nonlinear cyclotron resonances contribute to the wave growth. This situation will be explored by our 2‐D gcPIC
simulations in the future.

In our PIC simulations, we only simulate lower‐band waves within |λ| ≤ 20° due to limited computational re-
sources. We present the wave evolution within |λ| ≤ 15° because of the absorbing boundary conditions for waves.
Once the wave reaches higher latitudes, its wavelength λw tends to become smaller. For instance, the wave with
ω/Ωe0 = 0.4 has λw = 7.66de0 at λ = 0° and λw = 4.43de0 at λ = 15° in our simulations. Therefore, the
simulation of whistler waves at higher latitudes requires smaller grid spacing. Moreover, the upper‐band waves
have shorter wavelengths, necessitating smaller grid spacing. Their propagation paths deviate more from the
original magnetic field lines, requiring a larger simulation domain. When sufficient computing resources are
available, the whistler wave at higher frequency and higher latitudes will be simulated in the future.

Data Availability Statement
The simulation data used to plot the figures are available at National Space Science Data Center, National Science
and Technology Infrastructure of China via Y. Ke (2025).
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