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The present discussion revisits the problem of nonresonant heating of ions by Alfvénic turbulence.
It is shown that in the limit of weak Alfvénic turbulence it is appropriate to describe the nonresonant
heating of protons as perpendicular pseudoheating. However, in a more general situation it is
demonstrated that the more appropriate view of the nonresonant heating process is the pitch-angle
scattering in the wave frame. The purpose of this paper is to generalize the earlier theory to the case
in which the energy density of the turbulent Alfvén waves is not necessarily very low. For weakly
turbulent situation the present analysis confirms the earlier finding by Wu and Yoon �Phys. Rev.
Lett. 99, 075001 �2007��, according to whom the nonresonant Alfvén wave heating is described as
leading to perpendicular pseudoheating of the protons. However, for more general situation the
present paper demonstrates that pitch-angle scattering plays the principal role in the Alfvén wave
pseudoheating process, and thereby shows that the perpendicular heating discussed by Wu and Yoon
is kinetic in nature, not attributable to fluid motion. © 2009 American Institute of Physics.
�doi:10.1063/1.3236749�

I. INTRODUCTION

A theory of nonresonant heating of protons by Alfvén
waves is presented in Ref. 1 according to which, if T0 is the
initial proton temperature, then the nonresonant interaction
with Alfvén waves leads to an “apparent” increase in the
perpendicular temperature as given by

T� = T0 +
W

np
, �1�

where W=BW
2 /8�= �8��−1�dk�Bk�2 is the wave magnetic

field energy density and np is the thermal proton density.
According to magnetohydrodynamics theory coherent Alfvén
waves with magnetic field BW may induce fluid motion with
velocity v0 �Ref. 2�

v0 =
BW

�4�npmp

. �2�

The induced fluid kinetic energy density is therefore

1

2
mpv0

2 =
BW

2

8�np
=

W

np
. �3�

Here we should note that Ref. 1 is based on kinetic theory of
turbulent Alfvén waves. Even though Eqs. �1� and �3� share
some resemblances, their physical natures are fundamentally
different. This point is expounded in more detail in our re-
cent paper.3

The nonresonant Alfvén wave heating theory proposed
in Ref. 1 is important in the context of the solar coronal
heating and solar wind acceleration problem. In the litera-
ture, one of the widely accepted views is that coronal heating
and solar wind acceleration is intimately related to Alfvén
waves.4–9 However, most discussions focus on resonant
cyclotron wave-particle interaction. Against this backdrop
Ref. 1 suggests that nonresonant interactions may lead to a
substantial increase in proton thermal energy.

The essential findings in Ref. 1 are first, the nonresonant
heating process does not involve dissipation of wave energy.
Heating in the customary sense requires some form of dissi-
pation, however. Second, the randomized proton motion im-
plicit in the discussion is actually parasitic to turbulent
waves. As such, it is implied that if the wave energy density
should subside, then the original particle motion without the
wave field should be restored. As a matter of fact, Ref. 10
carried out just such a numerical experiment in which it was
shown that the proton temperature returned to its original
value when the waves were allowed to subside. Conse-
quently, the apparent heating discussed in Refs. 1, 3, and 10
is “pseudoheating.”

The purpose of this paper is to generalize the earlier
theory to the case in which the energy density of the turbu-
lent Alfvén waves is not necessarily very low. For weakly
turbulent situation, the analysis in Ref. 1 is applicable, ac-
cording to which, the nonresonant Alfvén wave heating is
described as leading to perpendicular pseudoheating of the
protons. The present analysis demonstrates that pitch-angle
scattering plays the principal role in the Alfvén wave
pseudoheating process and thereby confirms once more that
the perpendicular heating discussed in Ref. 1 is kinetic in
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nature, not attributable to fluid motion, despite the superficial
similarity associated with Eqs. �1� and �3�.

The organization of the present paper is as follows: in
Sec. II we first present an alternative approach to quasilinear
theory that includes nonresonant wave-particle interaction.
Subsequently we apply the theory to thermal protons in Sec.
III. Finally we present discussion and conclusions in Sec. IV.

II. QUASILINEAR THEORY INVOLVING
NONRESONANT INTERACTIONS

The quasilinear kinetic equation for electromagnetic
waves is reviewed in several publications––see, e.g., Refs. 11
and 12. For Alfvén waves or magnetosonic waves, the ki-
netic equation is greatly simplified because k�v� /�s�1. On
the basis of the discussion presented in the Appendix we
generalize the desired kinetic equation to include nonreso-
nant wave-particle interactions,

�Fs

�t
=

es
2

4ms
2 �

n=�1
	 dk

1

v�

R̂ � 
v������ − n�s − kzvz�

��Ek�2 −
�

2 � �
�P 1

� − n�s − kzvz
 � �Ek�2

�t
�R̂Fs� ,

�4�

where the subscript s indicates ion species; �Ek�2 represents
the wave electric field associated with Alfvén or magneto-
sonic waves; �s=esB0 /msc is the gyrofrequency; es and ms

are charge and mass, respectively; and B0 is the ambient

magnetic field intensity, and the operator R̂ is defined by

R̂ = �1 −
kzvz

�
 �

�v�

+
kzv�

�

�

�vz
. �5�

For Alfvén waves resonant wave-particle inter-
actions cannot occur for thermal protons since �s�� and
�s�kzvz. Consequently, we have

�

2 � �
�P 1

� − n�s − kzvz
 � �Ek�2

�t
� −

1

2�s
2

� �Ek�2

�t
, �6�

so that Eq. �4� reduces to

�Fs

�t
=

1

8�mpnp
	 dk

1

v�

� �Bk�2

�t
R̂�v�R̂Fs� , �7�

where Bk is the magnetic field associated with Alfvén waves;
np and mp denote proton number density and proton mass,
respectively.

Reference 1 derives the same equation by replacing the
delta function with the following nonresonant approxima-
tion:

	

�� � �s − kzvz�2 + 	2 �
	

�s
2 →

1

2�s
2

�

�t
, �8�

which is a customary practice in the literature.11 Even though
this procedure leads to formally identical result with Eq. �6�,
the customary approach leads to the issue of self-consistent
determination of 	. In contrast, the advantage of Eq. �6� is
that one does not need to invoke finite 	 at all, so that the
theory becomes applicable to a situation where the plasma is

stable �	=0� but the turbulent Alfvén waves are generated
elsewhere, hence ��Ek�2 /�t varies with time simply due to
external wave source.

The kinetic energy of each ion is conserved in the Alfvén
wave frame. Consequently it is convenient to work with a
spherical coordinate system defined in the wave frame to
describe the distribution function. In such a representation,
Eq. �7� reduces to pitch-angle diffusion equation,

�Fs�v,
,��
��

=
�

�

��1 − 
2�

�Fs�v,
,��
�


 , �9�

where 
=cos � and � is the pitch angle defined in the wave
frame. Moreover, � is the normalized “time” variable defined
by

� �
BW

2

2B0
2 =	 dk

Bk
2

4B0
2 . �10�

Note that the variable � represents the turbulence level rather
than an actual time. If ��1, then it represents weak turbu-
lence. Equation �9� and its solution can be applied to mod-
erate values of �. Consequently, the present formalism is
capable of dealing turbulence that is weak but not necessarily
very weak.

Let us assume a functional form for the velocity distri-
bution function,

Fs�v,
,�� = Gs�v�fs�
,�� . �11�

In the low-beta limit we may consider a particularly simple
form

Gs�v� =
��v − vs�

2�vs
2 , �12�

where vs denotes the initial velocity �at �=0� of the ion spe-
cies s defined in the wave frame. With the above consider-
ation the reduced distribution fs�
 ,�� satisfies the same
pitch-angle diffusion Eq. �9�. The general solution is given
by

fs�
,�� = �
l=0

 �l +
1

2
Pl�
�

� 	
−1

1

d
̄Pl�
̄�e−l�l+1��fs�
̄,0� , �13�

where Pl�
� is the Legendre polynomial of order l.
For a simple initial distribution given by

fs�
,0� = ��
 − 
0� , �14�

where 
0 is the initial value of 
 at �=0, the solution �13�
reduces to have

fs�
,�� = �
l=0

 �l +
1

2
Pl�
�Pl�
0�e−l�l+1��. �15�
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III. THERMAL PROTONS

Let us pay attention mainly to thermal protons �s= p�
henceforth. Let us assume that the wave-frame velocity dis-
tribution is given by

Gp�v� = ��v − vA�/�2�vA
2� , �16�

and that 
0=1. In the limit of small � �i.e., weak turbulence�,
solution �15� may be approximately written as13

fp��,�� �
1

2�
exp�−

�2

4�
 , �17�

for small pitch angle �. If we write vA��v� and make use of
the relation

4vA
2� =

BW
2

4�n0mp
=

2T�

mp
, �18�

where

T� �	 dk
Bk

2

8�n0
=

BW
2

8�n0
, �19�

is the “apparent perpendicular temperature” discussed in Ref.
1, then we obtain

fp =
mp

2T�

exp�−
mpv�

2

2T�

 , �20�

which is comparable to that obtained in Ref. 1, provided we
further assume that the initial temperature is zero. The above
discussion shows that in the limit of weak Alfvénic turbu-
lence it is appropriate to describe the proton distribution
function in terms of the coordinates �v� ,vz�.

Figure 1 plots solution �15�. In Fig. 1 we consider
three different wave energy levels, �=0.001 �solid line�,

0.01 �dots�, and 0.1 �dashes�. Pitch-angle diffusion is seen to
be enhanced as the wave energy density increases, that is, for
increasing �. For weak turbulence �small ��, the pitch angle
distribution broadens mainly over a narrow region near

�
0=1. For such a situation it is appropriate to describe
the evolution of proton distribution function as heating along
v�, as noted above. However, for higher � �turbulence that is
not necessary very weak� the evolution of proton distribution
is more accurately described as diffusion in pitch-angle space
rather than perpendicular heating.

We may also generalize the initial distribution to have a
finite velocity spread. For instance, we may take

fp�
,0� = N exp�−
�2

�2 , �21�

where N is a normalization constant N−1=�−1
1 d


�exp�−�2 /�2�. Figure 2 displays the solution based upon the
initial condition given by Eq. �21�. We consider �=0.001
�solid line�, 0.01 �dots�, and 0.1 �dashes�, and two cases of
the initial pitch-angle spread are considered, namely, �2

=0.025 and �2=0.25.
To recap the discussion thus far, we have revisited the

problem of nonresonant Alfvén wave interaction from the
perspective of pitch-angle diffusion in the present paper. In
contrast, Ref. 1 approached the same problem from the

FIG. 1. Three different wave energy levels, namely, �=0.001 �solid line�,
0.01 �dots�, and 0.1 �dashes�, are considered. Pitch-angle diffusion is en-
hanced for increasing �. For weak turbulence �small ��, the pitch angle
distribution diffusion affects mainly over a narrow region near ���0=0.

FIG. 2. Solution based upon the initial condition Eq. �21�. We consider
�=0.001 �solid line�, 0.01 �dots�, and 0.1 �dashes�, and two case of �2 are
considered, namely, �2=0.025 �top� and �2=0.25 �bottom�.
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standpoint of �pseudo�heating. However, it should be pointed
out that diffusion and heating are basically one and the same.
As we show in the present discussion, for weak turbulence
pitch-angle diffusion can be alternatively interpreted as per-
pendicular ion heating.

IV. DISCUSSION AND CONCLUSION

To conclude the present discussion, we showed that
in the limit of weak Alfvénic turbulence it is appropriate
to describe the nonresonant heating as perpendicular
pseudoheating. However, in general it is more appropriate to
view the nonresonant heating process as pitch-angle diffu-
sion �or scattering� in the wave frame. Here we reiterate that
the nonresonant heating discussed in Ref. 1 and in the
present discussion is a “pseudo” heating process, which is
conceptually different from the case in which coherent
Alfvénic wave is present2—for further discussion of this is-
sue see the test particle calculation carried out in Refs. 10
and 14.

In a recent study of minor ion heating by Alfvén waves
via nonresonant interactions, Bourouaine et al.15 employ the
kinetic equation derived in Ref. 1, but without imposing the
low-beta approximation. They also discuss the effects of col-
lisions on the quasilinear process. As expected, it is found
that collisions tend to isotropize the heating.

In the context of the present analysis we investigate the
effects of initial pitch-angle on the diffusion process. Such a
study may be of interest for minor ions. We thus show in
Figs. 3–5, the solution with arbitrary initial pitch angle �0.
We consider two types of initial distribution. The first case is

fp�
,0� = ��� − �0� , �22�

while in the second case we consider

fp�
,0� = N exp�−
�� − �0�2

�2  , �23�

where N−1=�−1
1 d
 exp�−��−�0�2 /�2�. For all the cases we

consider several values of the initial pitch angles �0=30°,
60°, 90°, and 135°. We also choose �=0.001 �solid lines�,
0.01 �dots�, and 0.1 �dashes� for each case of �0.

In Fig. 3, we consider the delta-function initial distribu-
tion �22�. The identification of initial pitch angles, �0 is self-
explanatory, but for the sake of completeness, the cases of
�0=30°, 60°, 90°, and 135° are from top-down in that order.
Also, for each �0, �=0.001 �solid lines�, 0.01 �dots�, and
0.1 �dashes� are considered.

We next consider the initial distribution with thermal
spread �23�. Figure 4 considers �2=0.025 and Fig. 5 consid-
ers �2=0.25. It is clear that the larger the initial pitch angle
the more effective the diffusion process, and higher the ini-
tial spread of pitch-angles more diffused is the final state of
the distribution function in pitch-angle space.

Finally we remark that the physics of pitch-angle scat-
tering of ions by Alfvén waves were extensively discussed in
late 1990s.16 The study was stimulated by commetary and
solar wind research. However, most of the discussions were
concerned with energetic ions streaming with velocities
much higher than the Alfvén speed. These ions can interact

with Alfvén waves via cyclotron resonance. The scattering of
thermal protons by nonresonant wave particle interactions
was not conceived until very recently. In this regard, the
present discussion may be significant and useful for other
researchers.
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FIG. 3. Solution based upon the delta-function initial distribution �22�. Sev-
eral values of the initial pitch angles, �0=30°, 60°, 90°, and 135°, are con-
sidered, the identification of which is self-explanatory. We also choose �
=0.001 �solid lines�, 0.01 �dots�, and 0.1 �dashes� for each case of �0.
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APPENDIX: QUASILINEAR THEORY INCLUDING
NONRESONANT INTERACTIONS

In order to demonstrate the concepts associated with the
present reformulation of the nonresonant quasilinear process,
it is sufficient to consider the case of electrostatic waves in
unmagnetized plasmas. We begin with the following linear-
ized Vlasov equation

� fs

�t
+ v · �fs +

es

ms
E ·

�Fs

�v
= 0,

�A1�

� · E = 4��
s

esns	 dvfs�r,v,t� ,

where Fs and fs denote the average and perturbed distribu-
tion functions, respectively; and the subscript s denotes
particle species. We consider that the wave electric field has
two characteristic time scales t and �t where � is a small

parameter: the time dependence on t describes fast process
such as the wave oscillation, while the time dependence of
physical quantities on �t depicts slow temporal variation.
The slow time dependence is compatible with quasilinear
process. We first introduce a Fourier transform

E�r,t,�t� =
1

�2��3	 dkÊ�k,t,�t�exp�ik · r� ,

�A2�

fs�r,v,t,�t� =
1

�2��3	 dk f̂ s�k,v,t,�t�exp�ik · r� .

We then assume that the temporal dependence associated
with the fast time scale is given by

Ê�k,t,�t� = Ê�k,�t�exp�− i�kt� ,

FIG. 4. Solution based upon the initial distribution with thermal spread �23�
with �2=0.025. Several values of the initial pitch angles, �0=30°, 60°, 90°,
and 135°, are considered, the identification of which is self-explanatory. We
also choose �=0.001 �solid lines�, 0.01 �dots�, and 0.1 �dashes� for each case
of �0.

FIG. 5. Solution based upon the initial distribution with thermal spread �23�
with �2=0.25. Several values of the initial pitch angles, �0=30°, 60°, 90°,
and 135°, are considered, the identification of which is self-explanatory. We
also choose �=0.001 �solid lines�, 0.01 �dots�, and 0.1 �dashes� for each case
of �0.
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f̂�k,v,t,�t� = f̂�k,v,�t�exp�− i�kt� ,

where �k denotes the wave frequency that satisfies an appro-
priate dispersion relation. It is supposed that the waves are in

a quasistationary state and slow time rate of ��Ê�k ,�t��2 /�t is
known. We assume that in general both the wave field am-
plitude and the unperturbed distribution function vary on the
slow time scale �t. Then the linearized kinetic equation may
be written as

� f̂ s�k,v,�t�e−i�kt

�t
+ ik · v f̂ s�k,v,�t�e−i�kt

+
es

ms
Ê�k,�t�e−i�kt ·

�Fs�v,�t�
�v

= 0. �A3�

Formal solution is given by

f̂ s�k,v,�t� = −
es

ms
	

−

t

dt�Ê�k,�t��

� e−i��k−k·v��t�−t� ·
�Fs�v,�t��

�v
. �A4�

In the above it is implicitly assumed that the real frequency
is defined in the limit �k=lim�→0��k+ i�� so that in the limit
t→− the integral is well defined.

If Eq. �A4� is expanded to first order in �, then we obtain

f̂ s�k,v,�t� = −
es

ms
	

−

t

dt�e−i��k−k·v��t�−t�

� �1 + �t� − t�
�

�t
Ê�k,�t� ·

�Fs�v,�t�
�v

= −
ies

ms
� 1

�k − k · v
+ i

�

��k

1

�k − k · v

�

�t


� Ê�k,�t� ·
�Fs�v,�t�

�v
. �A5�

To derive the desired kinetic equation we consider

�Fs

�t
= −

es

2ms

1

�2��3	 dk�Ê�k,�t� ·
� f̂ s�− k,v,�t�

�v

+ Ê�− k,�t� ·
� f̂ s�k,v,�t�

�v
� , �A6�

where the equation has been symmetrized. In Eq. �A5� and
thereafter we ignore the effect of slow time dependence be-
cause in Eq. �A6� terms on the right hand-side are of higher
order. One may then obtain the following kinetic equation

�Fs

�t
=

es
2

ms
2	 dk

�2��3

k

�k�
·

�

�v�����k − k · v�Êk
2

−
1

2

�

��k
�P 1

�k − k · v
 �

�t
Êk

2� k

�k�
·
�Fs

�v
, �A7�

where we have introduced the expressions

Ê�k ,�t� · Ê��k ,�t�= Êk
2 and have expressed the electrostatic

field vector as Ê�k ,�t�=kÊk / �k�.

In Eq. �A7� the term proportional to the delta function
describes the resonant interaction whereas the term involving
principal value represents the nonresonant wave-particle in-
teractions. The term that represents the nonresonant wave-
particle interaction is in agreement with that discussed in
Refs. 11 and 17, whose derivations are more sophisticated. In
Ref. 11 the analysis retains the use of the quantity gamma
and in Ref. 17 a more formal analysis based From Fourier
transform is used to discuss quasilinear theory with sponta-
neous emission. In the preceding discussion we deduce the
following rule. That is, in order to include the nonresonant
interactions we simply replace the delta function term by

����k − k · v�Ek
2 → ����k − k · v�Ek

2

−
1

2

�

��k
�P 1

�k − k · v
 �Ek

2

�t
.

This rule will be applied to the case when a quasilinear
theory involving Alfvén waves is discussed.
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