
1.  Introduction
Electromagnetic ion cyclotron (EMIC) waves are electromagnetic emissions with frequencies belonging to 
Pc1-Pc2 geomagnetic pulsations (0.1–5 Hz) (Anderson et  al.,  1992; Cornwall, 1965; D. Young et  al.,  1981). 
They are frequently observed in the terrestrial magnetosphere, and are predominantly excited by cyclotron insta-
bility of energetic protons (∼10–100 keV) with anisotropic temperature distributions (Ti,⊥ > Ti,∥) in the vicinity 
of the geomagnetic equator (L. Chen et al., 2011; Cornwall, 1965; Gary et al., 2012; Kennel & Petschek, 1966; 
Q. Lu et al., 2006; Teng et al., 2019; Xiao et al., 2007; Yue et al., 2019). The newly generated EMIC waves are 
predominantly left-hand polarization and propagate along the background magnetic field. As they propagate 
away from the source region, their wave normal angles become oblique and the polarization could deviate from 
left-hand polarization (Allen et al., 2015; H. Chen et al., 2019; Hu et al., 2010; Kang et al., 2021; E. H. Kim & 
Johnson, 2016). Moreover, it has been suggested that the generation and propagation of EMIC waves in the terres-
trial magnetosphere could be affected by the solar wind pressure and substorm injection (H. Chen et al., 2020; L. 
Chen et al., 2014; Jordanova et al., 2001; McCollough et al., 2012; Meredith et al., 2014; Usanova et al., 2012).

The EMIC waves are supposed to play an important role in the magnetospheric particle dynamics via wave-particle 
interactions. For example, EMIC waves can interact with energetic (∼keV) ions and relativistic (∼MeV) electrons 
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through resonant wave-particle interactions, by which particles can precipitate into the atmosphere, leading to 
the formation of auroras (Carson et al., 2013; Gao et al., 2015; N. Kitamura et al., 2021; W. Li et al., 2007; Ni 
et al., 2015; Thorne & Kennel, 1971; Xiao et al., 2011; Yuan et al., 2012; X. J. Zhang et al., 2016). The EMIC 
wave can also produce significant pitch angle scattering of hundred-keV electrons by the non-resonant interac-
tion, when the wave packets are short (An et al., 2022; L. J. Chen et al., 2016).

In addition, a close correlation between the occurrence of EMIC waves and cold He + ions heating was found in 
previous observations (K H Kim et al., 2021; Lee et al., 2021; D Young et al., 1981; J. C. Zhang et al., 2011). 
The cold He + ions can be energized by EMIC waves up to suprathermal energies (tens of eV to a few hundred 
eV) in the perpendicular direction to the background magnetic field (K. H. Kim et al., 2022; Omidi et al., 2010; 
Shi et al., 2020; Yuan et al., 2016). The energy of the cold He + ions is much lower than the typical minimum 
resonant energy of EMIC waves, thus, the energy transfer between cold He + ions and EMIC waves should also 
be a non-resonant interaction mechanism, which has been explored in theory and numerical simulation (Berchem 
& Gendrin, 1985; Bortnik et al., 2010; Mauk, 1982; Omura et al., 1985). Limited by the resolution of particle 
measurement, the observational evidence of non-resonant interaction is lacking before the launch of Magneto-
spheric Multiscale mission (MMS) (Burch et al., 2016). Based on the extremely high time resolution measure-
ment by MMS, a few observations have shown that the cold ions could experience phase bunching with the EMIC 
waves, and leading to the energy exchange between them (N. Kitamura et al., 2018; J.-H. Li et al., 2022; Z.-Y. 
Liu et al., 2022), which was consistent with the previous predictions of the non-resonant interaction (Bortnik 
et al., 2010). However, previous studies just forced on the non-resonant interaction between left-hand polarized 
EMIC and cold ions. The effect of wave polarization needs to be taken into account to fully understand the 
non-resonant interaction between cold ions and EMIC waves.

In this paper, we investigated a train of EMIC waves in the inner magnetosphere. The polarizations of EMIC 
waves reversed three times within about 24 periods of waves, thus, the interactions between cold ions and EMIC 
waves of different polarizations can be examined simultaneously.

2.  Instrumentations
The data used in this paper was measured by Magnetospheric Multiscale mission (MMS). The magnetic fields 
and electric fields used in this paper were measured by Flux Gate Magnetometer (FGM) (Russell et al., 2016)with 
a time resolution of 16 Hz (survey mode) and electric field double probe (EDP) (Ergun et al., 2016; Lindqvist 
et al., 2016) with a time resolution of 128 Hz (fast survey mode), respectively. The 3-D ions distribution func-
tions and ions moments data were taken from Fast Plasma Investigation (FPI) (Pollock et al., 2016) with the time 
resolution of 150 ms. The Hot Plasma Composition Analyzer (HPCA) (D T Young et al., 2016) provided  the 
information of ions composition. During this event, the measurements of the four spacecraft were almost the 
same. Thus, the data from MMS1 were only used in this paper.

3.  Observation and Analysis
3.1.  Overview of EMIC Waves and Cold Protons Energization

Figure 1 presents an overview of EMIC waves on 05 January 2019, when MMS spacecraft was located at the 
inner magnetosphere (L-shell = 9.0) and close to the noonside geomagnetic equator (magnetic local time = 11.3 
and magnetic latitude = −1.6, shown at the bottom of Figure 1). Figure 1a shows the wave magnetic spectro-
gram in the frequency range of 0.1–10 Hz, with the solid black traces representing the local H + (𝐴𝐴 𝐴𝐴𝐻𝐻+ ) and He + (

𝐴𝐴 𝐴𝐴𝐻𝐻𝐻𝐻+ ) gyrofrequencies. Between 𝐴𝐴 𝐴𝐴𝐻𝐻𝐻𝐻+ and 𝐴𝐴 𝐴𝐴𝐻𝐻+ , the waves with the peak frequency at around 0.37 Hz (0.33𝐴𝐴 𝐴𝐴𝐻𝐻+ ) 
were identified. With the three components of magnetic field measurement, the wave power of left-hand (PL) 
and right-hand (PR) modes can be separated (E. H. Kim & Johnson, 2016; J. C. Zhang et al., 2011). The wave 
powers of left-hand and right-hand mode waves, and their comparison at the wave peak frequency (∼0.37 Hz) 
were shown in Figures 1b–1d. From 09:24:40.0 to 09:24:50.0 UT, and from 09:24:58.8 to 09:25:10.0 UT, the 
wave power of right-hand mode (PR, red traces in Figure 1d) was dominant over the left-hand mode (PL, blue 
traces in Figure 1d), suggesting that the waves were right-hand polarized in these periods. But for the remainder, 
the waves were left-hand polarization, because of PL > PR. The wave normal angles (WNAs, shown in Figure 1e) 
were predominantly small (<30°), indicating that the waves propagated primarily along the magnetic field lines. 
However, at around 09:24:50.0 UT, 09:24:58.8 UT, and 09:25:10.0 UT, when the polarization reversals occurred, 
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Figure 1.  Overview of the EMIC waves. (a)–(c) wave magnetic power spectrograms of total, left-hand polarized and right-hand polarized mode according to wavelet 
technique. (d) Comparison of the left-hand (blue trace) and right-hand polarized wave power at frequency of 0.37 Hz. (e) Wave normal angle within frequency range of 
0.1–1 Hz. (f) The Poynting fluxes FAC coordinates, and the magenta traces show the angle between Poynting fluxes direction and background magnetic fields. (g) Ion 
number density from dis-partmoms data including ions from all energy channels. (h) Ion energy spectrogram with the energy of E × B drift. The black transverse traces 
superposed on (a)–(c) represent local He+ (𝐴𝐴 𝐴𝐴𝐻𝐻𝐻𝐻+  ∼ 0.28 Hz) and H+ (𝐴𝐴 𝐴𝐴𝐻𝐻+  ∼ 1.13 Hz) gyrofrequencies.
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WNAs became large and even reached 90°, indicating that the propagation of waves was oblique and even perpen-
dicular to the background magnetic field, which was supported by the Poynting fluxes in Figure 1f. In addition to 
the polarization reversal points, the direction of the Poynting fluxes were almost anti-parallel to the background 
magnetic field (Z-FAC), indicating that both the left-hand and right-hand waves were mainly propagating in the 
anti-parallel direction, that is, propagating to higher latitudes. Based on the above observations, these waves were 
identified as Hydrogen band EMIC waves, and the polarization reversal of these waves occurred three times 
within one minute (about 24 periods of waves).

Meanwhile, the differential energy flux of cold ions with energy less than 40 eV increased periodically at the 
same frequency of the waves. Thus, a series of bridge-like arcs were observed in the ion energy spectrogram 
(Figure 1h). The periodic enhancements of cold ions flux resulted in the ions number density measured by FPI 
periodically increasing from ∼2 cm −3 up to 4–5 cm −3 (Figure 1g). Moreover, the HPCA data provided the infor-
mation of ions composition, which suggests that the total number density of heavy ions (nHe+ = 0.0002 cm −3; 
nO+ = 0.013 cm −3) was only 1% of that of protons. Thus, the ions behaviors detected by FPI were dominant by 
protons. The coincident frequency between waves and the enhancements of cold proton number density suggests 
that the cold protons should be modulated by the EMIC waves. The energies of the cold protons were close to the 
energy of E × B drift (less than 40 eV, the black traces in Figure 1h or 2a), which is similar to the previous obser-
vations of ULF waves (Z. Y. Liu et al., 2019). In the following section, the wave-particle interactions between 
EMIC waves and cold protons at energies less than 40 eV will be studied.

3.2.  Wave-Protons Interactions

To further investigate the waves, the magnetic and electric fields of EMIC waves in the field-aligned coordinate 
(FAC) system were shown in Figures 2b and 2c, respectively. The wave magnetic (Bwave) and electric (Ewave) fields 
were produced from fast survey mode FGM (magnetic field) data and EDP (electric field) data, by a band-pass 
filter with a frequency range of 0.3–0.5 Hz. The FAC system was determined based on the sunward direction 
(Xgse direction in the Geocentric Solar Ecliptic (GSE) coordinates system) and background magnetic field, which 
was obtained from FGM data by a low-pass filter at the frequency below 0.1 Hz. Z was along the direction of the 
background magnetic field. Y was calculated by the cross product of Z and Xgse, and X completed the right-hand 
system. The change of phase difference between Bx and By in the FAC system also suggested that the polarization 
reversals occurred at around 09:24:50.0 UT, 09:24:58.8 UT, and 09:25:10.0 UT, consistent with the preceded 
analysis of relative power of left-hand and right-hand mode waves (Figure 1d).

There was a background electric field in this event, which caused the plasma to have a background drift velocity. 
To remove the influence from the background electric field drift, the following analyses were carried out in the 
plasma rest frame (the details of the frame transformation process can be found in Supporting Information S1).

Figure 2e shows the pitch angle distributions of cold protons (0–40 eV) in the rest frame of the plasma. When the 
EMIC waves were weak (09:24:40.0–09:24:50 UT, and 09:25:35.0–09:25:40 UT), the cold protons were mainly 
observed in the direction parallel or antiparallel to the background magnetic fields, indicating that the cold protons 
came from the ionosphere outflow (Z Y Liu et al., 2019). When the EMIC waves became intense, and the bridge-
like arcs were clearly observed in the ion energy spectrogram (Figure 2a), the flux enhancements were observed 
around 90° in the pitch angle distribution, suggesting that the cold protons were accelerated in the direction perpen-
dicular to the background magnetic field, consistent with the previous observations (K H Kim et al., 2021; Yuan 
et al., 2016). Figure 2f shows the gyrophase distributions of the cold protons with energies 0–40 eV and with the 
pitch angles of 60°–120°. The gyrophase distribution was based on the FAC coordinate system, and the gyrophase 
angles equal to 0° represented the X-FAC direction in the XY-FAC plane. Two types of gyrophase distributions 
were observed, and they were related to the polarization of the EMIC waves. When the waves were right-hand 
polarized (09:24:40.0–09:24:50.0 UT, and 09:24:58.8–09:25:10.0 UT), the gyrophase of periodic cold protons was 
mostly stable at about 220°, with a small percentage around 50°. While, when the waves were left-hand polarized 
(09:24:50.0–09:24:58.8 UT, and 09:25:10.0–09:25:40.0 UT), the gyrophase of periodic cold protons was rotating 
from 360° to 0°. The observations suggest that the cold protons were phase bunched, and the types of phase bunch-
ing were affected by the polarizations of EMIC waves. Moreover, the bunched cold protons exhibited agyrotropic 
gyrophase distributions, indicating that the energy conversion was ongoing between cold protons and EMIC waves.

To reveal the interaction between the cold protons and EMIC waves, wave-particle interaction analysis (WPIA) 
(Fukuhara et al., 2009) was applied to investigate the energy transfer rate between cold protons and EMIC waves. 
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The energy transfer rate was calculated by the dot product of the electric field of EMIC waves (Ewave) and ion current 
(Ji). The ion current was supported by the cold protons with energies less than 40 eV and pitch angles 60°–120°, and 
calculated as Ji = qi⋅Ni⋅Vi (qi is the proton's charge, Ni and Vi are number density and velocity of cold protons with 
energies 0–40 eV and pitch angles 60°–120° in the rest frame of the plasma). As shown in Figure 2d, the energy trans-
fer rate, Ji·Ewave, exhibited quasiperiodic oscillations, and they were nearly consistent for all four MMS spacecraft. 
Ji·Ewave was always positive when the cold protons flux enhancements occurred, indicating that the energy transferred 
from EMIC waves to cold protons, that is, the cold protons were energized by the EMIC waves. It was surprising 
that the cold protons could be energized by EMIC waves regardless of the wave polarization, although the gyrophase 
distributions of bunched cold protons were different with different polarizations of EMIC waves (Figure 2f).

To investigate the effect of the wave polarization variation on the cold proton energization, Figure 3 shows the 
comparison of the cold proton behavior with the left-hand (left column, blue shadow region in Figure 2) and 

Figure 2.  Energy Transference from EMIC waves to cold Protons. (a) Ion energy spectrogram. (b) Wave magnetic field in the field-aligned coordinates. (c) Wave 
electric field in the field-aligned coordinates. (d) Energy conversion rate between EMIC wave and ions, Ji·Ewave from four MMS spacecraft, where Ji is the current 
supported by ions with energy range of 0–40 eV and pitch angle of 60–120°, and Ewave is wave electric field. (e) Pitch angle distribution for ions with energy range of 
0–40 eV. (f) Gyro-phase spectrogram for ions with energy range of 0–40 eV and pitch angle of 60–120°. (g) Comparison of the left-hand (blue trace) and right-hand 
polarized wave power at frequency of 0.37 Hz. Both the energy conversion rate, pitch angle distribution, and gyro-phase distribution were calculated in the plasma rest 
frame.
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right-hand (right column, red shadow region in Figure 2) polarized EMIC waves. The gyrophase distributions 
of cold protons were shown in Figures 3e and 3k, with the green circles representing the directions of wave 
magnetic fields in the XY (FAC coordinates system) plane. For the left-hand polarized EMIC waves, the wave 
magnetic field rotated from 360° to 0° (left-hand rotation). The bunched cold protons followed the rotation of 
wave magnetic fields. But, as shown in wave-phase angle distributions (Figure 3f), there was a phase difference 
between Bwave and the bunched cold protons (Figure 3f). The wave-phase angle was defined as the relative phase 
angle between the velocities of cold protons and Bwave in the rest frame of the plasma. The wave-phase angles of 
the bunched cold protons were around 0° (or 360°), with a tendency toward 90°. Namely, the highest concentra-
tion of bunched cold protons was observed at the wave-phase angle between 0° and 90° (∼20°). Meanwhile, the 
wave electric fields were superposed in Figure 3f by the purple cycles, and the color depth and radius of the circles 
were proportional to the magnitude of Ewave. The relative phase angles between Ewave and Bwave nearly remained at 
around 90°. Thus, the relative angles between Ewave and the velocities of the most bunched cold protons were less 
than 90°, leading to the energy transfer from EMIC waves to cold protons (Ji⋅Ewave = qniVi⋅Ewave > 0, as shown in 
Figure 3c). Moreover, the flux of cold protons just increased when the wave electric field was strong (Figure 3f), 
indicating that the cold ions should be modulated by the wave electric field.

For the right-hand polarized waves, the wave magnetic field rotated from 0° to 360° (right-hand rotation), and the 
gyrophase of bunched cold protons was mostly stable at about 220°, with a small percentage around 50° (shown 
in Figure 3k). The relative phase angles between Bwave and bunched cold protons were similar to those in the 
left-hand polarized waves, and the most bunched cold protons were observed at the wave-phase angle between 
0° and 90° (Figure 3l). With Ewave remaining at around 90°, the bunched cold protons were also energized by the 

Figure 3.  Comparison of the cold protons behaves in the left-hand and right-hand polarized wave. The left and right columns correspond to left-hand and right-hand 
polarized wave, respectively. (a) Ion energy spectrogram. (b) Wave magnetic field in the field-aligned coordinates. (c) Energy conversion rate between EMIC wave 
and ions, (d) current density, supported by ions with energy range of 0–40 eV and pitch angle of 60–120°, (e) Gyro-phase spectrogram for ions with energy range of 
0–40 eV and pitch angle of 60–120°. Green circles represent the direction of Bwave. (f) Relative phase spectrogram for ions with energy range of 0–40 eV and pitch 
angle of 60–120°. Purple circles represent the direction of Ewave, and the intensity and radius of the circles depends on the magnitude of Ewave. (g–l) The data in the same 
format of (a)–(f).
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right-hand polarized EMIC waves. Although the behaviors of bunched cold protons were different for different 
polarized EMIC waves, the angles between Ewave and the velocities of most bunched cold protons were always 
less than 90°, leading to the energy transfer from waves to cold protons (Ji⋅Ewave = qniVi⋅Ewave > 0). Moreover, 
the energy transfer process was modulated by the wave electric field, and it became evident only when the wave 
electric field was intense. In summary, the cold protons could be energized by the EMIC waves, regardless of the 
polarizations of EMIC waves, and the wave electric field played a key role in the energization process.

4.  Discussion and Conclusions
In this paper, we investigated a train of EMIC waves in the inner magnetosphere at L = 9.0 and their inter-
action with the cold protons at energies less than 40 eV, based on the MMS measurements. The behaviors of 
cold protons within one EMIC wave period are revealed clearly. Moreover, the polarization of the EMIC waves 
reversed three times within one minute, ∼24 periods of the EMIC waves. Thus, the interaction between cold ions 
and EMIC waves of different polarizations were investigated simultaneously.

It is well known that the EMIC waves were predominantly left-hand polarized with small wave normal angles 
when they were generated at around the geomagnetic equator. As they propagated along the background magnetic 
field to higher magnetic latitudes, they could undergo polarization reversal where the local crossover frequency 
equaled to the wave frequency (Allen et al., 2015; Hu et al., 2010). In our event, however, the EMIC waves under-
went polarization reversal three times within a short period (about 24 EMIC wave periods), just at around the 
geomagnetic equator (MLAT = −1.6). Furthermore, the extremely low densities of heavy ions caused the crosso-
ver frequency (fco ∼ 0.28 Hz ∼ 0.25𝐴𝐴 𝐴𝐴𝐻𝐻+ ) to be very low, almost equal to the He + gyrofrequency, which was much 
smaller than the peak frequency of EMIC waves (fpeak = 0.37 Hz). Thus, the reason for the polarization reversals 
may be different from the mode conversion at the cross-over frequency. It is worth noting that each reversal was 
accompanied by the oblique wave normal angles, with some even reaching 90°, indicating that the occurrence of 
polarization reversal at around the geomagnetic equator may be associated with the oblique propagation (Horne 
& Thorne, 1997; Hu & Denton, 2009; Rauch & Roux, 1982). Moreover, it has been found that the low abundance 
ratio of He+ ions (Denton et al., 1992; Hu & Denton, 2009) can excite the right-hand polarization EMIC waves 
in the source region. In our event, the abundance ration of He+ ions was extremely low (less than 0.1%), so, the 
right-hand polarized waves could also be excited locally. However, the exact mechanism for the polarization 
reversal remains unclear, and further efforts are necessary.

Resonance interaction is an effective energy conversion mechanism between particles and waves. But, this mech-
anism needs the energy of particles to be above the minimum resonant energy. For the EMIC waves, the minimum 

resonant energy of protons can be obtained by the resonance condition, 𝐴𝐴
1

2
𝑚𝑚𝑝𝑝

(
𝜔𝜔−Ω𝑝𝑝

𝑘𝑘‖

)2

 , where mp is proton mass, 

Ωp is proton gyrofrequency, ω is the frequency of EMIC waves, and k∥ represents the parallel wavenumber of 
the EMIC waves, which can be got by the cold plasma dispersion relation (Baumjohann & Treumann, 1997). 
In our event, the minimum resonant energy of protons was estimated as 1.5 keV, which is much larger than the 
energy of cold protons studied in this paper, suggesting that the cold protons were not energized by the resonance 
interaction.

On the other hand, the non-resonance interaction has been proposed to describe the interaction between the cold 
ions and EMIC waves (Berchem & Gendrin, 1985; Q. M. Lu & Li, 2007; Mauk, 1982). When the velocity of 
ions, Vp, is small, the electric force from the wave electric field, qEwave, will become comparable to the Lorentz 
force from the background magnetic field, qB0Vp. Thus, the ions will be modulated by the wave electric field. 
The modulated ions will bunch into a small group and rotate together with the wave magnetic field, described 
as electric phase bunching. This process has also been used to describe the interaction between cold ions and 
low-frequency Alfven waves (Q. M. Lu & Li, 2007). The electric phase bunching can descript exactly our obser-
vation when the polarization of EMIC waves is left-hand (left column in Figure 3). The phase bunched cold 
protons followed the left-hand rotation of wave magnetic fields (Figure 3e), and the flux of bunched cold protons 
increased when the wave electric field was strong (Figure 3f), indicating that the bunched protons were modulated 
by the wave electric field, and the cold protons were energized by EMIC waves via non-resonance interaction.

However, when the EMIC waves were right-hand polarized, the bunched protons had a stable angle in the 
gyrophase (Figure 3k), which was different from the prediction from non-resonance interaction. Nevertheless, 
the bunched protons were still modulated by the wave electric field (Figure 3l), and the relative phase angles 
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between wave magnetic fields and bunched cold protons were similar to those in the left-hand polarized waves. 
It indicates that the cold ions may undergo a similar process to the non-resonance interaction when the EMIC 
waves were right-hand polarized.

The energy conversion rate (Ji·Ewave) from EMIC waves to cold protons was calculated in this work (Figures 2d, 
3c, and 3i), and the positive values indicate that the energy was transferred from EMIC waves to cold protons. It 
should be noted that the wave electric fields and the wave magnetic fields are not perfectly orthogonal (Figures 3f 
and 3l) in this event, and the relative angles between them were slightly less than 90°, which may be caused by the 
specific plasma condition (the related discussion can be found in Supporting Information S1). Thus, the energy 
conversion rates calculated in our work should be overestimated, and have a large uncertainty. However, as shown 
in Figures 3f and 3l, the most bunched protons were observed at the wave-phase angle between 0° and 90°. There-
fore, even if the relative phase angles between Ewave and Bwave strictly equal to 90°, the relative angles between 
Ewave and the velocities of the most bunched cold protons were still less than 90°. Namely, the energy was indeed 
transferred from the EMIC waves to cold protons. Moreover, because the bunched protons were not uniform 
distribution during one wave period (Figures 3e and 3k), the current density (Figures 3d and 3j) and energy 
conversion rate (Figures 2d, 3c, 3i) showed some fluctuations, sometimes with two peaks in one wave period.

The EMIC waves could be observed in the magnetosphere over a large range of latitudes (Allen et al., 2015; 
Usanova et al., 2012). However, a statistical study showed that the cold ions energization events associated with 
EMIC waves were mainly observed at low/middle magnetic latitudes (Lee et al., 2021; J. C. Zhang et al., 2011). 
The reason for the contradiction may be that the intensity of EMIC waves at high latitudes is too weak to interact 
with the cold ions via the non-resonant interaction. In addition, the non-resonant interaction may also be affected 
by the magnetic mirror force at the high latitudes. The exact latitudinal range where the non-resonant interaction 
can occur and the effect of the mirror force on the interaction still need further statistical work.

In conclusion, we study the wave-particle interaction between the cold protons and EMIC waves with different 
polarizations. The cold protons were energized by the EMIC waves via the non-resonance interaction regardless 
of the wave polarization. The polarization of EMIC waves could change the gyrophase distribution of bunched 
cold protons, but the energy transfer process is not affected by the polarization of EMIC waves.

Data Availability Statement
All the MMS data used in this work are available at the MMS data center (https://lasp.colorado.edu/mms/sdc/
public/about/browse-wrapper/). The data have been loaded, analyzed, and plotted using the SPEDAS software 
(Version 5.0) (Angelopoulos et al., 2019), which can be downloaded via the Downloads and Installation page 
(http://spedas.org/blog/).
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