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Abstract The electric field pulses caused by enhanced solar wind dynamic pressure are particularly
effective in energization and inward transport of relativistic electrons in Earth's radiation belt. Utilizing electric
field and particle measurements by Van Allen Probes and near-Earth solar wind measurements, we have
conducted a statistical analysis to investigate the responses of electric field pulses and particle dynamics to
enhanced solar wind dynamic pressure under varied interplanetary magnetic field (IMF) directions. On Earth's
dayside, the generation of electric field pulses is independent of the IMF direction. In contrast, on the nightside,
electric field pulses are more easily excited under northward IMF than under southward IMF. Interacted with
the electric field pulses, the responses of electrons and protons show a day-night asymmetry under southward
IMF. The statistical results also indicate that proton flux variations mostly cluster on the post-dawnside
(MLT ~ 6-12), while electron flux variations show a slight preference for the pre-duskside (MLT ~ 12-18)
under some conditions. Moreover, the occurrence rate of proton flux variation is lower than that of electrons,
and a clear change in proton flux usually appears in lower energy channels. Our study provides new insights
into understanding the interaction between solar winds and magnetospheres of the Earth and other magnetized
planets.

1. Introduction

The interaction between solar winds and Earth's magnetosphere predominantly governs the dynamic evolution of
Earth's near-space environment. Specifically, upon the impact of the solar wind with enhanced dynamic pressure
on the Earth's magnetosphere, a series of phenomena are induced, including the compression of the magnetopause
(Chapman & Ferraro, 1931; Sibeck et al., 1991), the generation of global electric field pulses (Kim et al., 2009;
Knott et al., 1985; Shinbori et al., 2004; Wygant et al., 1994), the generation of magnetopause-ionosphere currents
(Nishimura et al., 2016; Samsonov et al., 2010; Zesta et al., 2000; Zhou & Tsurutani, 1999), the occurrence of
magnetic reconnection, and the emergence of wave disturbances (Usanova et al., 2008; Fu et al., 2012; N. Liu
etal., 2017, 2018). Our primary focus here is on the induced global electric field pulses, which are initially excited
at the dayside magnetopause and then azimuthally propagate toward the nightside (Kim et al., 2009; Takahashi
etal., 2017; Zhang et al., 2022). The electric field pulses can effectively energize and inward transport relativistic
electrons, thereby causing a significant enhancement in the relativistic electron population in Earth's radiation belt
(Blake et al., 1992; Foster et al., 2015; Kanekal et al., 2016; Schiller et al., 2016; Wygant et al., 1994). Satellite
observations also showed that these pulses can lead to electron depletion in the radiation belt (Hao et al., 2016; Z.
Y. Liu et al., 2017, 2019). The response of electron fluxes is determined by the radial gradient of electron phase
space density (PSD). When the PSD gradient is positive (negative), the inward transport of electrons by the
electric field pulses leads to an enhancement (depletion) in electron fluxes (Cohen et al., 2019; Ma et al., 2021).

The characteristics of electric field pulses are principally regulated by solar wind dynamic pressure. The temporal
profile of the electric field pulses correlates with that of the solar wind dynamic pressure, and the pulse amplitude
increases with the rising solar wind dynamic pressure (Zhang et al., 2018). However, the formation mechanism of
electric field pulses is still under debate. Some studies suggested that their appearance is linked to fast-mode
waves excited by the compression of Earth's dayside magnetosphere (Araki et al., 1997; Cattell et al., 2017,
Foster et al., 2015; Takahashi et al., 2017). Other studies suggested that the electric field pulses are caused by the
motion of plasma flow due to magnetosphere compression triggered by the passage of an interplanetary shock
(Fathy et al., 2018; Kim et al., 2009, 2012). Zhang et al. (2022), based on satellite observations and simulations,
proposed that the electric field pulses are caused by the superposition effect of the fast-mode waves and the
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motion of plasma flow related to the magnetosphere compression, which is more likely to account for the
observational outcomes. In any case, both mechanisms have demonstrated the important role of magnetospheric
compression caused by enhanced dynamic pressure in the generation of electric field pulses.

Previous studies have shown that the magnetosphere compression caused by enhanced solar wind dynamic
pressure varies in accordance with the orientation of the interplanetary magnetic field (IMF). When the IMF is
northward, the geomagnetic fields usually undergo compression at all local times (Lee & Lyons, 2004; Zuo
et al.,, 2015). In contrast, during southward IMF conditions, the dayside geomagnetic fields experience
compression, while the nightside magnetic fields may decrease or exhibit dipolarization-like changes (Lee &
Lyons, 2004; Wang et al., 2009). Simulations further support that an interplanetary shock under a southward IMF
will lead to a strong and wide region of decreased geomagnetic fields in the nightside (Sun et al., 2011). These
disparate responses of magnetosphere compression under different IMF directions prompt us to investigate
whether the electric field pulse and resultant particle flux enhancement or depletion are influenced by the IMF
direction.

In this study, utilizing electric field and particle measurements by Van Allen Probes along with near-Earth solar
wind measurements, we conduct superposed epoch analyses to investigate the response of electric field pulses to
the enhanced solar wind dynamic pressure under varying IMF orientation. Since electric field pulses can
effectively interact with particles, we then investigate the corresponding response of electrons and protons from
100 s keV to relativistic energies. The instruments onboard Van Allen Probes and data processing methods are
described in Section 2. The statistical results are presented in Section 3. Finally, we summarize and discuss the
statistical results in Section 4.

2. Data Sources and Methods
2.1. Data Sources

The Van Allen Probes mission, composed of two identical spacecraft, was initially put into use on 30 August
2012. They operate in near-equatorial orbits with a perigee of about 600 km, an apogee of 30,500 km, and a flight
period of 9 hr. The Electric Field and Waves instrument (EFW) (Wygant et al., 2013) onboard Van Allen Probes
can provide the y-component of electric fields in the modified Geocentric Solar Ecliptic (MGSE) coordinate
system at a sampling rate of 32 per s. The Electric and Magnetic Field Instrument Suite and Integrated Science
(EMFISIS) (Kletzing et al., 2013) instrument measured background magnetic fields at low-resolution (64 Hz).
The Magnetic Electron Ion Spectrometer (MagEIS) incorporated in the Energetic Particle, Composition, and
Thermal Plasma (ECT) suite (Spence et al., 2013) provided the fluxes of electrons and protons from ~30 keV to
relativistic energy (MeV). The Relativistic Electron-Proton Telescope (REPT) yielded electron fluxes from
1.8 MeV to 10 s MeV. High-resolution (1-min) near-Earth solar wind measurements shifted to the Earth's
bowshock nose were obtained from the OMNIWeb database (http:/spdf.gsfc.nasa.gov/pub/data/omni/).
Geomagnetic SYM-H index data (1-min resolution) were obtained from the World Data Center for Geomag-
netism, Kyoto, Japan (https://wdc.kugi.kyoto-u.ac.jp/).

2.2. Methods

Magnetospheric compression by sudden increases in the solar wind dynamic pressure leads to electric field pulses
and sharp increases in SYM-H, the latter being known as the sudden impulses (SI*s; Araki et al., 1993; Tsurutani
& Lakhina, 2014; Tsurutani et al., 2011). Thus, pulse events are identified using the SYM-H index temporal
variations from 1 October 2012 to 31 December 2017 when Van Allen Probes measurements were available.
Following Jin et al. (2022), we define a pulse event as a rapid increment in SYM-H values surpassing 5 nT
(ASYM-H) within 5 min and exclude events without corresponding solar wind dynamic pressure changes. For
each selected event, if the average value of IMF in 10 min prior to the SYM-H increase is negative, it is classified
as a “southward IMF pulse”; otherwise, it is classified as a “northward IMF pulse.” The observations from Van
Allen Probes A and B are utilized to study the response of the electric fields and particle fluxes for these pulse
events. To eliminate overlapping measurements, observations from two satellites within a 1-hr Magnetic Local
Time (MLT) interval are processed as a single measurement. Moreover, we also exclude the measurements where
the satellites were located in the trough region or inner radiation belt due to the sparse occurrence of electric field
pulses and stable particle fluxes within these regions. Consequently, we collect 278 validated measurements from
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the two satellites for the following analyses. Since the geomagnetic fields are more sensitive to enhanced solar
wind dynamic pressure, the detrended magnetic fields (the difference between the observed fields and the In-
ternational Geomagnetic Reference Fields) are employed to determine the zero epoch time in the superposed
epoch analyses. The zero epoch time is defined as the time when the detrended magnetic fields begin to increase
or decrease at a rate of 1 nT/min, accompanied by a cumulative magnetic field variation exceeding 3 nT. If the
variation in the detrended geomagnetic fields is negligible, the zero epoch time is set as 1 min after the SYM-H
index rises. We finally examine the flux responses of electrons (0.1-5.6 MeV; 21 energy channels) and protons
(0.1-1.2 MeV; 16 energy channels) to quantify the resultant particle dynamics induced by the SYM-H pulse.
Here, multi-energy-channel particle flux analysis is used to mitigate possible miscalculations arising from the
zero gradient of particle PSD in a single channel. If the average flux of electrons and protons in the 2 min
following the zero epoch time either increases or decreases by at least 15% in at least two adjacent energy
channels compared with the fluxes at the zero epoch time, it is considered that the electron and proton fluxes
effectively respond to the SYM-H pulse events. Otherwise, they are regarded as having no perceptible response or
an ambiguous response (the oscillation of particle fluxes obscures the response to enhanced SYM-H) to the SYM-
H pulse events. Particles with energies in the tens of keV range are excluded due to their close correlation with
substorm activity, and cases where the variation of particle flux is caused by satellite movement are also excluded.

Figure 1 shows examples of the electric field pulse events and particle responses to enhanced solar wind dynamic
pressure under southward and northward IMF conditions. During the interval of southward IMF (Figure 1a,
shaded in gray), an enhanced dynamic pressure (Figure 1b) impinging on the Earth's magnetosphere instigated a
sudden pulse (ST*) in the SYM-H index from 10 to 38 nT (Figure 1c) at 05:45 UT on 22 June 2015. Nearly
simultaneously, Van Allen Probe B, located on the dayside of Earth (MLT ~16.4), observed a sharp increase in
the detrended geomagnetic field from —5 to 15 nT (Figure 1d) and a decrease in the y-component of the electric
field from O to —3 mV/m (Figure 1f). The peak of the electric field pulse was directed towards the dawnside,
which interacts with the drifted electrons, leading to the enhancement of ~100 keV-2.6 MeV electron fluxes
(Figures 1f and 1g). During this interval, proton fluxes exhibited no significant changes (Figure 1h).

Figures 1i—1p present another example under northward IMF conditions. Compression of the Earth's magneto-
sphere by the enhanced dynamic pressure (Figure 1j) led to an increase in the SYM-H index from ~20 to 65 nT
(Figure 1k) at 04:46 UT on 17 March 2015. Slightly later, Van Allen Probe B, located on the nightside of Earth
(MLT ~20.3), detected a sharp increase in the detrended magnetic field from ~—25 to O nT (Figure 11) and an
increase in the electric field from 0 to 6 mV/m (Figure 1m). The peak of this electric field pulse, directed towards
the duskside, corresponded to an enhancement of electron fluxes in the 100-600 keV range and a decrease in
electron fluxes above 600 keV (Figures 1n and 10). This differential response originates from energy-dependent
electron PSD gradients (Turner et al., 2012). Specifically, high-energy electrons in this region exhibit negative
PSD gradients, while low-energy electrons display positive gradients, leading to the observed increase in electron
fluxes at lower energies and decrease at higher energies. In this case, proton fluxes also did not undergo sig-
nificant changes (Figure 1p).

3. Statistical Results

We categorize the selected events into three groups based on the SI™ amplitude (SYM-H increase): ASYM-
H < 10 nT, 10 £ ASYM-H < 20 nT, and ASYM-H > 20 nT. Separate analyses are conducted for dayside and
night cases in each group. Figure 2 presents the superposed epoch analysis results of the detrended geomagnetic
field and y-component of the electric field in response to enhanced solar wind dynamic pressure under northward
(left panels) and southward (right panels) IMFs on the Earth's dayside for three categories. The red and dark blue
lines denote the mean and median values, respectively. The detrended magnetic and electric fields are normalized
by subtracting the value at the zero epoch time. Note that the detrended magnetic field is shown only as a reference
for event onset and is not the focus of the subsequent analysis. Figure 2b reveals that under northward IMF, even a
weak increase in solar wind dynamic pressure (ASYM-H < 10 nT) can induce significant electric field pulses. As
ASYM-H increases, the amplitude of the electric field pulses also increases (Figure 2, left panels), reaching up to
2 mV/m for ASYM-H > 20 nT (Figure 2f). Under southward IMF (Figure 2, right panels), for ASYM-H < 10 nT
(Figure 2h), the electric field response is scarcely distinguishable, presumably due to the limited number of events
(only six). For ASYM-H > 10 nT (Figures 2j and 21), electric field pulses appear with amplitudes and temporal
evolutions similar to those under northward IMF. This suggests that the generation of electric field pulses on the
Earth's dayside is independent of the IMF direction.
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Figure 1. Overview of the response of electric field pulse and particle fluxes to the enhanced solar wind dynamic pressure under southward IMF (a-h) and under
northward IMF (i-p). From top to bottom, panels are: (a, i) B, component of the interplanetary magnetic field in the geocentric solar magnetospheric (GSM) coordinate
system, (b, j) solar wind dynamic pressure (Pyyy), (¢, k) SYM-H index, (d, 1) detrended geomagnetic field (dB) recalculated by subtracting the International Geomagnetic
Reference Field (IGRF), (e, m) 40-s averaged y-component of electric field (E,) in the Modified Geocentric Solar Ecliptic (MGSE) coordinate system, (f, n) fluxes of
electrons with energy 100, 169, 242, 466, 600, 742, and 891 keV, (g, o) fluxes of electrons with energy 1.8, 2.1, and 2.6 MeV, (h, p) fluxes of protons with energy 154, 206,
320, 431, 577, 669, and 891 keV.

Figure 3 presents the superposed epoch analysis results on the Earth's nightside under northward (left panels) and
southward (right panels) IMFs. Under northward IMF, the response of the electric field to a weak increase in solar
wind dynamic pressure is negligible (Figure 3b). For 10 < ASYM-H < 20 nT (Figure 3d), the electric field pulse
becomes discernible, with its amplitude reaching 0.5 mV/m. With a further increase of ASYM-H (Figure 3f), the
amplitude of the electric field pulse rises to 1 mV/m. Under southward IMF, a weak increase in solar wind
dynamic pressure fails to cause significant changes in the electric field (Figure 3h). For 10 < ASYM-H < 20 nT
(Figure 3j), electric field pulses still remain untriggered by the enhancement of solar wind dynamic pressure.
Instead, the electric field intensity gradually increases, attaining its peak nearly 5 min after the zero epoch time.
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We propose that this elevation in electric field intensity might be associated with storm- or substorm-related
electric fields. For ASYM-H > 20 nT (Figure 31), the electric field pulses emerge, however, their amplitudes
are smaller than under northward IMF. In comparison to northward IMF, the enhancement of solar wind dynamic
pressure under southward IMF is less effective in inducing the electric field pulses on the Earth's nightside. The
electric field pulses manifest significant day-night asymmetry, especially under southward IMF. This day-night
asymmetry was also noted by Zhang et al. (2018), but they ignored the effect of IMF orientation.

The induced electric field pulses can effectively interact with electrons, leading to flux enhancements or de-
pletions in Earth's radiation belt. We conduct a statistical study of electron responses under different IMF con-
ditions to investigate how the enhancement of solar wind dynamic pressure affects electron flux via induced
electric field pulses. We also study proton responses in our analysis, although they have received relatively less
attention in previous studies. Figures 4a—4c display electron responses under northward IMF for ASYM-
H < 10nT, 10 £ ASYM-H < 20 nT, and ASYM-H > 20 nT, respectively. Figures 4d—4f present the results under
southward IMF in the same format. Red circles denote effective responses of particle fluxes to SYM-H pulses,
while blue squares and gray triangles represent no perceptible and ambiguous responses of particle fluxes to
SYM-H pulses, respectively. The ratio of the number of red circles to the total number of red circles and blue
squares (e.g., occurrence rate of particle flux variations) on different MLT ranges is noted around the periphery of
the MLT-L plane (L is the Mcllwain's drift-shell parameter, representing the distance (in Earth radii) for a dipole
magnetic field line to cross the magnetic equatorial plane; Mcllwain, 1961). Figure 4 shows that, for a particular
IMF orientation, the electron fluxes are more prone to change when the enhancement of ASYM-H is more
significant. This aligns with the superposed epoch analysis results, showing that electric field pulses are more
easily induced by the more dramatic enhancement of ASYM-H.

Under northward IMF (Figures 4a—4c), the electron response does not exhibit significant asymmetry between the
Earth's dayside and nightside. However, under southward IMF (Figures 4d and 4e), electron responses exhibit
significant day-night asymmetry, especially for ASYM-H > 10 nT. On the Earth's dayside (6 < MLT < 18), the
difference in occurrence rates of electron flux variations between northward and southward IMFs is negligible:
around 51% (18/35) versus ~53% (20/38) for 10 < ASYM-H < 20 nT and 84% (21/25) versus ~86% (18/21) for
ASYM-H >20nT. On the nightside (MLT < 6 and MLT > 18), the occurrence rate of electron flux variations under
northward IMF is remarkably higher than that under southward IMF: around 46% (12/26) versus 28% (7/25) for
10 < ASYM-H < 20 nT and 85% (17/20) versus ~53% (9/17) for ASYM-H > 20 nT.

Figure 5 shows the response of protons under northward and southward IMF in the same format as in Figure 4.
Generally, the behavior of proton responses is similar to that of electrons. Their fluxes are more inclined to change
with significant enhancements of ASYM-H, and display a day-night asymmetry under southward IMF. However,
the occurrence rate of proton flux variation is lower than that of electrons. For example, regardless of any con-
ditions, the occurrence rate of electron flux variations is ~53% (132/251), while that of protons is only ~31% (81/
264). By examining our database, we also find that the typical change of electron fluxes can be observed in the
energy channel up to several MeV, while the clear change of proton fluxes only appears in the energy channel below
1 MeV, with an average value of 442 keV. Another notable phenomenon is that electron flux variations in response
to the SYM-H pulses mostly cluster on the Earth's duskside, while proton flux variations mostly cluster on the
dawnside, especially for 10 < ASYM-H < 20 nT. As shown in Figures 4b and 4e, the occurrence rates of electron
flux variations on the pre-duskside (12 < MLT < 18) are higher than those on the post-dawnside (6 < MLT < 12):
around 68% (15/22) versus ~23% (3/13) under northward IMF and 60% (12/20) versus ~44% (8/18) under
southward IMF. The occurrence rates of proton flux variations on the dawnside are higher than that on the duskside:
around 43% (6/14) versus 28% (7/25) under northward IMF and around 53% (9/17) versus ~26% (6/23) under
southward IMF (Figures 5b and Se). These differences are caused by the different drift directions of protons and
electrons around the Earth, which will be discussed in detail later. In summary, both protons and electrons are
effectively transported by the induced electric field, and their responses also relate to the direction of the IMF.

4. Conclusions and Discussion

In this study, utilizing the data from the Van Allen Probes and Omni database from 1 October 2012 to 31
December 2017, we statistically study the response of electric field pulses to the enhanced solar wind dynamic
pressure under northward and southward interplanetary magnetic fields (IMFs). Since the electric field pulses can
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and gray triangles represent no perceptible and ambiguous responses to SYM-H pulses, respectively. The ratio of the number of red circles to the total number of red circles
and blue squares (e.g., occurrence rate of particle flux variations) on different MLT ranges are noted around the periphery of the MLT-L plane.

interact with charged particles effectively, we also investigate the corresponding response of electrons from 0.1 to
5.6 MeV and protons from 0.1 to 1.2 MeV. The principal results are listed as follows:

1. The generation of electric field pulses on the Earth's dayside is independent of the IMF direction, while on the
nightside, the electric field pulses are more easily excited under northward IMF than under southward IMF.
There exists a day-night asymmetry of electric field pulses, especially under southward IMF.

2. The responses of electrons and protons are more significant when the enhancement of solar wind dynamic
pressure is larger, and their responses also show a day-night asymmetry under southward IMF.

3. The occurrence rate of proton flux variations is significantly lower than that of electrons. Moreover, a typical
change in electron fluxes can be observed in the energy channel up to several MeV, while a clear change in
proton fluxes usually appears in lower energy channels below 1 MeV.
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Figure 5. The response of protons to the enhanced solar wind dynamic pressure. The format is the same as in Figure 4.

4. Proton flux variations primarily cluster on the post-dawnside (MLT ~ 6-12), while electron flux variations
exhibit a weaker tendency to concentrate in the pre-duskside (MLT ~ 12-18) under some conditions.

Simulations and observational studies have indicated that the generation of electric field pulses is linked to fast-
mode waves and the motion of plasma flow instigated by magnetospheric compression (Zhang et al., 2022). As
fast-mode waves progress in the tailward direction, they should experience a successive attenuation. Concur-
rently, the velocity of solar wind decelerates as they move from the subsolar region to the magnetotail, leading to
the weakening of the magnetospheric compression. Accordingly, the electric field pulse undergoes a continuous
weakening during its propagation, thereby resulting in the day-night asymmetry of the electric field pulses.

On the Earth's nightside, electric field pulses are principally correlated with the plasma flow arising from
magnetospheric compression. In the presence of a southward IMF, the enhanced solar wind dynamic pressure can
trigger dayside magnetic reconnection, which may cause a larger plasma sheet current (Kan, 1990). A larger
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Electric field pulse

Figure 6. Schematic diagram of electric field pulse propagation and particle drifts. The blue and red arrows show the
propagation directions of the electric field pulses on the dawnside, and duskside, respectively. The black arrows show the
drift directions of protons and electrons.

plasma sheet current may lead to the weaker compression of nightside magnetic fields or even a decline in
magnetic field strength on Earth's nightside, consequently causing a weaker induced electric field. Therefore,
nightside electric field pulses are less likely to appear under southward IMF than under northward IMF,
explaining a more pronounced day-night asymmetry of the electric field pulses under southward IMF.

Our study reveals that the occurrence rate of proton flux variation is lower than that of electrons, and the clear
change of proton fluxes usually appears in lower energy channels. Based on the observed temporal scales of
electric field pulses (~5 min) and the estimated propagation velocities (from ~850 to over 1,000 km/s; Foster
et al., 2015; Cattell et al., 2017), we calculate that the spatial scale of electric field pulses ranges from ~255,000
to over 300,000 km, significantly exceeding the gyroradius of electrons and protons. Consequently, the differ-
ential gyroradius between ions and electrons fails to elucidate their different responses as both species undergo
an inward drift. We further propose that the significantly lower occurrence rate of proton flux variations
compared to that of electrons is potentially caused by the smaller PSD gradient of protons. When particles are
transported toward Earth by the electric field pulse, the particle fluxes with the same energy detected by the
satellite are not the same group as the particles observed before transportation, but from a larger L* (Ma
et al., 2021). This implies that the electron PSD profile with L* determines the variations in particle fluxes
observed by the satellite. If the PSD gradient of the proton approaches zero, the satellite will detect no flux
variations. Based on the observations from Van Allen Probes, we statistically study the PSD radial profiles for
protons and electrons in January 2014 under the T89 magnetic model (Tsyganenko, 1989). The superposed epoch
analysis results are presented in Figure S1. Figure S1 reveals that protons exhibit smaller PSD gradients
compared to electrons, and the magnitude of proton PSD gradients decreases with proton energy. This result
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agrees with our observations that protons are less responsive than electrons, with the proton flux changes pre-
dominantly confined to lower energies.

The different drift directions of protons and electrons determine the spatial difference in their flux variation
regions. As shown schematically in Figure 6, following the impact of enhanced solar wind dynamic pressure, the
electric field pulse is initially induced near the subsolar point and then propagates towards both dawnside and
duskside (Zhang et al., 2022, 2024). On the duskside, electrons drift in the same direction as the electric field
pulses, and the electrons can sustain interaction with the electric field pulses over a longer period and gain more
energy. In contrast, on the dawnside, protons drift in the same direction as the propagation of electric field pulses,
facilitating sustained interaction and increased energy gain. Consequently, proton flux variations mostly cluster
on the post-dawnside (MLT ~ 6—12), while electron flux variations show a slight preference for the pre-duskside
(MLT ~ 12-18).

Data Availability Statement

The RBSP data used in this study are available from the website https://spdf.gsfc.nasa.gov/pub/data/rbsp/. The
omni data are obtained from the website http://spdf.gsfc.nasa.gov/pub/data/omni/.
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