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Abstract –We study in detail six isolated supersubstorms (SSSs; SML < � 2500 nT) during the May 2024
superstorm (SYM-H peak = �518 nT), the second largest storm by 1-min SYM-H index (since 1981).
We also make comparisons to the largest and third largest magnetic storms, the March 1989 storm
(SYM-H = �720 nT) and the November 2003 storm (SYM-H = �490 nT), respectively. Like the 1989
superstorm, the May 2024 superstorm is a complex event associated with multiple sheaths and magnetic
clouds (MCs). However, unlike the 1989 superstorm, the May 2024 event had three MCs in the storm
recovery phase with four SSSs. This caused the May 2024 event to have the longest and strongest “recov-
ery phase” of the three storms. Because of this, the May 2024 event may be equally large in total energy as
the 1989 storm. We revise previously published “tippy bucket” analyses for precursor energy input to
assume a 3-h linearly input and subsequent dissipation of solar wind energy into the magnetosphere/
magnetotail. The new linear tippy bucket model showed that the SSSs were triggered by the strong solar
wind driving of ~ 1017 J. The Akasofu ɛ-parameter is used to estimate the solar wind energy input. All six
SSS events could be explained by both precursor energy and direct driving. Two of the SSS events were
possibly triggered by solar wind density parcels; the other four were not. The SSS events were highly
varied in morphology, ranging from an isolated substorm morphology to a storm convection bay scenario.
Overall, all six SSS events were unique. We suggest a two-mode nightside convection electric field to ex-
plain the nightside Joule heating variability. For the dayside Joule heating, we suggest three possible mech-
anisms: 1) adiabatic compression of magnetopause boundary layer plasma and dayside ionospheric
precipitation, 2) deep penetration of solar wind protons and the generation of boundary layer field-aligned
currents, and 3) magnetic reconnection with boundary layer magnetic fields with energy dissipation. It is
noted that all three proposed mechanisms would deposit energy well away from the Earth’s ionosphere.
They are not measured by the ɛ-parameter either. The missing energy is due to the viscous interaction
mechanism.
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1 Introduction

The 10–11 May 2024 superstorm (Hajra et al., 2024a) with
a SYM-H peak intensity of�518 nT is the second largest storm
by 1-min SYM-H index (since 1981), occurring ~ 35 years after
the strongest event that occurred on 14 March 1989 (SYM-H
peak = �720 nT; Allen et al., 1989; Bolduc, 2002; Chakraborty
et al., 2008; Lakhina & Tsurutani, 2016; Boteler, 2019;
Tsurutani et al., 2024) and ~ 21 years after the third strongest
event on 20 November 2003 (SYM-H peak = �490 nT;

Gopalswamy et al., 2005; Echer et al., 2008). It is worth men-
tioning that the May 2024 storm with a peak Dst = �412 nT is
the seventh largest by Dst since the start of the space age in
1957, preceded by the storms peaking on 14 March 1989
(Dst = �589 nT), 13 March 1989 (�472 nT), 15 July 1959
(�429 nT), 13 September 1957 (�427 nT), 11 February
1958 (�426 nT), and 20 November 2003 (�422 nT). As can
be seen from the SYM-H variations shown in Figures 1a–1c,
compared to the 1989 and 2003 events, the 2024 event had
the longest recovery with an enhanced ring current activity (note
that the time scales on all three panels are the same). Inte-
grated SYM-H during the recovery phase of the 2024 event is
~�442 nT.day, much greater than for the 1989 event
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(~�271 nT.day) and for the 2003 event (~�252 nT.day).
Magnetospheric substorm activities during the main and recov-
ery phases of the 2024 storm were significantly stronger in
comparison to those during the 1989 and 2003 events. This
effect can be noted in the variations of the SuperMAG auroral
electrojet index SME (Figs. 1d–1f) and westward component
SML (Figs. 1g–1i). We identified six supersubstorms (SSSs)
characterized by the SML peak intensity <�2500 nT (Tsurutani
et al., 2015), two during the main phase and four during the
recovery phase of the May superstorm. Details of the SSSs
are given in Table 1.

In Hajra et al. (2024a), we discussed the solar and interplan-
etary causes of the May 2024 superstorm and presented an over-
view of the storm’s impacts on the magnetosphere-ionosphere
coupled system. The purpose of the present paper is to study
the SSSs during the superstorm. Previous case and statistical
studies (Hajra et al., 2016, 2023; Hajra & Tsurutani, 2018) have
established complex and distinct energy coupling processes of
the SSSs. Recently, Tsurutani & Hajra (2023) showed cases
where a single SSS accounts for the entire intense magnetic
storm main phase energy. Thus, the study of SSSs might be
important for a better understanding of the energy coupling
(Dungey, 1961; Lu et al., 2022, 2025) of the extreme May event

leading to significant impacts on the Earth’s magnetosphere-
ionosphere-atmosphere system, and even on the ground.

Here we summarize major impacts of the May 2024 super-
storm and/or associated interplanetary phenomena. The outer
radiation belt energetic (~keV– ~ MeV) electrons exhibited flux
decreases (Hajra et al., 2024a). This can be explained through
precipitation into the ionosphere (Zhou & Tsurutani, 1999;
Tsurutani et al., 2016) or losses due to “magnetopause shadow-
ing” (West et al., 1972, 1981) caused by a strong magneto-
spheric compression by an interplanetary shock (Tsurutani
et al., 1988; Fu et al., 2025). The storm’s main phase was asso-
ciated with unusual early morning, daytime and evening time
intensifications, and latitudinal and altitudinal expansions of
ionospheric plasma anomaly (e.g., Aa et al., 2024; Bojilova
et al., 2024; Carmo et al., 2024; Hajra et al., 2024a; Spogli
et al., 2024; Sun et al., 2024; Themens et al., 2024; Hayakawa
et al., 2025; Lee et al., 2025; Paul et al., 2025). These effects are
assumed to be caused by an ionospheric “superfountain” asso-
ciated with penetration of dawn-dusk directed interplanetary
electric field (Tsurutani et al., 2004). A near-disappearance of
the ionosphere was recorded during the storm recovery phase
(Hajra et al., 2024a; Guo et al., 2024). The extreme storm
caused global auroral sighting from exceptionally low magnetic

Figure 1. Three largest geomagnetic superstorms by SYM-H index (since 1981). From top to bottom, panels are (a–c) geomagnetic symmetric
ring current index SYM-H, (d–f) auroral electrojet index SME, and (g–i) westward auroral electrojet index SML for the March 1989 storm (left
panels), the May 2024 storm (middle panels), and the November 2003 storm (right panels). The x-axis indicates times in units of days after the
onset of the SYM-H peaks mentioned in the top panels. Horizontal dashed lines in the bottom panels indicate the SML = �2500 nT level, the
threshold for an SSS (Tsurutani et al., 2015).
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latitudes (e.g., Carmo et al., 2024; Foster et al., 2024; Gonzalez-
Esparza et al., 2024; Grandin et al., 2024; Nanjo & Shiokawa,
2024; Hayakawa et al., 2025; Lockwood et al., 2025), extreme
intensification of the polar region field-aligned currents (FACs)
and their equatorward expansion (Hajra et al., 2024a; Wang
et al., 2024), and generation of strong geomagnetically induced
currents (GICs) on ground conducting systems (Hajra et al.,
2024a; Caraballo et al., 2025; Piersanti et al., 2025). While
Zou et al. (2025) studied two of the SSSs (SSS 3 and SSS 4)
in the 11 May 2024 superstorm recovery phase, there is no
detailed study of the SSSs occurring during superstorms. We
are conducting a more complete study involving two SSSs in
the storm main phase and four in the storm recovery phase.
We utilize measurements of near-Earth solar wind, polar region
magnetometers and all-sky imaging to obtain a comprehensive
understanding of solar wind-magnetosphere-ionosphere energy
coupling associated with the SSSs. This study will hopefully
increase our understanding of geophysical processes and the
interpretation of the impacts of the May 2024 superstorm and
extreme storms in general.

2 Data and methods

2.1 Data

This work is based on multi-instrument data analyses. The
Wind spacecraft measurements (temporal resolution of 1 min)
of the solar wind plasma and interplanetary magnetic fields
(IMFs) obtained from NASA’s Coordinated Data Analysis
Web are explored to study the near-Earth interplanetary condi-
tions. For a direct analysis of their impacts on the inner magne-
tosphere-ionosphere system, the Wind measurements are shifted
in time to account for the solar wind propagation time from the
spacecraft, at a geocentric distance of ~ 206–221 Earth radii
(RE, 1 RE ~ 6371 km) upstream of the Earth, to the Earth’s
bow shock nose.

The geomagnetic conditions are studied by the SYM-H
index (1-min resolution) collected from the World Data Center
for Geomagnetism, Kyoto, Japan (Iyemori, 1990). SYM-H
presents equatorial geomagnetic field perturbations mainly
caused by westward ring currents encircling the Earth (in the
magnetic equatorial plane) at ~ 2–7 RE (Dessler & Parker,
1959; Sckopke, 1966). Auroral region substorm activity is
explored by the SME and SML indices (1-min resolution)
obtained from the SuperMAG database (Newell & Gjerloev,
2011). The SuperMAG network consists of ~ 300magnetometers

between (north hemispheric) 40� and 80� magnetic latitudes
(Gjerloev, 2012). While SML is associated with substorm-
related westward auroral electrojet current, SME is equivalent
to the traditional (12-magnetometer-based) auroral electrojet
index AE.

The substorm dynamics are studied by auroral region all-
sky images (ASIs) and auroral movies obtained from the obser-
vatories Athabasca (geomagnetic latitude: 60.8�N, longitude:
51.5�W) and Lucky Lake (geomagnetic latitude: 58.2�N, longi-
tude: 42.7�W), Canada. The auroral observations are made by
highly sensitive, broadband, true color RGB (red, green, blue)
Transition Region Explorer (TREx) sensors of the Canada
Foundation for Innovation and the Canadian Space Agency,
provided by the University of Calgary. However, we were able
to collect the ASIs and auroral movies only from two observa-
tories (mentioned above) and only for one of the six SSSs under
this study.

2.2 Methods

Solar wind plasma and IMF parameters are used to identify
upstream solar/interplanetary events/structures. Interplanetary fast
forward (FF) shocks and waves are both characterized by sharp
and simultaneous increases in the proton speed Vp, density Np,
ram pressure Psw, proton temperature Tp, and IMF magnitude B0
(Kennel et al., 1985; Tsurutani et al., 2011). Shocks are character-
ized by a magnetosonic Mach numberMms > 1, while waves have
Mms < 1 (Mms estimation is described in Hajra et al., 2024a).

Compressed plasma and IMF following the shock and wave
are identified as signatures of interplanetary sheaths (Kennel
et al., 1985; Tsurutani et al., 1988). Magnetic clouds (MCs)
are identified by low Tp and low plasma-b (b representing ratio
of the plasma pressure to the magnetic pressure), and slow and
smooth rotations in IMF components Bx, By and Bz (Burlaga
et al., 1981; Gonzalez & Tsurutani, 1987; Marubashi &
Lepping, 2007).

The solar wind plasma and IMF parameters are used to esti-
mate the motional electric field VBs, where V represents Vp, and
Bs is the southward component of IMF. We also computed the
Akasofu ɛ-parameter (Perreault & Akasofu, 1978), an empirical
estimate of the solar wind kinetic energy input rate into the
magnetosphere:

e ¼ V pB2
0 sin

4 h=2ð ÞR2
CF; ð1Þ;

where h is the IMF clock angle, and RCF is the magnetopause
scale size (Chapman & Ferraro, 1931):

Table 1. Details of the SSSs identified during the May 2024 superstorm.

SSS number Onseta (date UT) SSS peak Delayb (h) Storm phasec

SML intensity (nT) Time (date UT)

SSS 1 10 May 19:07 �3639 10 May 19:18 �6.92 MP
SSS 2 10 May 19:34 �4456 10 May 19:48 �6.42 MP
SSS 3 11 May 08:49 �3497 11 May 09:00 +6.77 RP
SSS 4 11 May 09:31 �3432 11 May 09:47 +7.57 RP
SSS 5 11 May 12:20 �2637 11 May 12:45 +10.52 RP
SSS 6 11 May 12:58 �2786 11 May 13:32 +11.30 RP

Notes. a Onset refers to the SSS expansion phase onset time determined from the sharp decrease in the SML index. b Delay is estimated from
the occurrence time of the geomagnetic storm SYM-H peak = �518 nT to the SSS SML peak time. c MP and RP refer to the geomagnetic storm
main phase and recovery phase, respectively.
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RCF ¼ 2B2
E= l0mpN pV 2

p

� �� �1=6
RE; ð2Þ

BE is the equatorial magnetic field on the Earth’s surface, l0 is
the free space permeability, and mp is the proton mass.

Following previous studies (e.g., Turner et al., 2006; Guo
et al., 2011; Hajra et al., 2014; Tsurutani & Hajra, 2023; Hajra
et al., 2024a, 2024b), we estimated rates of the energy dissipa-
tion into the magnetospheric ring current (RC; Akasofu, 1981),
and into the ionosphere through northern (summer) and south-
ern (winter) hemispheric Joule heating (JH; Knipp et al.,
2004) and auroral precipitation (AP; Akasofu, 1981) as follows:

PRC ¼ �4� 1013
@SYM-H�

@t
þ SYM-H�

s

� �
; ð3Þ

P JH ¼ 42:63 PCj j þ 13:26 PC2 þ 0:43 SYM-Hj j
þ 0:0137 SYM-H2; ð4Þ

PAP ¼ 108 SME: ð5Þ
In the above expressions, SYM-H* is the solar wind pressure-
corrected SYM-H (Burton et al., 1975):

SYM-H� ¼ SYM-H � 7:26Psw
1=2 þ 11; ð6Þ

s is the average RC decay time, taken as 8 h for the present
study (Yokoyama & Kamide, 1997; Guo et al., 2011), and
PC is the polar cap potential index. Along with total ionospheric
JH rates, magnetic local time (MLT)-dependent JH rates are
computed in four 6-h long MLT sectors centered at 00:00
(21:00–03:00) MLT, 06:00 (03:00–09:00) MLT, 12:00
(09:00–15:00) MLT, and 18:00 (15:00–21:00) MLT using
MLT-dependent symmetric ring current indices (Ohtani, 2021)
obtained from SuperMAG.

To identify geomagnetic storms, we used the criteria of
SYM-H peak < �50 nT (Gonzalez et al., 1994; originally
defined by 1-h resolution Dst index). SSSs are identified using
the criteria of SML peak < �2500 nT (Tsurutani et al., 2015).

Figure 2. Solar wind, interplanetary and geomagnetic conditions during 10–11 May 2024. From top to bottom, the panels are: (a) solar wind
proton speed Vp, (b) proton density Np (black, legend on the left) and ram pressure Psw (red, legend on the right), (c) proton temperature Tp
(black, legend on the left) and plasma-b (red, legend on the right), (d) interplanetary magnetic field (IMF) magnitude B0 (black), and Bx (blue),
By (green), Bz (red) components, (e) motional electric field VBs, (f) geomagnetic symmetric ring current index SYM-H, and (g) westward aurora
electrojet index SML. Vertical lines indicate a fast forward (FF) shock (black dashed line), an FF wave (black solid line), and the SSS SML
peaks (red short-dotted lines). An interplanetary sheath is marked by a green horizontal bar at the top, and magnetic clouds (MCs) are marked
by light-blue vertical shadings and blue horizontal bars at the top. Red horizontal dashed line in the SML panel (g) indicates SML = �2500 nT,
the threshold level for an SSS. The figure is updated from Hajra et al. (2024a).
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3 Results

3.1 The superstorm and the supersubstorms

Figure 2 shows the near-Earth solar wind plasma and IMF,
along with geomagnetic indices during 10–11 May 2024. The
SYM-H variation shows a complex geomagnetic storm,
characterized by a sudden impulse (SI+) amplitude of +88 nT
at 17:15 UT on 10 May, followed by three successive decreases
to �183 nT (at 19:21 UT on 10 May), �354 nT (at 23:12 UT
on 10 May), and �518 nT (at 02:14 UT on 11 May) in a ~9-h
long storm main phase, and subsequent ~3-day long recovery
(Fig. 2f). The storm main and recovery phases are associated

with very strong magnetospheric substorm activity, including
six SSSs (Table 1), as indicated by the SML index variation
(Fig. 2g). The SSS SML peaks are marked by vertical red
short-dotted lines. The first two peaks (SSS 1, SSS 2)
occurred during the magnetic storm main phase, ~�6.9 and
�6.4 h relative to the strongest SYM-H peak occurrence,
respectively. The other four SSS peaks (SSS 3, SSS 4, SSS 5,
and SSS 6) occurred ~+6.8, +7.6, +10.5, and +11.3 h after
the SYM-H peak, respectively, during the storm recovery
phase. There is no apparent association between the SSS
SML peak occurrences and the storm SYM-H intensifications.
The SSS expansion phases, from the onset of the SML decrease
to the SML peak, had durations of ~11, 14, 11, 17, 25, and

Figure 3. Interplanetary conditions and energy coupling associated with SSS 1 and SSS 2 during 10 May 2024 between 19:00 and 20:00 UT.
From top to bottom, the panels are: (a) Vp, (b) Np, (c) Tp, (d) b, (e) IMF B0, Bx, By, and Bz, (f) VBs, (g) the solar wind energy input rate/Akasofu
ɛ-parameter; (h) the total JH rate (black), and the JH rates during 6-h long MLT sectors centered at 00:00 MLT (blue), 06:00 MLT (green),
12:00 MLT (red), and 18:00 MLT (cyan); (i) SYM-H, and (j) total SML (black), the sunlit ionospheric SML (SMLs, red), and the darkside
SML (SMLd, blue). Vertical short-dashed red lines indicate the onset times of SSS 1 and SSS 2 expansion phases.
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34 min, respectively. They are characterized by fast SML
decreases at rates of �222, �179, �229, �132, �74, and
�33 nT min�1, respectively. It is interesting to note that the
SSS expansion phase duration increased with time, the SSS
intensity decreased, and the SML decreases became slower with
time.

3.2 Interplanetary causes and energy coupling

A detailed study of the interplanetary conditions and their
solar sources during the superstorm is presented in Hajra
et al. (2024a). We mark the interplanetary structures in Figure 2
for reference. The SSSs occurring in the storm main phase (SSS
1, SSS 2) are associated with an interplanetary sheath (marked
by a green horizontal bar at the top) extending from ~17:05 UT

to ~20:50 UT on 10 May, which is characterized by fluctuating
Np, Psw, Tp, and IMF components. Based on a detailed shock
analysis (Rankine, 1870; Hugoniot, 1887, 1889; Abraham-
Shrauner, 1972; Tsurutani & Lin, 1985), Hajra et al. (2024a)
identified an FF shock with Mms of ~7.2 at ~17:05 UT (marked
by a vertical black dashed line), and a wave withMms of ~0.6 at
~22:09 UT on 10 May (marked by a vertical black solid line),
leading to strong plasma and IMF compressions in the sheaths.
From low Tp, b, and smooth IMF component variations, four
MCs are identified from ~20:50 UT on 10 May to ~00:23 UT
on 11 May, from ~03:05 UT to ~07:55 UT, from ~08:15 UT
to ~10:07 UT, and from ~11:53 UT to ~17:26 UT on
11 May. These are marked by light-blue vertical shadings and
blue horizontal bars at the top. The recovery phase SSSs
(SSS 3, SSS 4, SSS 5, and SSS 6) are associated with the MCs.

Figure 4. Interplanetary conditions and energy coupling associated with SSS 3 and SSS 4 during 11 May 2024 between 08:00 and 11:00 UT.
Panels are in the same format as in Figure 3.
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What are the interplanetary triggers for the six SSSs? To
answer this question, solar wind plasma and IMF data for each
of the events are closely studied in Figures 3, 4, and 5.

The SSS 1 expansion phase onset is marked by a sharp
SML decrease at ~19:07 UT on 10 May, reaching an SML peak
of �3639 nT at 19:18 UT, followed by a slower recovery
(Fig. 3j). Interestingly, the SSS 1 SML is almost totally
contributed by the sunlit ionosphere, and the darkside SML is
insignificant. It should be noted that during May (northern hemi-
spheric summer), most of the SML observatories are sunlit most
of the day, even at magnetic midnight. Thus, we show the MLT
distribution of SML for all SSSs in Appendix A, Figure A1. The
strongest SML is observed in the morning MLT sector, between
~06:00 and 10:00 MLT (Fig. A1a). While SSS 1 occurred inside
an interplanetary sheath (Fig. 3b), there is no immediate external

trigger (pressure pulse or shock) at the SSS 1 onset. The onset is
coincident with a small IMF southward turning, from Bz = 0.3 to
�2.4 nT (Fig. 3e). During the SSS 1 expansion phase, the IMF
(B0 ~32 to 38 nT) was almost totally contributed by the By com-
ponent (~�28 to �37 nT), while Bs (~6 nT), VBs (~4 mV m�1,
Fig. 3f), magnetospheric reconnection energy input rate
ɛ (~41 � 1011, Fig. 3g) were low. The peak values of
Bs (~18 nT), VBs (~12 mV m�1), and ɛ (~105 � 1011 W) were
observed during the SSS 1 recovery phase. This may indicate
direct energy driving during SSS 1.

Magnetospheric energy input during an SSS dissipates partly
into the ionosphere through JH and AP and partly into the mag-
netospheric RC. The JH rate was more than one order of magni-
tude higher than the AP and RC dissipation rates (Appendix B
Fig. B1); thus the latter are not shown in Figures 3–5. The peak

Figure 5. Interplanetary conditions and energy coupling associated with SSS 5 and SSS 6 during 11 May 2024 between 12:00 and 15:00 UT.
Panels are in the same format as in Figure 3.
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JH rate during SSS 1 was ~22� 1011 W, with more or less sim-
ilar JH rates at different MLT sectors (Fig. 3h).

While SSS 1 was recovering, the onset of the SSS 2 expan-
sion phase was identified by a sharp SML decrease at 19:34 UT,
SML reaching a peak intensity of �4456 nT at 19:48 UT on
10 May (Fig. 3j). It is one of the strongest SSSs in the
SuperMAG record. The darkside SML is insignificant dur-
ing this SSS as well (with the strongest SML in the ~06:00–
10:00 MLT sector, see Fig. A1a). At the SSS 2 onset, IMF
decreased in amplitude, turned southward following a brief
~1 min northward component, and By changed polarity from
negative to positive (Fig. 3e). The SSS 2 expansion phase
is associated with a weak Bs (VBs) of ~9 nT (~6 mV m�1).
However, Np (Psw) exhibited a significant increase, by a factor
of ~2, from a pre-SSS 2 value of ~23 cm�3 (~27 nPa) to
~46 cm�3 (~47 nPa) during the SSS 2 (Fig. 3f). Thus, the By
polarity reversal and/or the plasma parcel (enhanced Np/Psw)
may be considered as trigger(s) for the SSS 2. While the SSS
2 expansion phase was preceded by a strong energy input rate
(ɛ peak ~105 � 1011 W), ɛ was low (~27 � 1011 W) during
the expansion phase. However, the JH rate peaked
(~34� 1011 W) in the expansion phase and decreased gradually
in the recovery phase when ɛ exhibited a gradual increase to
~174 � 1011 W.

The SSS 3 expansion phase onset at 08:49 UT on 11 May is
marked by sharp decreases in both sunlit and darkside SML
indices (Fig. 4j). However, while the darkside SML reached a
peak of �2006 nT at ~08:55 UT followed by a gradual
recovery, the sunlit SML exhibited further intensification
leading to the SSS 3 peak SML intensity of �3497 nT at
09:00 UT (intense SML in the ~20:00–08:00 MLT sector, see
Fig. A1b). The SSS 3 expansion phase onset was preceded
by an IMF southward turning at 08:26 UT (Fig. 4e), followed by
an almost stable IMF Bs (eastward VBs; Fig. 4f) of ~36–37 nT
(~21–28 mV m�1) throughout the SSS 3, signifying both load-
ing-unloading and direct energy driving for SSS 3. The energy
input rate during the SSS 3 was significantly high, with a peak
ɛ ~347 � 1011 W (Fig. 4g). Interestingly, the JH rates at 06:00,
12:00, and 18:00 MLT sectors exhibited a gradual increase
during SSS 3, while the midnight (00:00 MLT) sector JH rate
was significantly higher than those at other MLT sectors, and
peaked to ~91 � 1011 W at 09:05 UT, slightly after the SSS
3 peak (Fig. 4h). For the SSS 3 event, we were unable to
identify any “immediate” external trigger.

The SSS 4 expansion phase onset was recorded at 09:31 UT
on 11 May, when the IMF Bs (and B0) began to become weaker
(Fig. 4e). However, the onset was coincident with a large
Np (Psw) increase from a pre-SSS 4 value of ~14 cm�3

Figure 6. All-sky images (ASIs) at Athabasca, Canada, during SSS 3 on 11 May 2024. (a) ASI montages at every minute from 08:40 to
08:59 UT, directions are shown by arrows, UTs are mentioned for each of the ASIs; (b) ASI S-N keograms, Athabasca MLT is shown in the
x-axis; and (c) SML variation. The substorm onset determined by the sharp SML decrease is marked by a vertical red short-dashed line, and the
corresponding ASI is marked by a red downward arrow.

R. Hajra et al.: J. Space Weather Space Clim. 2025, 15, 51

Page 8 of 16



(~15 nPa) to a peak value of ~42 cm�3 (~46 nPa) during SSS 4
(Fig. 4b). Significant asymmetry is observed in the SSS 4 SML
profile (Fig. 4j): While the darkside SML started decreasing
after 09:39 UT, the sunlit SML exhibited a sharper intensifica-
tion leading to overall SML intensification to �3432 nT at
09:47 UT (see Fig. A1b for MLT distribution of SML). While
VBs (Fig. 4f) and ɛ (Fig. 4g) exhibited gradual decreases follow-
ing the SSS 4 onset, the SSS 4 expansion was associated with a
sharp increase in the JH rates at different MLT sectors and a
gradual decrease in the JH rates during the SSS 4 recovery
phase (Fig. 4h).

The SSS 5 expansion phase onset is recorded at 12:20 UT
on 11 May, followed by a gradual SML decrease leading to
an SML peak of �2637 nT at 12:45 UT (Fig. 5j). The onset
is preceded by an IMF southward turning at 11:49 UT
(Fig. 5e), with a more or less stable Bs (VBs; Fig. 5f) of
~21 nT (~18 mV m�1), gradually increasing ɛ (Fig. 5g) and
JH (Fig. 5h) rates during SSS 5. Np (Psw) was gradually
decreasing during the SSS (Fig. 5b). While the SSS SML is
dominantly attributed to sunlit SML (with the strongest SML
in the ~02:00–10:00 MLT sector, see Fig. A1c), there are no
apparent differences in JH rates at different MLT sectors.

The SSS 5 recovery is interrupted by the onset of SSS 6 at
12:58 UT on 11 May. The SSS 6 expansion is relatively grad-
ual, peaking to �2786 nT at 13:32 UT (Fig. 5j). This SSS was
associated with stable Bs (Fig. 5e), VBs (Fig. 5f), and ɛ (Fig. 5g)
and JH (Fig. 5h) rates. While the SSS SML is dominantly

attributed to sunlit SML (see Fig. A1c), there are no apparent
differences in the JH rates at different MLT sectors.

3.3 SSS imaging

Figure 6 shows selected ASIs (Fig. 6a) and ASI keograms
(Fig. 6b) from Athabasca (geomagnetic latitude: 60.8�N,
longitude: 51.5�W), Canada, during SSS 3 on 11 May (see
Supplementary material Video S1 for corresponding auroral
movie, which shows strong and violent auroral activities over
the observatory). From 08:40 to 08:47 UT, the ASIs and the
S-N keograms show almost clear sky without any auroral arc
forming within the field-of-view of the instrument. The SSS 3
onset at 08:49 UT (based on the sharp SML decrease,
Fig. 6c) is associated with a prominent auroral activation in
the Athabasca keogram (at 21:51 MLT). A strong auroral signa-
ture is prominent in the southern part of the sky up to 08:52 UT
(21:54 MLT). The auroral signatures are found to move
poleward in the substorm expansion phase, followed by strong
auroral activity above the instrument up to ~09:06 UT
(22:08 MLT). Afterwards, auroral signatures are observed in
the northern part of the sky. The auroral forms with well-defined
sharp edges and significant brightness represent discrete aurora
(e.g., Clausen & Nickisch, 2018).

The Lucky Lake (geomagnetic latitude: 58.2�N, longitude:
42.7�W) observatory, located southeast of Athabasca, registered
the arc development ~1 min later, at 08:50 UT (Fig. 7a)

Figure 7. ASIs at Lucky Lake, Canada, during SSS 3 on 11 May 2024. Panels are in the same format as in Figure 6.
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(see Supplementary material Video S2 for corresponding auro-
ral movie, which shows strong and violent auroral activities
over the observatory). This time lag may imply equatorward
movement of the auroras from Athabasca. Following the onset,
the entire SSS 3 expansion and recovery phases are character-
ized by strong and dynamic auroral arcs (discrete aurora) in
all directions, as confirmed by the keogram (Fig. 7b). Compar-
ing keograms at Athabasca and Lucky Lake, equatorward
expansion of the auroral activity can be inferred.

4 Summary

We presented a detailed study of six SSSs occurring during
the 10–11 May 2024 geomagnetic superstorm. Near-Earth solar
wind conditions and solar wind-magnetosphere coupling are
explored using space and ground-based data for a comprehen-
sive understanding of the events. The main findings are summa-
rized below.

1. The May 2024 superstorm is an outlier, which has been
caused by multiple solar flares and multiple coronal mass
ejection (CME) releases (Hajra et al, 2024a), similar to
the March 1989 superstorm event. The multiple sheaths
and an MC led to the 1989 superstorm main phase to
be the longest (~24 h) in history (Lakhina & Tsurutani,
2016; Boteler, 2019; Tsurutani et al., 2024), and here
for the May 2024 superstorm, three MCs and four SSS
events occurring after the peak SYM-H, have led this
to have an extremely strong and long recovery phase
(~3 days). Is this the longest recovery phase on record?

2. Among the six SSSs identified in this work, two (i.e.,
SSS 1 and SSS 2) occurred in the storm main phase,
and four (i.e., SSS 3, SSS 4, SSS 5, and SSS 6) occurred
in the storm recovery phase. The SSS SML peaks pre-
ceded or succeeded the superstorm SYM-H peak by more
than 6 h. That is, the SSS occurrences and/or their (SML)
intensities do not necessarily correlate with the super-
storm (SYM-H) intensity. Hajra et al. (2016) showed that
among seventy-four SSSs identified during 1981–2012,
~86% occurred during the magnetic storm main phase,
10% during the storm recovery phase, and 4% during geo-
magnetic quiet or not associated with any geomagnetic
storms at all. In addition, Hajra et al. (2016) did not find
any statistical correlations between SSS SML intensities
with instantaneous SYM-H or storm SYM-H peak inten-
sities. Interestingly, here we observed more SSSs in the
recovery phase (four) than in the main phase (two), con-
trary to the Hajra et al. (2016) statistical result based on a
large number of event studies.

3. Two SSSs occurring during the storm main phase were
associated with an interplanetary sheath. Four SSSs occur-
ring during the storm recovery phase were associated with
interplanetary MCs. Statistically, ~54% of the SSSs are
reported to be associated with interplanetary sheaths, and
~46% with MCs (Hajra et al., 2016; Despirak et al., 2019).

4. For four SSS events (SSS 1, SSS 2, SSS 5, and SSS 6),
the SML intensifications were totally contributed by the
sunlit ionosphere, while no SML intensifications were
observed in the darkside of the globe. For two SSSs
(SSS 3, and SSS 4), the darkside SML exhibited sharp

increases during the SSS onsets, while the SML peak
intensification was mainly recorded in the sunlitside.
Are these results related to the fact that most of the
stations were sunlit during the SSS events (occurring
during May, northern hemispheric summer)? From the
MLT-UT distributions of SML, the strongest SML is
observed in the ~06:00–10:00 MLT sector for SSS 1
and SSS 2, and in the ~02:00–10:00 MLT sector for
SSS 5 and SSS 6, while SML is found to intensify
between ~20:00 and ~08:00 MLT during SSS 3 and
SSS 4. These results clearly highlight distinguished
characteristics of SSSs compared to nominal Akasofu
(1964)-type substorms, where activities are suggested to
be mainly magnetic midnight sector phenomena. It may
be mentioned that Gjerloev et al. (2010) found, based
on events and statistical analyses (including cases during
northern hemispheric summer), that the SML-dark index
showed no measurable response while the SML-sunlit
index clearly intensified during substorm growth phase
(following an IMF southward turning). They inferred a
possible important role of ionospheric conductivity during
the substorm growth phase. Present results seem to be
consistent with the Gjerloev et al. (2010) results, but for
the SSS expansion and recovery phases. Tsurutani &
Gonzalez (2007) suggested that substorm magnetospheric
convection electric fields are different from those related
to geomagnetic storm convection bays. It is possible that
in some cases the SSS electric fields are the same as the
broad storm electric fields.

5. None of the SSSs was triggered by an interplanetary
shock or a wave. Onsets of SSS 2 and SSS 4 were asso-
ciated with plasma parcels characterized by strong Np and
Psw, while there were no external triggers identified for
other SSSs.

6. SSS 1 and SSS 2 were associated with a strong By field,
while Bs, VBs and ɛ were significantly low. By was

Figure 8. “Linear input tippy bucket” substorm model. Accumulated
magnetic reconnection ɛ-energy starting from 3 h prior to the SSS
onsets up to the onsets of the SSSs. Top x-axis marks the time in
hours from the SSS onset, while bottom x-axis marks the linear
effectivity of the accumulated energy in causing an SSS. The
effectivity is assumed to increase linearly from 0% at 3 h prior to the
SSS onset up to 100% at the SSS onset.
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strongly negative during the entire SSS 1, while By shar-
ply changed from negative to positive at the SSS 2 onset,
and again from positive to negative during the expansion
phase of SSS 2. Previous studies have discussed the
important role of IMF By polarity on substorm occurrence
rate (e.g., Hsu & McPherron, 2003; Liou et al., 2020;
Ohma et al., 2021; Laitinen et al., 2024, and references
therein). However, the physical mechanism of By impact
is not well understood.

7. SSS 3, SSS 4, SSS 5, and SSS 6 were characterized by
strong Bs, VBs, and ɛ, indicative of a strong dayside
magnetopause reconnection mechanism leading to mag-
netospheric energy flow and consequent SSSs.

8. Analysis of all-sky images from Athabasca (60.82�N,
51.53�W) and Lucky Lake (58.18�N, 42.73�W) in Canada
during SSS 3 indicates the formation of discrete aurora with
well-defined sharp edges and significant brightness. In the
SSS expansion phase, the aurora exhibited a fast equator-
ward movement. Previously, Hajra & Tsurutani (2018)
reported fast movement of SSS-related bright auroras from
the pre-midnight sector to the post-midnight sector, which
is consistent with the present result. Unfortunately, imaging
data are not available for other SSSs under this study. Fur-
ther studies of imaging data for more SSS cases are
required for a better understanding of SSSs.

5 Discussion

Akasofu (2015) discussed the substorm energetics with a
“tippy bucket” model. Accordingly, the low conductivity of
quiet-time/pre-substorm ionosphere leads to accumulation
of solar wind kinetic energy (when injected at a high rate of
~1011 W through magnetic reconnection) in the inner magneto-
sphere. However, when the accumulated energy reaches
~1016 J, the magnetosphere-ionosphere system becomes unsta-
ble and the accumulated energy is released impulsively, causing
an auroral substorm (see also Akasofu, 2023). Zhou &
Tsurutani (2001) suggested that southward IMF reconnection

energy could provide substorm precursor energy up to ~1.5 h.
Beyond this general time limit, the stored energy would have
dissipated away. Based on the Akasofu (2015, 2023) and Zhou
& Tsurutani (2001) works, here we introduce a modified,
“linear input tippy bucket” substorm model. Figure 8 shows
integrated ɛ-energy input starting from 3 h prior to the onset
times of the six SSSs under this study. Considering that the
probability of the SSS onset at 3 h prior to the actual onset is
0, and that probability is increased to 1.0 at the actual onset,
it is assumed that the effectiveness (in causing an SSS) of the
stored energy increases linearly from 0% at 3 h prior to 100%
at the SSS onset.

The input energy effectiveness is found to increase with
increasing energy input, as confirmed by Pearson’s linear corre-
lation coefficient r-values of 0.93, 0.97, 0.98, 0.95, 0.94, and
0.94 between the effectivity and input energy for SSS 1, SSS
2, SSS 3, SSS 4, SSS 5, and SSS 6, respectively. However,
effective energy exhibits a large variation from one SSS to
another. For example, the 50% effective energy is
~(1–2) � 1016 J for SSS 1, SSS 2, and SSS 6, it is
~4 � 1016 J for SSS 5, and ~5.5 � 1016 J for SSS 3 and
SSS 4. The 100% effective energy is ~(5–6) � 1016 J for
SSS 1, SSS 2, SSS 5, and SSS 6, ~10 � 1016 J for SSS 3,
and ~15 � 1016 J for SSS 4. Thus, from our linear tippy bucket
substorm model, it may be inferred that an accumulation of
~1017 J of solar wind kinetic energy in the magnetosphere
seems to be effective in the impulsive occurrence of an SSS
irrespective of an external trigger. It may be recalled that
~1016 J energy was empirically suggested to be an average
energy required for a moderate-intensity substorm (Akasofu,
2023).

Two of the SSS onsets (SSS 2 and SSS 4) were preceded by
solar wind plasma parcels characterized by strong ram pressure.
Solar wind pressure pulses will cause compression of the day-
side magnetopause boundary layer, energizing the boundary
layer electrons and ions in E?direction (Zhou & Tsurutani,
1999). This solar wind ram energy input will be converted into
plasma waves (Lakhina et al., 2000), which will scatter the
boundary layer particles and lead to precipitation into the iono-
sphere, perhaps causing enhanced Joule heating noted in this

Figure 9. Schematic of ion (p+) and electron (e�) penetration, and consequent charge separation. Circles with dots in the center indicate
magnetic fields pointing out from the plane of the page.
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paper. However, it should be noted that much of this energy
input into the equatorial magnetopause might not reach the
ionosphere. Much of this viscous interaction (Axford & Hines,
1961) will not be measured by current observational techniques
as well (Tsurutani, 2024).

Higher solar wind plasma densities (in solar wind density
pulses) or velocities (in shocks) will cause a greater abundance
of solar wind ion penetration into the low latitude magnetopause
boundary layer than solar wind electrons (see discussion in
Tsurutani, 2024), leading to strong charge separation, as shown
in Figure 9. This charge separation (deeper proton penetration
into the magnetosphere) could lead to Joule heating all along
the dayside magnetopause boundary layer.

What about SSS events that are not triggered by shocks/
interplanetary plasma parcels or higher solar wind velocities?
Magnetic reconnection at the dayside equatorial magnetopause
may inject energy into the boundary layer with similar conse-
quences to the above two mechanisms.

The above three possible mechanisms for energy input into
the dayside magnetopause can all be explanations for enhanced
Joule heating in the dayside ionosphere. Perhaps all three
mechanisms are occurring at the same time. Dayside Joule
heating has not been examined for isolated substorms. If it is
found that dayside Joule heating occurs for isolated substorms,
then perhaps all three mechanisms are occurring. However, if
isolated substorms do not have dayside Joule heating in the
equatorial magnetopause boundary layer, this will be an argu-
ment for viscous interaction energy input.
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Appendix A: Magnetic local time dependence of the SSSs

Figure A1 shows MLT dependence of SML variations during the six SSSs under this study. While the SSS SML strength is determined from the
total SML index (shown by solid lines), MLT-UT contour plots indicate significant MLT dependence of SML during the SSSs. The SSS 1 and SSS
2 peaks are associated with the strongest SML values around 06:00–10:00 MLT (Fig. A1a), the SSS 5 and SSS 6 with the strong SML values around
02:00–10:00 MLT (Fig. A1c). However, the SSS 3 and SSS 4 are associated with SML intensifications from ~20:00 to ~08:00 MLT (Fig. A1b).
Thus, the SML intensifications during SSS 1, SSS 2, SSS 5, and SSS 6 are mainly contributed by the magnetic daytime ionosphere, while those
during SSS 3 and SSS 4 are contributed by the magnetic nighttime ionosphere.

Figure A1. MLT dependence of SML during the six SSSs. MLT-UT contour plots show variations of SML associated with the SSSs during
10–11 May 2024. The SML values corresponding to different colors are shown by the color bar at the top. On each plot superposed are the UT
variations of total SML indices, legend on the right.
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Appendix B: Energy coupling

Figure B1 shows the energy input and dissipated rates during 10–11 May 2024. The IMF magnitude and components, and the SYM-H and
SML indices are shown for reference. The JH rate (Fig. B1c) is ~1 order of magnitude larger than the RC and AP rates (Fig. B1c). Thus, we omitted
RC and AP from the substorm energy budget discussion in the main text.

Figure B1. Magnetosphere-ionosphere energy coupling during 10–11 May 2024. From top to bottom, panels are: (a) IMF B0, and Bx, By, Bz

components, (b) Akasofu ɛ-parameter, (c) the total JH rate, (d) rates of auroral precipitation AP, and ring current dissipation RC, (e) SYM-H,
and (f) SML.
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