
1.  Introduction
Magnetic flux ropes (FRs) are helical magnetic field structures consisting of a poloidal magnetic field and an 
axial magnetic field component, which have been frequently observed in the terrestrial magnetosphere, such as 
magnetopause (Deng & Matsumoto, 2001; Eastwood et al., 2016; Hwang et al., 2016; Russell & Elphic, 1978; J. 
Zhong et al., 2013), magnetotail (Sibeck et al., 1984; Slavin et al., 2003; R. S. Wang, Lu, Du, & Wang, 2010; Zhao, 
Wang, & Du, 2016; Zong et al., 2004), and magnetosheath (Z. Z. Chen et al., 2019; S. Y. Huang et al., 2016; S. 
M. Wang et al., 2021; Yao et al., 2020). As one FR passes through the spacecraft, its typical signature is a bipolar 
variation of the poloidal magnetic field component with an enhancement of the axial magnetic field component. 
FRs are always observed around the diffusion region of magnetic reconnection (Russell & Elphic, 1978; Slavin 
et al., 2003; Teh et al., 2017; R. S. Wang, Lu, Du, & Wang, 2010), and are supposed to be generated by magnetic 
reconnection (Eastwood et al., 2005; Hasegawa et al., 2010; Lee & Fu, 1985; M. Øieroset et al., 2011; Russell & 
Elphic, 1978; Scholer, 1988). Meanwhile, the FRs play an important role in the process of magnetic reconnection, 
such as accelerating electrons (L. J. Chen et al., 2008; Drake et al., 2006; Fu et al., 2006; R. S. Wang, Lu, Li, 
et al., 2010; Xia & Zharkova, 2018; Z. H. Zhong et al., 2020), accomplishing fast reconnection (Bhattacharjee 
et al., 2009; Daughton et al., 2009; Loureiro et al., 2007; Samtaney et al., 2009), and dominating the reconnec-
tion  evolution (Daughton et al., 2011; R. S. Wang et al., 2016).

In the earlier literature when relatively low-time resolution spacecraft data were used, FRs were well described by 
a force-free model, and the current density derived from the Curlometer technique inside them was dominated by 
the axial component (e.g., Slavin et al., 2003). Most recently, with the high-resolution magnetic field and plasma 
moments data measured by Magnetospheric Multiscale (MMS) mission (Burch, Moore, et al., 2016), it was found 
that the current density was structured, and the current sheet fragmented into a series of filamentary currents 
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within the FRs (Eastwood et al., 2016; R. S. Wang et al., 2017). The thickness of the filamentary currents can be 
comparable to the ion scale, and even down to the electron scale. The filamentary currents were highly dynamic 
and were fragmenting into smaller filamentary currents (R. S. Wang et al., 2017). Furthermore, the secondary 
reconnection can occur inside filamentary currents within the FRs (S. M. Wang, Wang, et al., 2020), as predicted 
in simulations (C. Huang et al., 2017; Lapenta et al., 2015).

Another kind of current structure deviating from the force-free model was an extremely intense current sheet 
embedded in the background current at the center of the FR (Hasegawa et al., 2010; M. Øieroset et al., 2011; 
S. M. Wang et al., 2021). Also, recent observations suggest that the reconnection could occur at such a current 
sheet at the magnetopause (Øieroset et al., 2016). However, further analyses show that these intense reconnecting 
current sheets were created by two interlaced flux tubes rather than inside the center of one standard FR, because 
the electron pitch angle distributions (PAD) on the two sides of the intense current sheet were quite different, 
which indicates that the plasmas on the two sides were not magnetically connected (Hwang et al., 2020; Kacem 
et al., 2018; Kieokaew et al., 2020; Øieroset et al., 2019). Latest statistics show that the ubiquitous intense current 
sheet, where the reconnection was common, observed at the centers of the rope-like structures was caused by two 
interlinked flux tubes (Fargette et al., 2020).

In this paper, we report an intense current layer at the center of one FR in the magnetotail, analogous to the 
previous observations at the magnetopause. This intense current layer was caused by the compression of the ion 
bulk flows at the center of a FR rather than two interlaced flux tubes reported at the magnetopause previously. 
The reconnection was occurring at the intense current layer and dividing the FR into two which has never been 
observed. It indicates that the intense current layer can be spontaneously generated inside the FR and change its 
magnetic topology.

2.  Instrumentation
The data used in this letter was measured by MMS (Burch, Moore, et al., 2016). The magnetic and electric fields 
were measured by Flux Gate Magnetometer with a time resolution of 128 Hz (Russell et al., 2016) and the electric 
field double probe with a time resolution of 8,192 Hz (Ergun et al., 2016; Lindqvist et al., 2016), respectively. The 
particle moments and distributions data were taken from Fast Plasma Investigation (FPI) (Pollock et al., 2016). 
The time resolution was 30 ms for electrons and 150 ms for ions. The electron Partial moments data was used 
to avoid the error from low density. During this event, only MMS1 and MMS2 provided the FPI data, and the 
measurements at them were almost the same. Thus, the data from MMS2 were used in this paper unless otherwise 
stated.

3.  Observation and Analysis
3.1.  Overview of the Flux Rope

During 16:55:00–16:57:30 UT on 02 August 2020, the MMS spacecraft was located at [−28.1, −3.6, 2.6] Re 
in the Geocentric Solar Ecliptic (GSE) coordinates system and detected a FR as shown in Figure 1. The plasma 
beta (yellow trace in Figure 1b), the ratio of thermal pressure to magnetic pressure, was greater than 1.0 in the 
whole interval, suggesting that the FR was located in the plasma sheet. The FR was observed between 16:55:56 
and 16:56:32 UT, identified by the bipolar variation of 𝐴𝐴 𝐴𝐴𝑧𝑧 (red traces in Figure 1c) and the enhancement of the 
magnitude of magnetic field, dominated by the out-plane magnetic field 𝐴𝐴 𝐴𝐴𝑦𝑦 . Accompanying with 𝐴𝐴 𝐴𝐴𝑧𝑧 reversal, 𝐴𝐴 𝐴𝐴𝑥𝑥 
also changed from positive to negative, suggesting that the spacecraft had crossed the cross-section center of the 
FR. At the center of the FR (∼16:56:14.5 UT), where 𝐴𝐴 𝐴𝐴𝑧𝑧 changed from positive to negative, the magnitude of the 
magnetic field had a sharp depression, similar to the crater-shaped FR (Labelle et al., 1987; Zhang et al., 2010) 
which has a magnetic field depression at its center.

The FR was embedded in an unstable tailward (𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖  < 0) plasma flow (Figure 1d). By assuming that the FR moved 
in the X direction with the average speed of the plasma flow, ∼500 km/s, we roughly estimated the scale of the 
FR was about 2.8 Re or 27 𝐴𝐴 𝐴𝐴𝑖𝑖 , where 𝐴𝐴 𝐴𝐴𝑖𝑖  = 660 km is the ion inertial length based on 𝐴𝐴 𝐴𝐴 = 0.12cm

−3 . At around 
the leading (tailward side) edge of the FR, the tailward plasma velocity was about −400 km/s. And then, the 
velocity became increasingly faster. The maximum velocity was up to −800 km/s, which appeared behind the 
center of the FR (∼16:56:17 UT). Finally, as the trailing (earthward side) edge approached, the plasma velocity 
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gradually decreased to about −450 km/s. The velocity distribution through the FR suggested that the leading part 
was contracting, but the trailing part was expanding (as illustrated in Figure 4). Due to the maximum velocity 
appearing at the trailing side of the FR, the center of the FR was compressed as well.

The compression of the center of the FR was supported by the change of pressure, as shown in Figure 1g. Total 
pressure (black trace in Figure 1g) was roughly balanced at the leading edge (16:55:56–16:56:09 UT) and trail-
ing edge (16:56:22–16:56:32 UT), but it was significantly enhanced around the center of the FR, indicating that 
the center of the FR was strongly compressed. The unbalanced pressure also suggested that the magnetic field 
lines on the two sides would continue to pour into the center of the FR (Russell & Qi, 2020). Furthermore, the 
magnitude of 𝐴𝐴 𝐴𝐴𝑧𝑧 (red traces in Figure 1c) on both sides of the center of the FR was enhanced just before the sign 
changed, indicating that the normal magnetic field with respect to the tailward flow was indeed compressed.

Figure 1.  Overview of the flux rope in Geocentric Solar Ecliptic coordinates. (a) Electron energy spectrogram; (b) the 
magnitude of magnetic field (black trace) and the plasma beta (yellow trace); (c) magnetic field vector; (d) ion bulk flow; (e) 
electron bulk flow; (f) current density vector; (g) total (black), magnetic (blue), and plasma (red) pressure; (h) electron pitch 
angle distribution at energies 2–30 KeV.
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Due to the strong compression, an intense but narrow current layer (Figure 1f) was observed at the center of 
the FR. The direction of the current layer was primarily along 𝐴𝐴 + 𝑦𝑦 axis, which was consistent with the back-
ground current of the FR. The electron PADs (Figure  1h) were volatile inside the FR. At the leading part 
(16:55:56–16:56:14.54 UT), the electron differential fluxes were first concentrated at around 180°, then became 
bidirectional field-aligned distribution, and finally concentrated at around 180° as approaching the current layer 
again. At the trailing part (16:56:14.54–16:56:32 UT), the electron differential fluxes were first concentrated at 
around 180°, and then the fluxes enhanced at around 90°, leading to the perpendicular distribution. However, it is 
worth noting that the PADs were not changed dramatically around the current layer (the pink region in Figure 1), 
as the spacecraft right passed through it. Based on the above analyses, an intense current layer was observed at 
the center of the FR. In the following, we will focus on this current layer, and the magnetic reconnection will be 
proven to be ongoing here.

3.2.  Magnetic Reconnection in the Current Layer

Figure 2 shows a closer view of the reconnecting current layer in the local current coordinate system. The trans-
formation matrix was obtained from the hybrid method. M was along the direction of maximum current density 
in this current layer (at 16:56:14.52 UT). N was calculated by 𝐴𝐴 𝐴𝐴 = 𝐿𝐿MVA ×𝑀𝑀 , where LMVA was the direction of 
maximum variance from the minimum variance analysis (Sonnerup & Scheible, 1998) based on the magnetic 
field data taken from 16:56:14–16:56:15 UT. And L completed the right-handed system. The transformation 
matrix relative to GSE coordinates was given by L = [0.3401, −0.0067, 0.9404], M = [0.1296, 0.9908, −0.0398], 
and N = [−0.9314, 0.1354, 0.3378]. N was almost parallel to the normal direction of the current layer obtained 
from the timing method (Schwartz, 1998), with a small deviation of 𝐴𝐴 8

◦ . The timing method was also used to 
calculate the velocity of the current layer, which was calculated to be 775 km/s along the +N direction. The 
duration of the current layer crossing was about 0.22s (16:56:14.43–16:56:14.65 UT) (Figure 2f), so its thickness 
was estimated about 170 km ∼ 11 𝐴𝐴 𝐴𝐴𝑒𝑒 , where the electron inertial length 𝐴𝐴 𝐴𝐴𝑒𝑒  = 15 km, based on Ne = 0.12 cm −3.

Figure 2b shows the three components of the magnetic field. The reconnecting magnetic field 𝐴𝐴 𝐴𝐴𝐿𝐿 changed from 
positive (∼+9 nT) to negative (∼−10 nT). At 16:56:14.54 UT, when 𝐴𝐴 𝐴𝐴𝐿𝐿  = 0, 𝐴𝐴 𝐴𝐴𝑁𝑁 had a small but positive value of 
∼3 nT, suggesting that the spacecraft crossed the reconnecting current layer on the +L side of the X-line. Mean-
while, there was a significant decrease in 𝐴𝐴 𝐴𝐴𝑀𝑀 by ∼5 nT from the background value of 14 nT. The background 𝐴𝐴 𝐴𝐴𝑀𝑀 
was around 1.4 times as large as the reconnecting component 𝐴𝐴 𝐴𝐴𝐿𝐿 , indicating that the reconnection current layer 
had a strong guide field. The electric field 𝐴𝐴 𝐴𝐴𝑁𝑁 (Figure 2e) showed a bipolar variation from negative to positive 
and always pointed into the center of the current layer on both sides, consistent with the Hall electric field.

Ions bulk flows (Figure 2c) remained constant throughout the current layer. Different from ions, two reversed 
electron jets were visible in 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒 at around 16:56:14.46 and 16:56:14.58 UT (Figure 2d). The magnitudes of these 
reversed jets were almost equal and 𝐴𝐴 |𝛿𝛿𝛿𝛿𝑒𝑒𝑒𝑒𝑒| ∼ 2,000 km/s relative to the background electron bulk flow of about 
−1,000 km/s. They were much larger than the local ion Alfven speed (𝐴𝐴 𝐴𝐴𝑎𝑎  = 630 km/s, based on the B0 = 10 nT, 
and Ne = 0.12 cm −3). The two reversed electron jets respectively corresponded to the electron outflow (positive 
jet) and inflow (negative jet) of the reconnection current layer (illustrated in Figure 4), and they resulted in the 
decrease of 𝐴𝐴 𝐴𝐴𝑀𝑀 , corresponding to the Hall magnetic field. A unipolar Hall magnetic field was observed here, 
consistent with the simulations (Huba, 2005; Pritchett & Coroniti, 2004; Ricci et al., 2004), where the recon-
nection current sheet with a strong guide field could just produce the unipolar Hall magnetic field. Based on the 
magnetic field, electric field, and electron bulk flow, a reconnecting current layer was identified at the center of 
the FR, as illustrated in Figure 4.

3.3.  Signatures of Electron Diffusion Region

The current layer was mainly supported by the intense electron flow 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒 (Figures 1e and 2d), indicating that the 
spacecraft should be in or near the electron diffusion region (EDR). Figure 2g shows the comparison between 

𝐴𝐴 𝐴𝐴𝑁𝑁 and 𝐴𝐴 − (𝑉𝑉𝑒𝑒 × 𝐵𝐵)N , and they were different around the center of the current layer (16:56:14.43–16:56:14.65 
UT), suggesting that electrons were decoupled from magnetic fields. The parallel (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒‖ ) and perpendicular (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒⟂ ) 
electron temperatures were shown in Figure 2h. 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒‖ was much larger than 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒⟂ , apart from the center of the current 
layer. At the center of the current layer, 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒⟂ increased significantly and was equaled to 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒‖ . The characteristics of 
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electron temperature were consistent with the previous observations in the EDR (Burch, Torbert, et al., 2016; Li 
et al., 2019; Torbert et al., 2018; R. S. Wang, Lu, et al., 2020).

In order to further establish the EDR encounter, multiple spacecraft observations for the crossing of the current 
layer were shown in Figure 3. Four MMS spacecraft had similar but time-shifted variations in 𝐴𝐴 𝐴𝐴𝐿𝐿 (Figure 3a). 
The reversal points of 𝐴𝐴 𝐴𝐴𝐿𝐿 (the center of the current layer) were observed by MMS2, MMS4, MMS3, and MMS1 
in turn, consistent with the spatial distribution of four spacecraft in the N direction (Figure 3h). The unipolar Hall 
magnetic field, the decrease of 𝐴𝐴 𝐴𝐴𝑀𝑀 , was observed by four spacecraft (Figure 3b). All four spacecraft observed the 
positive enhancement of the normal magnetic field 𝐴𝐴 𝐴𝐴𝑁𝑁 (Figure 3c), indicating that all of them crossed the +L side 
of the X-line. Considering the spatial distribution of four spacecraft in the L direction (Figure 3h), MMS3 should 

Figure 2.  Closer view of the reconnecting current layer in LMN coordinates. (a) 𝐴𝐴 |B| (black trace) and 𝐴𝐴 𝐴𝐴𝑒𝑒 (green trace); (b) 
magnetic field vector; (c) ion bulk flow; (d) electron bulk flow; The velocity of the current layer (𝐴𝐴 V𝑐𝑐𝑐𝑐 ) obtained from timing 
method has been subtracted from the ion and electron bulk flow. (e) Electric field vector; (f) current density vector; (g) 𝐴𝐴 𝐄𝐄⟂,𝑁𝑁 , 

𝐴𝐴 − (𝐕𝐕𝑖𝑖 × 𝐁𝐁)𝑁𝑁 , and 𝐴𝐴 − (𝐕𝐕𝑒𝑒 × 𝐁𝐁)𝑁𝑁 ; (h) 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒‖ (magenta trace) and 𝐴𝐴 Te,⟂ (cyan trace).
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be closest to the X point. However, there was no FPI data available from MMS3 and MMS4 for this time interval, 
so the particle data only from MMS1 and MMS2 were shown in Figure 3.

Because MMS1 and MMS2 were close in the L direction, the reversed electron jets were observed by both 
MMS1 and MMS2, and the magnitudes were similar (Figure 3d). Figures 3e and 3f show the current density in 
field-aligned coordinates measured by MMS1 and MMS2, respectively. The difference between the two space-
craft was negligible. The parallel current 𝐴𝐴 𝐴𝐴‖ had obvious enhancements and was greater than the perpendicular 
current 𝐴𝐴 𝐴𝐴⟂ at the center of the current layer, which was consistent with the observation of EDR (R. S. Wang, Lu, 
et al., 2020). Energy dissipation rates in the electron rest frame 𝐴𝐴 𝐉𝐉 ⋅ (𝐄𝐄 + 𝐕𝐕𝐞𝐞 × 𝐁𝐁) (Zenitani et al., 2011) measured 
by MMS1 (black trace) and MMS2 (red trace) were simultaneously displayed in Figure 3g. There were significant 
positive 𝐴𝐴 𝐉𝐉 ⋅ (𝐄𝐄 + 𝐕𝐕𝐞𝐞 × 𝐁𝐁) around the center of the current layer, suggesting the magnetic energy was transferred 
to the plasma here. Furthermore, the strong energy dissipation was also observed behind the center of the current 
layer (16:56:14.7–16:56:15.8 UT), which may be related to the large-amplitude fluctuations of the electric field 
during this period (Figure 2e).

Figures 3i and 3j show the electron velocity distributions in the perpendicular plane measured by MMS1 and 
MMS2 at the center of the current layer, denoted by the black and red arrows in Figures 3e–3f, respectively. The 

Figure 3.  Multiple spacecraft observations of the reconnection current layer. (a–c) three components of the magnetic field observed by four spacecraft; (d) 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒 
observed by Magnetospheric Multiscale 1 (MMS1) (black trace) and MMS2 (red trace); (e–f) current density in field-aligned coordinates measured by MMS1 and 
MMS2; (g) 𝐴𝐴 𝐉𝐉 ⋅ (𝐄𝐄 + 𝐕𝐕𝑒𝑒 × 𝐁𝐁) measured by MMS1 (black trace) and MMS2 (red trace); (h) location of MMS spacecraft in the L-N plane; (i) and (j) electron velocity 
distributions in perpendicular plane measured by MMS1 and MMS2, 𝐴𝐴 𝐕𝐕⟂1 = (𝐛𝐛 × 𝐯𝐯) and 𝐴𝐴 𝐕𝐕⟂2 = (𝐛𝐛 × 𝐯𝐯) × 𝐛𝐛 , where 𝐴𝐴 𝐛𝐛 and 𝐴𝐴 𝐯𝐯 are unit vectors of 𝐴𝐴 𝐁𝐁 and 𝐴𝐴 𝐕𝐕𝐞𝐞 .
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crescent-shaped distributions were observed by both MMS1 and MMS2, which were similar to the typical elec-
tron velocity distributions of the EDR (Burch, Torbert, et al., 2016; Li et al., 2019; Torbert et al., 2018). Based on 
the above, it can be concluded that the spacecraft encountered the EDR.

4.  Discussion and Conclusions
In this paper, we report a crater-shaped FR embedded in an unstable tailward plasma flow in the magnetotail. Due 
to the unstable plasma flow, the center of the FR was strongly compressed. Thus, a reconnecting current layer 
with a strong guide field formed at the center of the FR, and the reconnecting magnetic field was dominated by 
the poloidal magnetic field (𝐴𝐴 𝐴𝐴𝑧𝑧 ) of the FR. The central intense current layer was identified as the EDR, character-
ized by electron demagnetization, positive energy dissipation, and agyrotropic crescent-shaped electron velocity 
distributions.

The reconnecting current sheets occurring at the center of the rope-like structures, characterized by the bipolar 
variation of the magnetic field component and the enhancement of the magnitude of the magnetic field, have 
been observed at the magnetopause (Fargette et al., 2020; Hwang et al., 2020; Kacem et al., 2018; Kieokaew 
et al., 2020; M. Øieroset et al., 2016; M. Øieroset et al., 2019). However, these rope-like structures have been 
interpreted as two interlinked flux tubes instead of FRs. Because the electron PADs showed rapid change as the 
spacecraft right passed through the current sheet, and the bipolar signature of the FR was not observed in the 
component normal to the magnetopause (X-GSE), which deviated from the regular FR observed at the magneto-
pause (Kacem et al., 2018). In this paper, a similar phenomenon was first observed in the magnetotail. In contrast, 
although the electron PADs (Figure 1h) were volatile inside the FR, the electron PADs around the current layer 
(the pink region in Figure 1) did not change dramatically while crossing the current sheet. And the bipolar signa-
ture of the FR was mainly observed in the component normal to the magnetotail current sheet (Z-GSE). These 
indicate that the reconnecting current sheet was indeed observed at the center of the FR. However, unlike at the 
magnetopause, the plasma conditions were uniform in the magnetotail. There was a slight possibility that similar 
electron PADs were observed in two unconnected flux tubes. Thus, we still cannot entirely exclude the possibility 
of two interlinked flux tubes.

Figure 4.  A schematic illustration for the flux rope and the reconnecting current sheet at its center.
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The compression by ion bulk flow at the center of the FR was a potential explanation for the formation of recon-
necting current layer. Due to the strong compression, the oppositely poloidal magnetic field (𝐴𝐴 𝐴𝐴𝑧𝑧 ) lines met at the 
center of the FR, and then the magnetic reconnection could be enabled. When the poloidal magnetic fields were 
reconnected, the initial magnetic field topology could change, and the initial FR may divide into two secondary 
FRs, as illustrated in Figure 4. The division of FR via reconnection may be hard because the strong magnetic 
tension force would suppress this process. However, a recent 2-D Hybrid-Vlasov simulation indeed found that the 
ion-scale FR could divide into two or even three smaller FRs via reconnection (Akhavan-Tafti et al., 2020). How 
to overcome the magnetic tension force to form a reconnecting current sheet is still unclear. The compression by 
plasma flow is a possible mechanism, but further study is needed to reveal the exact mechanism. Moreover, a 
recent observation also found that strong energy dissipation could occur at the center of the FR in the magnetotail 
(Huang et al., 2019), but the mechanism was unclear. It suggests that the instabilities can be easily excited inside 
the FRs, as they are propagating in the magnetotail current sheet.

The reconnecting current sheet could also be found at the center of the FRs formed by the coalescence of FRs. 
This process has been studied extensively in numerical simulations (Cazzola et al., 2015; Finn & Kaw, 1977; Oka 
et al., 2010; Pritchett, 2007) and observations (R. S. Wang et al., 2016, 2017; Zhao, Wang, Lu, et al., 2016; Zhou 
et al., 2017). The direction of the reconnecting current sheet during the coalescence should be anti-parallel to the 
background current of the FR, which was different from our observation. Thus, it can be ruled out that the current 
sheet was formed by the coalescence of FRs in our work. However, a simulation found that the coalescing FRs 
could bounce (Karimabadi et al., 2011), resulting in a “pull current sheet” between FRs that were not currently 
coalescing. The direction of the “pull current sheet” was parallel to the background current of the FRs, similar to 
our observation. So it was also a possible explanation for our observation. However, it requires that the coalescing 
FRs arrange in the Z-GSE direction, which is rarely observed in the magnetotail. Thus, it is more likely that this 
reconnecting current sheet was caused by the division of FR.

The FR with a magnetic field depression at its center is called crater-shaped FR, which has previously been 
proposed to be in an early stage of the formation of FR (Zhang et al., 2010) or the results of the back-and-forth 
crossing of a typical FR (Owen et al., 2008). In our event, the decrease of 𝐴𝐴 𝐴𝐴𝑀𝑀 , the hall magnetic field, supported 
the depression of the magnitude of the magnetic field, indicating that the hall magnetic field generated by the 
magnetic reconnection at the center of the FR could also produce the crater-shaped FR.

In conclusion, we report a crater-shaped FR embedded in an unstable tailward plasma flow in the magnetotail. 
Due to the strong compression by ions bulk flow, a reconnection current layer with a strong guide field formed 
at the center of the FR. The reconnecting current layer could change the magnetic field topology of the initial FR 
and divide the initial FR into two secondary FRs.

Data Availability Statement
All the MMS data used in this work are available at the MMS data center (https://lasp.colorado.edu/mms/sdc/
public/about/browse-wrapper/).
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