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In magnetic reconnection, magnetic energy is converted into 
plasma kinetic energy via the topological rearrangement of mag-
netic field lines. The reconnection rate, defined as the amount of 
magnetic flux being reconnected per unit time (or the electric field 
pointing out of the reconnection plane) at the reconnection site, 
serves as the primary quantitative measure for predicting the 
speed of energy conversion in magnetic reconnection. Collisionless 
magnetic reconnection has attracted significant attention because 
it can provide a fast reconnection rate, which is around 0.1 when 
normalized to a properly defined reconnecting magnetic field and 
Alfvén speed [1,2]. In collisionless magnetic reconnection with 
the width of the current sheet down to the ion inertial scale, the 
motions between ions and electrons are decoupled near the X line, 
which is called the Hall effect, and the diffusion region has a two-
layer structure: the electron diffusion region (EDR) and ion diffu-
sion region (IDR) [3,4]. Within the EDR, which spans electron iner-
tial length around the X line, both the ion and electron motions are 
demagnetized. In the IDR with the spatial scale between the ion 
and electron inertial lengths around the X line, the ion motions 
are still demagnetized while the electrons remain frozen in the 
magnetic field. 

The fast reconnection rate in collisionless magnetic reconnec-
tion has been considered to be related to the Hall effect for a long 
time, but the underlying mechanism still remains elusive [5,6]. 
Recently, Liu et al. [7] developed a theoretical model for the recon-
nection rate in steady-state collisionless magnetic reconnection. 
The essence of the model is that the energy conversion in the 
IDR causes a pressure depletion at the reconnection site, and then 
the upstream magnetic field develops an opening angle deter-
mined by the force-balance condition, enabling the reconnection 
rate to be of the order 0.1. However, magnetic reconnection is 
always in a non-steady state, and a dipolarization front (DF) mov-
ing toward the downstream is formed due to the pileup of mag-
netic field from the reconnection site [8,9]. Despite its prevalence 
in natural systems, the fundamental mechanism governing fast 
reconnection rates in non-steady regimes remains unexplored. 
Here, with the help of two-dimensional (2-D) particle-in-cell 
(PIC) simulations of anti-parallel reconnection, we develop a 
first-principles theoretical model to explain the reconnection rate 
in non-steady magnetic reconnection. 

A 2-D PIC simulation is performed to study the evolution of 
magnetic reconnection. The initial equilibrium configuration is a 
Harris current sheet in the (x, z) plane, and the background plasma 
density is 0 1n0 (where is the peak density of the current 
sheet). Ions and electrons are assumed to satisfy the Maxwellian 
distribution with the initial temperature ratio 0 Te0 4, where 

is the initial temperature of electrons (ions). We set the 
half-width of the current sheet d 0 5di(w e di c xpi 

denotes the ion inertial length defined by , the ion-to-electron 
mass ratio me 100, and 15VA0(where enotes the light 
speed and 0 B0 l0min0 is the Alfvén speed, an B0 is the 
asymptotic magnetic field). The reconnection rate s normalized 
by B0. The simulation domain measure Lz 80di 20di, 
with the spatial resolutio Dx Dz 0 05di. The time step is 

Dt 0 001 (where eB0 mi is the ion gyrofrequency). Peri-
odic boundary condition is assumed in the x direction, while in 
the z direction, we use conducting boundary conditions. The sys-
tem evolves spontaneously without artificial initial perturbations. 
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While two X-lines emerge simultaneously in the simulation 
domain, our analysis focuses exclusively on one. The characteris-
tics around the selected X line are displayed in Fig. 1. The recon-
ing, and 
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Fig. 1. The distribution of physical parameters around the selected X line at 41.5. (a1) The reconnection electric field E 1) The nonideal electric field V e B y , 
here the region with Ve B y 0 is the inner EDR, which is circled by a red box. (c1) The electron outflow velocity Ve ) The ion outflow velocity Vix The profiles 
of Ve B y and V i B y along the line 0. (b2) The profiles of electron outflow velocity and ion outflow velocity long the line 0. (c2) The profile of 
magnetic field along the lin 0. (d2) The reconnection electric Ey , the convective electric fiel m Ve B y , the electron pressure divergence term 

P e y ne , the electron inertia term ((− dVey dt along the line z The red and blue vertical dashed line in (a2–d2) denotes the just downstream of the EDR and 
IDR. 

Xit y . (b E 
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0.me e 
nection electric field is produced in the vicinity of the X line 
(Fig. 1a1). The EDR features a two-layer structure characterized 
by nonzero nonideal electric fi s E V e B y: the inner EDR 

h E V e B y 0 around the X line, and the outer EDR with 
V e B y 0 in the downstream of the inner EDR (Fig. 1b1 

and a2) [10,11]. Here, the inner EDR is actually the EDR described 
in the standard model of collisionless magnetic reconnection. 
Downstream of the outer EDR, the magnetic field is piled up, and 
a pair of DFs subsequently forms (Fig. 1c2). When the electrons 
move away from the X line, their outflow speed increases in the 
inner EDR, and peaks in the outer EDR (Fig. 1c1 and b2). The ion 
outflow speed increases slowly when they move away from the 
X line, and the peak value is located around the DF (Fig. 1d1 and 
b2). Around the DF region, the ion and electron motions are cou-
pled together and frozen in with the magnetic field, and their out-
flow speeds are almost the same [12]. The DF can be considered as 
the downstream boundary of IDR (Fig. 1a2 and c2). In this paper, if 
there is no explicit statement, the EDR refers to the inner EDR. 
According to the generalized Ohm’s law, the electric field in the 
EDR can be expressed as E Ve B P e ene 

me e dV e dt , and the terms on the right-hand side are the con-
vective electric field term, electron pressure divergence term, and 
electron inertia term, respectively. The reconnection electric field 
at the center of the EDR is dominated by the electron pressure 

eld 
wit 
E
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divergence term, while that around just downstream of the EDR 
is contributed mainly by the convective electric field term 
(Fig. 1d2). The electron inertia term is negligible compared with 
the other terms. 

Magnetic reconnection experiences non-steady evolution 
(Movie S1 and Fig. S1 online), and the reconnection rate 

EyX VA0B0 (the reconnection electric field at the X line nor-
malized by 0B0 also changes with time. As shown in Fig. 2a, 
the evolution can be separated into two stages. During stage I 

= 35–43.5), the reconnection rate undergoes rapid enhance-
ment, and it reaches the peak value 0.40 at abo Xit = 43.5. In 
the second stage (Stage II), the reconnection rate R creases grad-
ually from about t = 43.5. The reconnection electric field just 
downstream of the EDR can be expressed a E VexEBzE (where 

E and are the electron outflow speed and magnetic field 
just downstream of the EDR). Around the DF, both the ions 

and electrons become magnetized, and the reconnection electric 
field is VixIBzI (where I and are the ion outflow speed 

and magnetic field around the DF. Please note that the elec-
tron outflow speed is almost the same as the ion outflow speed 

around the DF, that is VexI). is almost the same as the 
reconnection electric field in the X line, and an obvious difference 
between and appears at about t = 42 and then becomes 
larger and larger. The length of the IDR increases slowly in Stage
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Fig. 2. The evolution of physical parameters around the selected X line. (a) The reconnection electric field at the X line (EyX ) he just downstream of the EDR (EyE), a t the 
just downstream of the IDR (b) The half-length of the EDR , and half-length of the IDR . (c) The magnetic field just downstream of the ID zE , and that just 
downstream of the IDR (d) The aspect of the EDR S E LE (where d he half-width of the EDR), and the aspect of the IDR SI LI (where dI is half-width of the 
IDR). (e) The electron outflow speed just downstream of the EDR ( , and the ion outflow speed just downstream of the IDR V f) The average values of the ion number 
density he electron density ( he ion current density (j nd electron current density (je the EDR. (g) Diagram of the EDR and IDR. B0 i asymptotic magnetic 
field of the current sheet, nd B e the magnetic fields just upstream of the IDR and EDR, BzI BzE he magnetic fields just downstream of the IDR and EDR, dI and 
are the half-widths of the IDR and EDR, nd e the half-lengths of the IDR and EDR. 

, at t nd a 
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BzI . E d E is t dI the 
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I, and downstream expansion accelerates significantly during Stage 
II. The length of the EDR almost does not change in Stage I, and it 
then begins to increase in Stage II (Fig. 2b). During magnetic recon-
nection, the magnetic flux is transferred from the upstream into 
the downstream through the X line, therefore, we can observe 
the enhancement of the magnetic field B the downstream. How-
ever, the magnetic field just downstream of the EDR begins to 
decrease in Stage II because of the expansion of the EDR toward 
the downstream, while the magnetic field of the DF increases 
rapidly in Stage II (Fig. 2c). The aspect ratios of both the EDR and 
IDR increase in Stage I and then decrease in Stage II, and in Stage 
I they are almost the same because of the straightening out of mag-
netic field lines by the magnetic tension (Fig. 2d). The electron out-
flow speed from the EDR and the ion (electron) outflow speed 
from the IDR VexI at first experiences an increase and then 
saturates at about = 48, and their maximum values are about 
5.0 and 1.0 respectively (Fig. 2e). Fig. 2f shows the evolution 
of the plasma and current densities in the EDR. The electron and 
ion density in inner EDR is almost the same, and they decrease 
rapidly until about 0.1 in Stage I, which is almost the same as 
the background plasma density of the Harris current sheet. This 
leads to the same trend for the evolution of the ion current density 
in the inner EDR. Because the electrons in the EDR are easy to be 
accelerated by the reconnection electric field, the electron current 
density at first increases, and then decreases after the electrons 

z in 
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move away from the EDR. However, a striking current disparity 
emerges after about = 40, with electron current densities sur-
passing ion values by an order of magnitude. Based on these char-
acteristics, we can plot the diagram of the electron and ion 
diffusion regions for theoretical modelling (Fig. 2g).

Xit 

The scale of the reconnection electric field at the center of the 
EDR, which is dominated by the electron pressure divergence term, 
is determined by the trapping length of electrons in a field reversal. 
Their characteristic lengths in t x z directions can be 

expressed as kx 2meTe 

e2 Bz 
x 

2 

1 4 

and kz 2meTe 

e2 Bx 
z 

2 

1 4 

(where Te is the 

electron temperature) [13]. In our simulation, the trapping length 
of electrons is smaller than that of the EDR. Therefore, the region 
where the electron pressure tensor term dominates is limited to 
the center of the EDR, and the reconnection electric field can be 
described as 1 

e 
Vex 
x 2meTe[3]. The reconnection electric field 

accelerates the electrons around the X line in the irection, and 
then the electron current density in the y direction increases. At 
the X line, the only force acting on the electrons is the electric field 
force, and the electron motions can be described as 

eyX dt EyX VexE . When leaving away from the X line, the 
electrons perform meandering motions, their outflow speed xE 

should be proportional o |VeyX . At last, we can get 

eyX dt VeyX . Therefore, the reconnection electric field at the
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xI exE

V [5]. Then

According to Eqs. (4) and (5), the following equation can be

center of the EDR experiences a self-reinforcing process, and grows 
rapidly over time [14].

The reconnection electric field at the X line is almost the same 
as that in the just downstream of the EDR, and we will use the lat-
ter one ( VexEBzE) to investigate the evolution of the reconnec-
tion rate Stage I, where S SLE SLI . Because the downstream 
boundary of the EDR moves slowly, the time derivation of the elec-
tron outflow velocity is negligible [12]. Th component of the 
electron momentum equation along the line z 0 can be described 
as the follow 

EyE 

R in L 

e x 

nemeVex 
Vex 

x 
ene Ex VeyBz 

Pexx 

x 
1 

The contribution of Lorentz force neVeyBz is dominated in the 
EDR, and we neglects the contributions of the Hall electric field 

neEx) and electron pressure Pexx x)(Fig. S2 online) [12]. 
Therefore, in the just downstream of the EDR the equation can be 
written as 

( e 

( e ( 

nemeVex 
Vex 

x 
jeyBz 2 

According to B l0J, we can get Bz 
x l0 jey jiy With 

the growth of the reconnection electric field at the center of the 
EDR, the electron outflow speed from the X line increases, and 
the magnetic field is accumulated just downstream of the EDR. 
It leads to the decrease of current density jey jiy in the EDR. 
As shown in Fig. 2f, the decrease of the ion current density is much 
faster than that of the electron current density. When the reconnec-
tion rate approaches the maximum value (around t = 43.5), the 
electron current density is much larger than the ion current density 

jiy. Therefore, 1 
l0 

BxE 
dE 

1 d2 E 
L2 E 

. Because the magnetic field 

lines threading the X-line are approximately straight in Stage I, 
and we have dE 
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When the reconnection rate approaches the maximum value, the 
plasma density is nearly uniform in the diffusion regions, which is 
about the same as that of the background plasma of the Harris cur-
rent sheet ( (Fig. S3 online), that is nb and BxE 

l0nbme 
. The 

plasma is nearly incompressible, there , VizILI V ixIdI and 
LE VexEdE. The reconnection electric field is uniform in the 

inflow region, BxI VezEBxE. Based on these, we can obtain 
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4 

We assume that the profile of the plasma pressure in the out-
flow direction is nearly uniform, and the pressure gradient force 
is small compared to the magnetic tension force. The ion outflow 

speed just downstream of the IDR is VixI VAi 1 S2 L 
1 
2 
, where 
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6 

In the upstream of the IDR, the inward-directed magnetic pres-
sure gradient force is balanced by the outward -directed magnetic 
tension[5], we have 
2769
The peak reconnection rate R is determined by n n and the

We proposed a first-principles theory of the reconnection rate

Our model also predicts that the peak reconnection rate is pro-

BxI 
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1 S2 L 
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7 

Combing Eqs. (6) and (7), the reconnection electric field in the 
EDR VexEBzE can be expressed asEyE 
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At last, the reconnection rate reaches its peak value k when 
the aspect ratio is then 
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aspect ratio S , while remaini independent of the n-to-elec-
tron mass r . From Fig. S4 (online), which shows the variation 
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2 
1 S2 L as a function of we can know that the 

maximum value of F is Fmax 0 20 at the aspect ratio 
S ax 0 34. If S can r h up to S x, the peak reconnection rate 

ing the ev ion of non-stea reconnection is Rpeak 0 64 
based on Eq. (9), whereas our simulation yields k 0.40 at 
S 0.44. This discrepancy likely originate om neglected 

sma pressure and ion current contributions within the EDR. 
From Fig. 2, we can also find that the aspect ratio S increases until 
the reconnection rate R reaches its peak value, w e the aspect 
ratio S is close to S We have also run cases with different val-
ues o nb, and th volution of the aspect ratio S and reconnec-
tion ra R is the same. Therefore, it is reasonable assume that 
with the rease of the open angle of the EDR during non-steady 
reconnection, the peak reconnection rate R will at last reach the 

value nb 
1 2 Fmax. 
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during non-steady magnetic reconnection in Harris-type current 
sheets. Based on 2D PIC simulations, we find that the reconnection 
electric field at the X line can be well represented by that just 
downstream of the EDR, where the electrons are magnetized. The 
reconnection electric field around the X line is dominated by the 
electron pressure tensor term, and it experiences a self-reinforcing 
process, which leads to a rapid increase in the electron outflow 
speed from the X line with time. When these electrons reach just 
downstream of the EDR, they are magnetized. Their outflow speed 
is limited by the Lorentz force, which depends on the opening 
angle of the EDR. The magnetic field is piled up downstream of 
the EDR, and the opening angle is then enhanced until the recon-
nection rate reaches a peak value. The peak value of the reconnec-
tion rate is on the order of 0.1. 

portional to 0 nb, while it is independent of the ion-to-electron 
mass ratio. The relation between the peak reconnection rate and 
n n0 obtained in simulations is consistent with the prediction 

ed on Eq. (9) (Fig. S5 online). At the same time, the mass-ratio 
independence aligns with previous kinetic simulations [15]. It 
should be noted that choosing different definitions of the Alfvén 
speed can change the expression of the reconnection rate. The 
Alfvén speed in our paper is defined as V 0 B0 l0min0, which 
is based on the initial peak density of th rrent sheet n0. This def-
inition yields our derivation of Eq. (9). When ado ng the 
upstream plasma density nb to define the Alfvén speed as 
V B0 l0minb, the ex ssion of the reconnection rate trans-
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Appendix A. Supplementary material

forms to X VAbB0 SL 
1 S2 L 
1 S2 L 

2 
1 S2 L . With this definition, the 

peak reconnection rate yields about 0.20. This dependency high-
lights the critical importance of choosing normalization parame-
ters, particularly for in-situ satellite diagnostics where global 
measurements are inherently unavailable.
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