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In a recent publication Wu and Yoon �Phys. Rev. Lett. 99, 075001 �2007�� propose that low-beta
protons may be heated by turbulent Alfvén waves via nonresonant wave-particle scattering. The
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adopted in the above reference in more detail. © 2009 American Institute of Physics.
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In a recent publication Wu and Yoon1 propose that low-
beta protons may be heated by turbulent Alfvén waves via
nonresonant wave-particle scattering. This is an important
issue in view of the as-yet-unexplained origins of hot solar
and stellar coronae.2,3 The discussion in Ref. 1 is based on
quasilinear theory4,5 and the process is mainly applicable for
low-beta protons. The present brief communication is a re-
sult of private communications with our colleagues, who led
us to realize that the terse discussion in Ref. 1 did not com-
pletely succeed in spelling out the most salient points. We
also realize that we should have clarified some conceptual
issues and have described the theoretical method in more
detail.

The purpose of this Brief Communication is to clarify
what it means by “heating,” to further elaborate on the new
concept introduced in Ref. 1 and to further explain the theory
and method adopted in Ref. 1. Let us begin with the meaning
of heating. By definition, plasma heating represents an en-
hancement in “average kinetic energy” or “temperature.”
However, temperature is meaningful only if the microscopic
motion of the particles is stochastic. In this sense, an increase
in the average kinetic energy is not necessarily equal to heat-
ing. Taking the moment of the particle velocity distribution
function can be misleading since in some cases the increase
in the kinetic energy may be owing to bulk fluid motion
rather than randomized individual particle motion. Another
important aspect is that heating must be physically irrevers-
ible. It is customary to regard the increase in thermal energy
as a result of the dissipation process where a certain type of
energy is partially converted to heat. In short, it is customary
to regard true heating as satisfying two criteria, namely, sto-
chastic motion of the particles and some sort of dissipation
�meaning irreversibility�.

The heating process discussed in Ref. 1, however, does
not involve dissipation. While the proton motion regarded
in Ref. 1 is “random,” it is so only by virtue of the fact
that the particle motion is “parasitic” to the turbulent nature

associated with the waves—see the analytic expression �10�
in Ref. 1. Subsequent numerical work carried out in Ref. 6
demonstrates that the so-called heating process discussed in
Ref. 1 is reversible in that when the turbulence subsides, the
temperature diminishes and returns to the initial value. In
view of these, Ref. 6 coined the term “pseudoheating” to
describe the enhanced average kinetic energy. Alternatively,
the increase in average particle kinetic energy discussed in
Refs. 1 and 6 can be viewed in terms of an “apparent
temperature.”

To recapitulate, the theory discussed in Ref. 1 suggests
that when turbulent Alfvén waves attain a high energy den-
sity in natural plasmas, these waves can result in a high
apparent temperature. However, such a process must not be
confused with the customary thermodynamic heating that in-
volves irreversibility and dissipation.

The second point is that while the notion of kinetic en-
ergy density of particle motion induced by waves is not new,
Ref. 1 made a specific application of this concept for low-
beta protons reacting to turbulent Alfvén waves. In general,
the particle kinetic energy density induced by an arbitrary
wave mode in magnetized plasmas is given by the formal
expression7,8
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where �ij��k ,k� is the linear dielectric response tensor and
ai�k� denotes the polarization vector. Equation �1� reflects
the fact that the computation of the induced particle kinetic
energy density in general cannot be derived on the basis of
intuitive discussions. For low-frequency Alfvén waves, how-
ever, a substantial simplification of Eq. �1� can be made, and
the result is given by
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Here vA=B /	4�npmp stands for Alfvén speed, np and mp

being the proton number density and proton mass.
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Indeed, for this particular case one could alternatively
derive the above result based on a simple fluid theory. From
the available fluid theory one could easily derive the velocity
perturbation �v responding to magnetohydrodynamics
�MHD� Alfvén wave magnetic field perturbation �B �Ref. 9�,

�v =
�B

	4�npmp

. �3�

Correspondingly the kinetic energy density is

1

2
npmp�v2 =

�B2

8�
. �4�

In case there exist other discrete coherent Alfvén waves si-
multaneously in the system that may also induce fluid mo-
tion, then intuitively the spectral representation of Eq. �3�
may be treated by the superposition of Fourier spectral
components,
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In this case we have

1

2
npmp�v2 = 


k

Bk
2

8�
, �6�

where a spatial average has been taken.
Note that both Eqs. �6� and �10� in Ref. 1 are seemingly

identical and compatible with Eq. �2�. However, a crucial
distinction should be made between these two results. The
kinetic energy density described by Eq. �6� is associated with
the bulk fluid motion, and therefore it does not represent a
thermal energy density. Consequently, it has nothing to do
with heating. As noted already, true heating must involve
randomization of individual particle motion. In fluid theory
the notion of individual particle motion is absent. On the
other hand, in Ref. 1 we show that there is an apparent tem-
perature associated with random proton motion which pos-
sesses a Maxwellian distribution without bulk motion.

Finally we discuss the third point. In Ref. 1 several es-
sential assumptions are made at the outset: among them is
that the wave frequency �k and proton parallel velocity v�

satisfy the following inequality:

�p � �k � kv� , �7�

where �p=eB /mpc is the proton gyrofrequency. Most impor-
tantly the turbulent Alfvén waves are treated as intrinsic and
their spectral energy density is in general slowly varying
with time. This last point deserves further elaboration, which
is given below. Conceptually Alfvén waves under consider-
ation are implicitly excited by a certain “source mechanism.”
For instance, a certain kinetic instability attributed to a small
population of “energetic ions” may be operative. In such a
situation, thermal protons may determine the wave disper-
sion relation, whereas the growth �or damping� rate is mainly

dictated by the source ions. Since the dynamics of each spe-
cies may be described separately, Ref. 1 neglects the discus-
sion of instability but simply assumes that the growth rate
exists so that time dependence of the wave energy is
known—see the Appendix for further details.

In closing we reiterate that the primary objective of this
brief communication is to clarify issues that are related to
Ref. 1. Hence in the present discussion we shall not review
or cite other publications on quasilinear theory which may be
relevant and interesting from a general viewpoint.
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APPENDIX: THEORETICAL ISSUES

Quasilinear kinetic theory is widely used in the study of
solar wind. For a recent review of quasilinear kinetic theory
in the context of solar physics, see Ref. 10. However, most of
the existing theories rely on resonant wave-particle pro-
cesses. Reference 1, on the other hand, emphasized that non-
resonant interaction of Alfvén waves and protons may lead to
the apparent heating of low-beta protons. In the present Ap-
pendix, we supplement the discussions presented in Ref. 1.

Let us consider three species of particles: thermal pro-
tons, electrons, and a tenuous population of “source” ions.
The tenuous population of energetic ions is responsible for
the excitation of Alfvén waves via cyclotron resonance. We
denote the distribution functions of these particles by Fj,
where j= p ,e ,s stand for protons, electrons, and source ions,
respectively. Although electrons do not play any role in the
quasilinear theory, it is necessary to include them in the dis-
persion equation, which takes the form

�2 = c2k2 − �
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where �pj and � j are the plasma frequency and gyrofre-
quency defined for species j, respectively. If we define the
solution of Eq. �A1� by ��k�=�k+ i	k, where �k is the real
frequency and 	k is the growth rate, then the real frequency
�k can be determined by neglecting the low-density source
ions. These ions are important only for the discussion of the
growth rate 	k. Thus we have
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Equation �A2� leads to the desired dispersion relation
�k=kvA upon considering

��e� � �p � �k 
 kv� . �A3�

On the other hand, the growth rate 	k may be approximately
calculated by a separate equation
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where the contributions from the background electrons and
protons are ignored. These particles cannot resonate with
Alfvén waves, hence they have no contribution. Alfvén
waves can be excited if the source ions possess a distribution
that satisfies
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A prime example is when the source ions form a beam with
average speed much higher than the Alfvén speed. In Ref. 1
we postulated that the discussion of the wave excitation is
beyond the scope of the paper. That is, we assumed that 	k is
known. Here, we have supplemented our earlier discussion.

According to quasilinear theory we may write the two
separate kinetic equations for Fp and Fs as follows:
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In deriving the first equation in Eq. �A6� we have made use
of the relation 2	kBk

2=�Bk
2 /�t. The discussion of the second

kinetic equation in Eq. �A6�, namely, the quasilinear diffu-
sion equation for the source ions, and the growth rate �A4� is
omitted in Ref. 1 because it is unimportant to the essence of
the theory.

1C. S. Wu and P. H. Yoon, Phys. Rev. Lett. 99, 075001 �2007�.
2J. H. M. M. Schmitt, Astron. Astrophys. 318, 215 �1997�.
3J. L. Kohl, G. Noci, S. R. Cranmer, and J. C. Raymond, Astron. Astro-
phys. Rev. 13, 31 �2006�.

4R. C. Davidson, Methods in Nonlinear Plasma Theory �Academic, New
York, 1972�.

5N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics
�McGraw-Hill, New York, 1973�.

6C. B. Wang and C. S. Wu, Phys. Plasmas 16, 020703 �2009�.
7Yu. L. Klimontovich, The Statistical Theory of Nonequilibrium Processes
in a Plasma �Pergamon, New York, 1967�.

8D. B. Melrose, Plasma Astrophysics �Gordon and Breach, New York,
1980�, Vol. I, Chap. 2.

9L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of
Continuous Media �Academic, New York, 1960�, Chap. 8, p. 213.

10E. Marsch, Living Rev. Solar Phys. 3, 2 �2006�; http://
solarphysics.livingreviews.org/Articles/lrsp-2006-1/.

054503-3 On nonresonant proton heating… Phys. Plasmas 16, 054503 �2009�

Downloaded 01 Sep 2009 to 222.195.76.232. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1103/PhysRevLett.99.075001
http://dx.doi.org/10.1007/s00159-005-0026-7
http://dx.doi.org/10.1007/s00159-005-0026-7
http://dx.doi.org/10.1063/1.3068472

