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ABSTRACT

We investigate the propagation of dissipationless, hydromagnetic, toroidal Alfvén waves in a realistic background,
low-latitude fast solar wind with differentially flowing protons and alpha particles. Symmetry about the magnetic
axis is assumed.Without invoking the short-wavelengthWKB approximation, we derive the equations governing the
wave transport from standard five-moment equations. The Alfvénic point, where the combined poloidal AlfvénMach
numberMT ¼ 1, is found to be a singular point for the wave equation, which is then numerically solved for three rep-
resentative angular frequencies ! ¼ 10�3, 10�4, and 10�5 rad s�1, with an amplitude of 10 km s�1 imposed at the
coronal base (1 R�). Between 1 R� and 1 AU, the numerical solutions show substantial deviation from the WKB ex-
pectations. Even for the relatively high frequency ! ¼ 10�3 rad s�1, aWKB-like behavior can be seen only in regions
rk10 R�. For ! ¼ 10�5 rad s�1, the computed profiles of wave-related parameters show a spatial dependence
distinct from the WKB one, the deviation being particularly pronounced in interplanetary space. In the inner corona
rP 4 R�, the computed ion velocity fluctuations and wave-induced acceleration exerted on protons or alpha particles
are considerably smaller than their WKB counterparts. With the chosen base wave amplitude, the wave acceleration
has negligible effect on the ion force balance in the corona. However, at large distances beyond the Alfvénic point, the
low-frequency wave with! ¼ 10�5 rad s�1 can play an important role in the ion dynamics, with the net effect being to
equalize the speeds of the two ion species considered.

Subject headinggs: solar wind — stars: winds, outflows — Sun: magnetic fields — waves

1. INTRODUCTION

Ever since their identification by Belcher & Davis (1971)
Alfvén waves have been extensively studied using in situ mea-
surements, such as byHelios andUlysses, covering the heliocen-
tric distance from 0.29 to 4.3 AU (Tu &Marsch 1995; Goldstein
et al. 1995; Bavassano et al. 2000a, 2000b). On the other hand,
the nonthermal broadening of a number of ultraviolet lines, such
as those measured with the Solar Ultraviolet Measurements of
Emitted Radiation (SUMER) and Ultraviolet Coronagraph Spec-
trometer (UVCS) instruments on the Solar and Heliospheric Ob-
servatory (SOHO), is usually attributed to the transverse velocity
fluctuations, thereby enabling one to infer the amplitudes of these
fluctuations in the inner corona below �5 R� (Banerjee et al.
1998; Esser et al. 1999). Moreover, the Faraday rotation mea-
surements, which yield information regarding the line-of-sight
magnetic field fluctuations, have been shown to support indirectly
the presence of Alfvén waves inside 10 R� (Hollweg et al. 1982).
The solar wind in intermediate regions, for the time being, can be
explored only by radio scintillation measurements which allow
one to derive the velocity fluctuations (e.g., Armstrong & Woo
1981; Scott et al. 1983). It is noteworthy that although the hourly
scale fluctuations seem to be more frequently studied, the fluc-
tuation spectrum measured by Helios nevertheless spans a broad
frequency range from 10�5 to 10�2 s�1 (Tu & Marsch 1995).

Most of the theoretical investigations into the interaction be-
tween Alfvén waves and the solar wind have been performed in
the short-wavelength Wentzel-Kramers-Brillouin (WKB) limit,
which makes the problem more tractable mathematically. For
instance, by employing the WKB approximation, Parker (1965)
derived an expression for the pondermotive force through which
the Alfvén waves may provide further acceleration to the solar
wind. The wave acceleration was later incorporated in detailed
numerical models by, e.g., Alazraki & Couturier (1971). It was

soon realized that Alfvén waves may also heat the solar wind via
dissipative processes such as the cyclotron resonance interaction
between ions and high-frequency, parallel propagating waves
generated by a turbulent cascade (cf. the extensive review by
Hollweg & Isenberg 2002). Such a parallel cascade scenario has
been successful in explaining a number of observations, to name
but one, the significant thermal anisotropy of ions as established
by UVCS measurements (Li et al. 1999). As pointed out by
Hollweg & Isenberg (2002), the applicability of the WKB ap-
proximation in which the processes are formulated is question-
able in the near-Sun region in view of the large Alfvén speeds.
Furthermore, a turbulent cascade requires a nonvanishing mag-
netic Reynolds stress tensor, which, however, is zero in the WKB
limit since the particle and field components of the tensor cancel
each other exactly. A non-WKB analysis is therefore required to
account for the wave reflection and the consequent driving of any
turbulence cascade.
As a matter of fact, non-WKB analysis of Alfvén waves in the

solar wind has been carried out for decades (e.g., Heinemann &
Olbert 1980; Lou 1993). This, however, is almost exclusively
done in the framework of ideal magnetohydrodynamics (MHD),
which allows waves propagating in opposite directions to be
explicitly separated when the Elsässer variables are used. The
adoption of the Elsässer variables has also enabled a new turbu-
lence phenomenology concerning the nonlinear coupling between
counterpropagating waves (Dmitruk et al. 2001; Cranmer & van
Ballegooijen 2005; Verdini et al. 2005). This coupling term, if in-
terpreted as the energy cascaded toward fluctuations with increas-
ingly large perpendicular wavenumbers, is also more consistent
with theoretical expectations.
Despite substantial advances achieved in idealMHD,which is

appropriate for the description of the gross properties of the solar
wind, the non-WKB analysis of Alfvén waves has rarely been
done using multifluid transport equations. In contrast, multifluid,
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Alfvén waveYdriven solar windmodeling formulated in theWKB
limit has reached considerable sophistication (see Hollweg &
Isenberg 2002). Such a multifluid approach is particularly neces-
sary for the solar wind since the alpha particles must be included
given their nonnegligible abundance and the fact that the protonY
alpha-particle differential speed can be a substantial fraction of
the proton speed in the fast stream (Marsch et al. 1982). There
is therefore an obvious need to extend available non-WKB
analyses of Alfvén waves from the ideal MHD to the multifluid
case.

The intent of this paper is to present an analysis of Alfvén
waves in a three-fluid solar wind assuming axial symmetry, with-
out assuming that the wavelength is small compared with the spa-
tial scales at which the background parameters vary. The perturbed
velocity and magnetic field are assumed to be in the azimuthal
direction, i.e., only purely toroidal waves are investigated. To fur-
ther simplify the treatment, the wave dissipation is neglected. This
simplification is necessary here since if one wants to gain some
quantitative insights into the wave dissipation, and to maintain a
reasonable self-consistency at the same time, one should formu-
late the dissipation in terms of the amplitudes of waves propagat-
ing outward and inward. To this end, a full multifluid Elsässer
analysis is required but is unfortunately unavailable at the present
time. However, if the wave dissipation is neglected and therefore
the nonlinear interaction between waves and the multicomponent
wind is entirely through the agent of pondermotive forces, then
the problem can be formulated without distinguishing explicitly
between the directions of wave propagation (cf. Lou 1993).

The paper is organized as follows. In x 2, we show how to
reduce the general multifluid transport equations to the desired
form. The resulting equations governing the Fourier amplitudes
of toroidal Alfvén waves at a given frequency are then solved
analytically in two limiting cases, namely, the WKB and zero-
frequency limits, in x 3. Apart from these analytically tractable
cases, the equations have to be solved numerically. In x 4, we
reformulate the model equations for numerical convenience,
describe the background flow parameters, and detail the solution
procedure as well. The numerical solutions for three different
frequencies are presented in x 5. Finally, x 6 summarizes the
results, ending with some concluding remarks.

2. MATHEMATICAL FORMULATION

Presented in this section is the mathematical development of
the equations that govern the toroidal fluctuations in a solar wind
that consists of electrons (e), protons ( p), and alpha particles (�).
Each species s (s ¼ e, p, �) is characterized by its massms, elec-
tric charge es, number density ns , mass density �s ¼ nsms, veloc-
ity vs, and partial pressure ps. If measured in units of the electron
charge e, es may be expressed by es ¼ Zse, with Ze � �1 by
definition.

To simplify the mathematical treatment, a number of assump-
tions have been made and are collected as follows:

1. It is assumed that the solar wind can be described by the
standard transport equations in the five-moment approximation.

2. Quasi-neutrality and quasi-zero current are assumed, i.e.,
ne ¼

P
k Zknk and ve ¼

P
k Zknkvk /ne, where k ¼ p, �.

3. Symmetry about themagnetic axis is assumed, i.e., @/@� � 0
in a heliocentric spherical coordinate system (r, �, �).

4. The time-independent solar wind interacts with the waves
only through the wave-induced pondermotive forces.

5. The wave frequency considered is in the hydromagnetic re-
gime, i.e., well below the ion gyrofrequencies.

6. The perturbed velocity andmagnetic field are assumed to be
in the �-direction only.

7. The effects of the solar rotation on the background solar
wind are neglected such that there is no need to consider the cou-
pling of Alfvén waves to the compressional modes in the pres-
ence of a spiral magnetic field.

8. The effects of the Coulomb friction on the waves are ne-
glected, as is the wave-induced modification of the Coulomb
friction between background ion flows.

2.1. Multifluid Equations

The equations appropriate for a multicomponent solar wind
plasma in the standard five-moment approximation are as fol-
lows (for the derivation see Appendix A.1 in Li & Li 2006):

@nk
@t

þ: = (nkvk) ¼ 0; ð1Þ

@vk
@t

þ vk = :vk þ
:pk

nkmk

þ Zk:pe

nemk

þ GM�

r 2
r̂

� 1

nkmk

�Mk

�t
þ Zknk

ne

�Me

�t

� �

� Zk

4�nemk

: < Bð Þ < Bþ Zke

mkc

njZj

ne
vj � vk
� �

< B ¼ 0; ð2Þ

@

@t

ps

� � 1
þ vs = :

ps

� � 1

þ �

� � 1
ps(: = vs)þ: = qs �

�Es

�t
� Qs ¼ 0; ð3Þ

@B

@t
�: < ve < Bð Þ ¼ 0; ð4Þ

where the subscript s refers to all species (s ¼ e, p, �), while k
stands for ion species only (k ¼ p, �). The gravitational con-
stant is denoted by G,M� is the mass of the Sun, B is the mag-
netic field, and c is the speed of light. The momentum and energy
exchange rates due to the Coulomb collisions of species s with
the remaining ones are denoted by �Ms/�t and �Es/�t, respec-
tively. Moreover, qs is the heat flux carried by species s, and Qs

stands for the heating rate applied to species s from nonthermal
processes. In equation (2), the subscript j stands for ion species
other than k, namely, j ¼ p for k ¼ � and vice versa. As can be
seen, in addition to the term (: < B) < B, the Lorentz force pos-
sesses a new term in the form of the cross product of the ion ve-
locity difference and the magnetic field. Physically, this new term
represents the mutual gyration of one ion species about the other,
the axis of gyration being in the direction of the instantaneousmag-
netic field.

Equations (1)Y(4) form a complete set if supplemented with
the description of species heat fluxes qs and heating rates Qs. As
such, they can be invoked to depict self-consistently the inter-
action between Alfvén waves and the solar wind species by ex-
plicitly introducing these waves via boundary conditions. On the
one hand, solving this set of equations presents a computationally
formidable task; on the other hand, one can extract the necessary
information concerning the dynamical feedback of the waves to
the plasma by going beyond theWKB limit. In the non-WKB ap-
proach to be adopted here, one assumes that the governing equa-
tions can still be separated into those governing the background
time-independent flow and those governing the transport of waves.
As noted by Lou (1993) (also see the discussion), this separation
does not necessarily require the waves be linear as long as suffi-
ciently small wave amplitudes are imposed at the Sun.

ALFVÉN WAVES IN MULTICOMPONENT WINDS 1223



Further simplification also results from the choice of a flux-tube
coordinate system, inwhich the base vectors are êl; êN ; ê�

� �
, where

êl ¼ BP=BP; êN ¼ ê� < êl;

with the subscript P denoting the poloidal component. More-
over, the independent variable l is the arc length along the poloidal
magnetic field line. This choice permits the decomposition of the
magnetic field and species velocities into background ones and
fluctuations,

B ¼ Bl êl þ bê�; vs ¼ Usêl þ wsêN þ usê�; ð5Þ

where s ¼ e, p, �. From the assumption of azimuthal symmetry,
and the assumption that BP is time-independent, one can see
from the poloidal component of equation (4) that veP should be
strictly in the direction of BP. In other words, we ¼ 0 to a good
approximation. Now let us consider the �-component of the mo-
mentum equation (2). Since the wave frequencies in question, as
well as other frequencies associated with the spatial dependence,
arewell below the ion gyrofrequency�k ¼ (ZkeBl)/(mkc) (k ¼ p,
�), from an order-of-magnitude estimate one can see that jwj �
wk jTjuk j. Combined with the fact that we ¼ 0, this leads to the
fact that bothwp andw� should be very small and can be safely ne-
glected unless they appear alongside the ion gyrofrequency. With
this inmind, one can find from theN-component of equation (2) that

u� � up ¼
b

Bl

U� � Up

� �
: ð6Þ

That is, the ion velocity difference is aligned with the instanta-
neous magnetic field. This alignment condition further couples
one ion species to the other. Note that due to the assumption of
quasi-zero current, equation (6) leads to

uk ¼ ue þ
b

Bl

Uk � Ueð Þ; ð7Þ

where k ¼ p, �.
Given the aforementioned assumptions, the time-independent

multicomponent solar wind in which the toroidal Alfvén waves
propagate is governed by

Bl

nkUk

Bl

� �0
¼ 0; ð8Þ

UkU
0
k þ

p0k
nkmk

þ Zkp
0
e

nemk

þ GM�

r
( ln r)0

� 1

nkmk

�Mkl

�t
þ Zknk

ne

�Mel

�t

� �
¼ aw;k ; ð9Þ

Us

ps

� � 1

� �0
þ �ps
(� � 1)

Bl

Us

Bl

� �0
þ Bl

qs

Bl

� �0
� �Es

�t
� Qs ¼ 0;

ð10Þ

where the prime denotes the derivative with respect to the arc
length l, which becomes the only independent spatial variable.
In addition, aw;k denotes the acceleration exerted on ion species
k (k ¼ p, �) by the toroidal fluctuations,

aw; k ¼ u2
k

� �
ln Rð Þ0� Zk

4�nemk

b
@b

@l
þ b2 ln Rð Þ0

� �
� bXkh i

Bl

;

ð11Þ

where R ¼ r sin � is the distance from a point along the poloidal
magnetic field line to the magnetic axis. Besides, the angular
brackets stand for the time average over one wave period. The
variable Xk ¼ �k (wj � wk )(Zjnj /ne) distinguishes the present
study from those using the ideal MHD in which case Xk � 0
(e.g., Heinemann & Olbert 1980). Apart from this, the wave-
induced acceleration aw;k includes the inertial centrifugal accel-
eration (the first term on the right-hand side), and the usual
(: < B) < B term (the second term).

2.2. Transport of Toroidal Alfvén Waves

The transport of toroidal Alfvén waves is governed by the azi-
muthal component of the momentum equation (2) for ion species
k (k ¼ p, �) together with that of the magnetic induction law (4).
To be more specific, these equations read

@b

@t
þ BlR

@

@l

1

R

Ue

Bl

b� ue

� �	 

¼ 0; ð12Þ

@uk
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@l

þ uk( ln R)
0

	 

� Zk

4�nemk
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@b

@l
þ b( ln R)0

	 

¼ Xk :

ð13Þ

The wave propagation is characterized by several key pa-
rameters, namely, the wave energy and energy flux densities, as
well as the wave-induced acceleration. These parameters can be
found by considering the energy conservation for the Alfvén
waves,

@

@t

X
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þ b2

8�
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þ Bl

@
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1

Bl

X
k

�kUku
2
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2
þ b

4�
Ueb� Blueð Þ

" #( )

¼ �
X
k

�kUku
2
k ln Rð Þ0 þ Ue

4�
b
@

@l
bþ b2 ln Rð Þ0

	 

þ
X
k

�kuk Xk :

ð14Þ

On the left-hand side (LHS), the first term is the time derivative
of the perturbation energy density, while the second is the diver-
gence of the perturbation flux density. The physical meaning of
the right-hand side (RHS) can be revealed as follows. By using
relation (7) one finds

X
k

�kuk X k �
X
k

�kUk

bXk

Bl

¼ ue �
b

Bl

Ue

� �X
k

�k X k :

Since
P

k �kXk ¼ 0, one can identify the time average of the RHS
of equation (14) as the negative of the work done by the wave-
induced forces on the solar wind, i.e.,

P
k �kUkaw;k (cf. eq. [11]).

In other words, taking the time average of equation (14) yields

Bl

@

@l

Fw

Bl

¼ �
X
k

�kUkaw;k ; ð15Þ

where Fw is the time average of the perturbation energy flux den-
sity and will be termed wave energy flux density for simplicity.
(Actually, the wave properties to be discussed always refer to
time-averaged values.) The total energy is therefore conserved
for the system comprised of a multifluid solar wind and toroidal
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Alfvén waves. The gain in the solar wind kinetic energies is at the
expense of the wave energy.

The appearance of Xk makes equation (13) inconvenient to
work with. Instead one may consider the azimuthal component
of the total momentum to eliminate Xk , the resulting equation
being

X
k

�k
@uk
@t

þ Uk

R

@

@l
Rukð Þ

	 

� Bl

4�R

@

@l
Rbð Þ ¼ 0: ð16Þ

Now one may proceed by introducing the Fourier amplitudes at
a given angular frequency !,

b l; tð Þ; us l; tð Þ½ � ¼ b̃ lð Þ; ũs lð Þ
� �

exp �i!tð Þ; ð17Þ

where s ¼ e, p, �. As a result, the Faraday’s law (12) and equa-
tion (16) now take the form

Ueb̃
0 � Blũ

0
e ¼ i!þ Ue ln

RBl

Ue

� �0	 

b̃� Bl( ln R)

0ũe; ð18Þ
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b̃0 þ

X
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�kUkũ
0
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X
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Uk � Ue
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� �0
� Bl

4�
ln Rð Þ0

" #
b̃

�
X
k

�kUk ln Rð Þ0ũe þ i!
X
k

�k
Uk � Ue

Bl

b̃þ ũe

� �
; ð19Þ

in which we have used relation (7) to express the ion velocity
fluctuation ũk in terms of the electron one ũe.

Once the background flow parameters and proper boundary
conditions are given, equations (18) and (19) can be solved for
the Fourier amplitudes of magnetic fluctuation b̃ and the electron
velocity fluctuation ũe for a given angular frequency !. The ion
velocity fluctuations ũk can then be found in virtue of relation (7).
The three wave-related parameters can be evaluated by forming a
time average over one wave period. Specifically, the wave energy
density Ew and wave energy flux density Fw are given by

Ew ¼
X
k

�khu2
k i

2
þ hb2i

8�
; ð20aÞ

Fw ¼
X
k

�kUkhu2
k i

2
þ 1

4�
Uehb2i � Blhbuei
� �

; ð20bÞ

while the wave-induced acceleration aw;k has already been given
by equation (11). It can be seen that Ew consists of the ion kinetic,
as well as the magnetic, energies, while Fw is comprised of the
kinetic energy flux convected by ion fluids and the Poynting flux.
To evaluate the time average h f gi for two wave-related fluctua-
tions ½ f ; g� � ½ f̃ ; g̃� exp (�i!t), one may use the expression (cf.
MacGregor & Charbonneau 1994)

f gh i ¼ 1

2
Re f̃ g̃�
� �

¼ 1

4
f̃ g̃� þ f̃ �g̃
� �

; ð21Þ

where Re(z) denotes the real part of a complex variable z and
the superscript asterisk denotes the complex conjugate.

Although in general one has to rely on a numerical integrator
to solve equations (18) and (19), as shown below, they are ana-
lytically tractable for two limiting cases.

3. ANALYTICAL SOLUTIONS IN TWO LIMITS

In this section, we will examine the analytical solutions to
equations (18) and (19) in theWKB and zero-frequency (! ¼ 0)
limits. These analytical treatments not only help to validate nu-
merical solutions but also allow one to gain insights into themath-
ematical properties of the governing equations.

3.1. The WKB Limit

Extensive studies have been made of the Alfvén waves in the
WKB limit. In particular, the Alfvén wave force exerted on dif-
ferentially streaming ions was first derived by Hollweg (1974)
and later by McKenzie et al. (1979) for a spherically expanding
solar wind. Based on the idea of the wave average Lagrangian,
the work by Isenberg & Hollweg (1982) not only obtained the
expression for the wave force but further showed that there exists
an adiabatic invariant, namely, thewave action flux, in the absence
of wave dissipation. The derivation is rather general and does not
require a specific flux tube geometry. Alternatively, the action
flux conservation has been independently obtained byMcKenzie
(1994), who used the more familiar WKB analysis. Although
McKenzie (1994) assumed that the solar wind is again spherically
symmetric, his results can be readily extended to an axisymmetric
configuration. In what follows, such an extension is presented.

The formal development of the WKB analysis starts with the
introduction of the expansion

ũs ¼ (us;1 þ us;2 þ : : :) exp iS(l )½ �; ð22aÞ
b̃ ¼ (b1 þ b2 þ : : :) exp iS(l )½ �; ð22bÞ

in which s ¼ e, p,�. It is assumed that us;n and bn (n ¼ 1, 2, : : :)
vary at the same spatial scale H as the background flow param-
eters, and 1/H is small compared with the wavenumber K ¼
S 0(l ), i.e., � ¼ 1/(KH )T1. In addition, it is assumed that
jus;nþ1/us;nj � jbnþ1/bnj � �. Substituting the expansion (22a)
and (22b) into equations (18) and (19), one can find by sorting
different terms according to orders of � that

!ebn þ KBlue;n ¼ �iRBl

1

R

Ue

Bl

bn�1 � ue;n�1

� �	 
0
; ð23aÞ

X
k

�k!k ue;n þ
Uk � Ue

Bl

bn

� �
þ K

Bl

4�
bn

¼ �i
X
k

�kUk

R
R ue;n�1þ

Uk � Ue

Bl

bn�1

� �	 
0
þ i

Bl

4�R
Rbn�1ð Þ0;

ð23bÞ

where the definition !s ¼ !� KUs (s ¼ e, p, �) has been used.
At the lowest order n ¼ 1, the RHSs of equations (23a) and

(23b) are zero. For ue;1 and b1 not to be identically zero, the de-
terminant of the coefficient matrix has to be zero. As a result, one
finds the local dispersion relation

X
k

�k(Uph � Uk)
2 ¼ B2

l

4�
; ð24Þ

whereUph ¼ !/K is the local phase speed of Alfvén waves. Fur-
thermore, one can find the local eigenrelations at order n ¼ 1,

us;1 ¼ � Uph � Us

� � b1
Bl

; ð25Þ

with s ¼ e, p, �.
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At an arbitrary order n � 2, it follows from equation (23a) that

ue;n ¼ � Uph � Ue

� � bn
Bl

þ ūn;

in which

ūn ¼ � iR

K

1

R

Ue

Bl

bn�1 � ue;n�1

� �	 
0

arises from quantities of order n� 1. At order nþ 1, one can
eliminate bnþ1 and ue;nþ1 on the LHS of equations (23a) and
(23b) by using the dispersion relation (24), the resulting equa-
tions taking the form

Tn þ Sn ¼ 0; ð26Þ

where

Sn ¼�
X
k

�k!kRBl

ūn

R

� �0
þ KBl

X
k

�kUk

R
Rūnð Þ0

" #
;

Tn ¼
X
k

�k!kRBl

Uphbn

RBl

� �0

þ KBl

X
k

�kUk

R
R
Uph � Uk

Bl

bn

� �0
þ K

B2
l

4�R
Rbnð Þ0:

ð27Þ

The barred and unbarred parts are again distinguished.
On expanding Tn, by repeatedly using the dispersion relation

(24) one finds that

Tn ¼
KB3

l

Uphbn

Uphbn

Bl

� �2 � Uph � Um

� �
Bl

" #0
; ð28Þ

in which the following definitions have been used (cf. McKenzie
1994):

� ¼
X
k

�k ; ð29aÞ

�Um ¼
X
k

�kUk ; ð29bÞ

�U 2
j ¼

X
k

�kU
2
k ; ð29cÞ

with the last one defined for future use. If putting n ¼ 1, from
S1 ¼ 0 one finds T1 ¼ 0, i.e.,

b2
1

� Uph � Um

� �
U 2

ph

B3
l

¼ const: ð30Þ

Note that equation (30) can be interpreted in terms of the con-
servation of wave action flux, which was first found by Isenberg
& Hollweg (1982). On the other hand, expanding equation (13)
to first order in � and using the resulting Xk to evaluate hbXki in
equation (11), with the aid of the eigenrelation (25), one can
find a compact expression for the wave-induced acceleration on
ion species k (k ¼ p, �),

aw; k ¼
U 2

ph � U 2
k

2B2
l

hb2i
 !0

; ð31Þ

where the time average hb2i ¼ jb1j 2/2. It is noteworthy that the
shape of the line of force, which enters into the discussion
through R ¼ r sin �, does not show up via Sn�1 unless one ex-
amines the evolution of higher order fluctuations us;n and bn
(n � 2).
Some remarks on the wave acceleration aw;k given by equa-

tion (31) are necessary. One may find that (U 2
� � U 2

p ) 1þ½
jb1j2/(2B2

l )� ¼ const: if the flow speeds are entirely determined
by the wave forces. Usually jb1j/Bl increases with increasing
distance. The net effect of aw;k is therefore to limit the protonY
alpha-particle differential speed U�p . In this sense aw; k was lik-
ened to an additional frictional force (e.g., Hollweg 1974). As
noted by Hollweg (1974), the differential nature of aw; k derives
eventually from awave-induced transverse drift velocity �uk (k ¼
p, �), which is different for different species because they see
different wave electric fields when they flow differentially. The
contribution to the wave force from �uk is twofold. First, it in-
duces a centrifugal force that is always nonnegative. Second, it
contributes to the species electric current flow �J?;k which in turn
exerts on ion species k a �J?;k < �B force, where �B is the wave
magnetic field. This force may become negative. As a matter of
fact, the two terms may even add up to a negative value: the wave
force may decelerate rather than accelerate the ion species. Con-
sider a simplified situation similar to that considered by Hollweg
(1974). One assumes that the spatial variation of bothU� andUp

can be neglected, and U� > Up > UA, where UA ¼ Bl/ 4��ð Þ1/2
is the bulk Alfvén speed. One may further assume that the alpha
particles are test particles, that the background magnetic field is
purely radial, and that jb1j2 / r�	, with 	 being a positive con-
stant. In this case, from equation (31) one finds that

aw;� ¼ jb1j2

4B2
l r

4� 	ð ÞU 2
p þ 	U 2

A

h i
� 4� 	ð Þ U�p þ Up

� �2n o
:

It follows that aw;� < 0 whenU�p > Uc where the critical value
Uc can be roughly approximated by

Uc �
	

2(4� 	)

UA

Up

UA;

which may be smaller thanUA by a factor ofUA/Up. Noting that
now the wave phase speed isUph ¼ Up þ UA, one finds that the
waves may decelerate alpha particles even though U� < Uph. It
turns out that this much simplified picture roughly represents
the behavior of aw;� in the region between 20 and 30 R�, where
	 can be taken to be 2.5 for the adopted background flow param-
eters (see Fig. 5b, which indicates that aw;� in theWKB case be-
comes negative beyond 22.7 R�, where U�p exceeds Uc).

3.2. The Zero-Frequency Limit

The other extreme will be ! ¼ 0. In this case, equations (12)
and (16) can be integrated to yield

ue � Ue

b

Bl

¼ A�R; ð32aÞ

R
X
k

�kUk

�Um

uk �
Blb

4��Um

 !
¼ AL; ð32bÞ

where A� and AL are two integration constants. When deriving
equation (32b), we have used the fact that �Um/Bl is a constant.
Equations (32a) and (32b) demonstrate a clear connection to the
problem of angular momentum transport in a multicomponent
solar wind, as has been discussed by Li & Li (2006).
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With the aid of equation (7), equations (32a) and (32b) can be
solved to yield

b ¼ R
4��Um

Bl

AL=R
2 � A�

M 2
T � 1

; ð33Þ

where

M 2
T ¼

4��U 2
j

B2
l

ð34Þ

is the square of the combined Alfvén Mach number. For typical
solar winds, there exists one point whereMT ¼ 1 between 1 R�
and 1 AU. Call this point the Alfvénic point, and let it be de-
noted by subscript A. It then follows that for b not to be singular
at this point, one must require AL ¼ A�R

2
A. As a result, one may

obtain

b ¼ A�R
4��Um

Bl

(RA=R)
2 � 1

M 2
T � 1

; ð35aÞ

us ¼ A�R 1þ 4��UmUs

B2
l

(RA=R)
2 � 1

M 2
T � 1

	 

; ð35bÞ

where s ¼ e, p, �.

4. NUMERICAL MODEL AND METHOD OF SOLUTION

Apart from theWKB and zero-frequency limits, equations (18)
and (19) can be integrated only numerically. Nevertheless, the
treatment in the zero-frequency limit in x 3 reveals that the
Alfvénic point whereM 2

T ¼ 1 is a singular point for the system
of equations. One may expect that this is also the case for an ar-
bitrary finite !. In their present form, however, equations (18)
and (19) do not show explicitly the existence of such a singular
point. Hence, they are not convenient to work with numerically
and need to be further developed in what follows. Moreover,
we will also describe how to specify the background flow pa-
rameters, as well as the solution procedure.

4.1. Further Development of Governing Equations

For the convenience of presentation, one may define, in addi-
tion to MT , the following dimensionless parameters,

Xme ¼
4��UmUe

B2
l

; Xee ¼
4��UeUe

B2
l

;

XeA ¼ 4��UeUA

B2
l

; XmA ¼ 4��UmUA

B2
l

;

Z ¼ M 2
T � 1� Xme; ð36Þ

where UA ¼ Bl/ 4��ð Þ1/2 is the bulk Alfvén speed. Now equa-
tion (19) can be expressed as

Zb̃0 þ 4��Um

Bl

ũ0e ¼� (RZ )0

R
b̃� 4��Um( ln R)

0

Bl

ũe

þ i!
4��(Um � Ue)

B2
l

b̃þ 4��

Bl

ũe

	 

: ð37Þ

Taking into account equation (18), one finally arrives at

M 2
T � 1

� �

 0 ¼ F11
 þ F12�; ð38aÞ

M 2
T � 1

� �
� 0 ¼ F21
 þ F22�; ð38bÞ

where two dimensionless variables have been introduced for
convenience,


 ¼ b̃=Bl; � ¼ ũe=UA: ð39Þ

Moreover, the coefficients are

F11 ¼
i!

Ue

2Xme � Xeeð Þ þ Xme ln
R

Ue

� �0
� (RBlZ )

0

RBl

;

ð40aÞ

F12 ¼
i!

Ue

XeA � 2XmA ln Rð Þ0; ð40bÞ

F21 ¼ � i!

UA

Z � Xme þ Xeeð Þ � Ue

UA

Z ln
RBl

Ue

� �0
þ (RZ)0

R

	 

;

ð40cÞ

F22 ¼
i!

Ue

Xee þ Z � Xmeð Þ ln Rð Þ0� (M 2
T � 1)( lnUA)

0:

ð40dÞ

It is now clear that the Alfvénic point where M 2
T ¼ 1 is a

singular point for equations (38a) and (38b). The ensuing task is
therefore to find solutions that pass smoothly through theAlfvénic
point.

4.2. Background Three-Fluid Solar Wind

In principle, one needs to solve equations (8)Y(10) to find a
realistic background solar wind by neglecting the wave-induced
acceleration in equation (9) and using a suitable heat input Qs

(s ¼ e, p, �). However, it is observationally established that in
the heliocentric range r > 0:3 AU, the protonYalpha-particle
differential speedU�p ¼ U� � Up closely tracks the local Alfvén
speed in the fast solar wind withUp > 600 km s�1 (Marsch et al.
1982). So far this fact still poses a theoretical challenge: adjusting
the heating parameters proves difficult to yield such a behavior for
U�p. In what follows, we shall adopt a two-step approach to find
the background flow parameters. First, equations (8)Y(10) are
solved by using a suitable set of heating parameters along a pre-
scribed meridional magnetic field line. As a result, we have �p,
Up, (��U�)I , and U�p; I for the whole heliocentric range from 1
R� out to 1 AU. Note that the subscript I denotes the results
obtained from this step. Second, the alpha-particle parameters are
altered as follows.We first impose an ad hoc profile forU�p that is
identical toU�p; I in the range rP 0:3 AU but undergoes a smooth
transition to a profile that is roughly 0.8 UA everywhere for rk
0:3 AU. The alpha-particle speed and mass density are then given
by U� ¼ Up þ U�p and �� ¼ (��U�)I /U�, respectively.

For the meridional magnetic field, we will adopt an analytical
model given by Banaszkiewicz et al. (1998). In the present im-
plementation, the model magnetic field consists of dipole and
current-sheet components only. A set of parametersM ¼ 3:6222,
Q ¼ 0, K ¼ 1:0534, and a1 ¼ 2:5 are chosen such that the last
open magnetic field line is anchored at heliocentric colatitude
� ¼ 40

	
on the Sun.

The backgroundmagnetic field configuration and flow param-
eters are depicted in Figure 1. In Figure 1a, the field line along
which we integrate the solar wind equations (8)Y(10) and the
wave equations (38a) and (38b) is delineated by the thick contour.
This line of force is rooted at colatitude � ¼ 31:5	 on the Sun
where the poloidal magnetic field strength Bl is 6.6 G. It reaches
� ¼ 70

	
at 1 AU where Bl is 3.3�, which is compatible with the
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Ulysses measurements (Smith & Balogh 1995). In Figure 1b, the
solid lines give the distribution with heliocentric distance r of the
proton (Up) and alpha-particle (U�) speeds, while the dashed
curve is for the phase speed (Uph) of Alfvén waves in the WKB
limit as determined by equation (24). Furthermore, Figure 1c
shows the distribution with r of the protonYalpha-particle differ-
ential speed U�p (solid line) and Alfvén speed UA (dashed line).
The asterisks in Figures1b and 1c denote the Alfvénic point where
M 2

T ¼ 1, which is located at rA ¼ 11:6 R� in the chosen back-
ground model.

It can be seen in Figure 1b thatUph is much larger than the ion
flow speeds below �20 R� but is close to U� beyond �0.3 AU.
This latter behavior is understandable since one can find from
equation (24) that

Uph ¼Um þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

A � ���p
�2

U 2
�p

r

�U� þ UA 1� xp �
xpx�

2

� �
; ð41Þ

where xk ¼ (�k /�)(U�p/UA) (k ¼ p, �). The second expression
is very accurate for U�p 
 UA, which is the case for the assumed
background flow (cf. Fig. 1c). Hence, Uph � U� in the region
rk 0:3 AU where U� > UA and xp þ xpx�/2 � 1. Moreover, it
can be seen from Figure 1c that U�p drops from nearly zero at
1 R� to �38.7 km s�1 at 1.42 R�, beyond which U�p increases
gradually. In interplanetary space rk 0:3 AU, U�p can be seen
to follow UA closely, as is required.

At the Alfvénic point rA, the proton speed Up is 602 km s�1,
and the alpha-particle speed U� is 721 km s�1. Eventually Up

reaches 648 km s�1 at 1 AU where U� is 676 km s�1. As for the
density parameters np and n�, the model yields np ¼ 3:57 cm�3

and n�/np ¼ 4:6% at 1AU.As a result, the proton (alpha-particle)
flux npUp (n�U�) is 2:32(0:11) ; 108 cm�2 s�1 when scaled to

1 AU. All these values are consistent with typical measurements
for the low-latitude, fast solar wind streams, e.g., those made by
Ulysses (McComas et al. 2000).

4.3. Solution Procedure and Boundary Conditions

Given the background flow parameters, the coefficients in
equations (40a)Y(40d) can be readily evaluated for a given an-
gular frequency !. Equations (38a) and (38b) are ready to solve
once proper boundary conditions are supplemented. As is well
known, one boundary condition has to be imposed at the Alfvénic
point to ensure the solution is regular. To establish this, let us
consider the region adjacent to the Alfvénic point lA, such that
any function f (l ) can be Taylor expanded,

f (l ) ¼ f (0) þ f (1)(l � lA); ð42Þ

where f (0) ¼ f (lA). When substituting this expansion into equa-
tions (38a) and (38b), one finds

F
(0)
11 


(0) þ F
(0)
12 �

(0) ¼ 0; ð43aÞ
F

(0)
21 


(0) þ F
(0)
22 �

(0) ¼ 0; ð43bÞ

F
(0)
11 


(1) þ F
(1)
11 


(0) þ F
(0)
12 �

(1) þ F
(1)
12 �

(0) ¼ M 2
T

� � 1ð Þ

(1); ð43cÞ

F
(0)
21 


(1) þ F
(1)
21 


(0) þ F
(0)
22 �

(1) þ F
(1)
22 �

(0) ¼ M 2
T

� � 1ð Þ
�(1): ð43dÞ

It is easy to recognize that equations (43a) and (43b) are not
independent from each other, since at the Alfvénic point lA,
F

(0)
11 /F

(0)
21 ¼ F

(0)
12 /F

(0)
22 ¼ (UA/Ue)(lA). Hence, at lA, the unknowns


(1), �(0), and �(1) can all be expressed in terms of 
(0), which can be
arbitrarily chosen. Once these four quantities are known, the wave
quantities 
 and � can be obtained by the expansion (42) at the
two grid points immediately astride the Alfvénic point. Equa-
tions (38a) and (38b) are then integrated by using a fourth-order

Fig. 1.—Background three-fluid solar wind in which the toroidal Alfvén waves propagate. (a) Adopted poloidal magnetic field configuration extending from the
coronal base (1 R�) to 1 AU ¼ 215 R�. Note that the magnetic axis points upward. The thick contour delineates the line of force along which the wave equation is
integrated. (b) Proton and alpha-particle flow speeds Up and U� (solid lines), together with the phase speed Uph (dashed line) expected in the WKB limit as given by
eq. (24). (c) ProtonYalpha-particle differential speed U�p ¼ U� � Up (solid line) and the local bulk Alfvén speed UA ¼ Bl / 4��ð Þ1/2 (dashed line), where Bl is the
poloidal magnetic field strength and � is the overall mass density. The asterisks in (b) and (c) refer to the Alfvénic point whereM 2

T ¼ 1,MT being the combined Alfvén
Mach number defined by eq. (34).
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Runge-Kutta method both inward to the coronal base at 1 R� and
outward to 1 AU (see Cranmer & van Ballegooijen 2005). We
then rescale the obtained solution such that jũej is fixed at R� for
all ! to be considered.

5. NUMERICAL SOLUTIONS

In this section, the solutions to equations (38a) and (38b) with
a number of different angular frequencies ! are presented. All
these solutions have the same amplitude for the electron velocity
fluctuation jũej ¼ 10

ffiffiffi
2

p
km s�1, or equivalently the time average

hu2
e i

1/2 ¼ 10 km s�1. Note that such a value is only about 1/3 of
the upper limit of the nonthermal velocity amplitude derived
from line width measurements (Banerjee et al. 1998). With this
choice at the coronal base, we can avoid awkwardly large wave
amplitudes in interplanetary space, a natural consequence of the
assumption that no wave dissipation is present. Nevertheless, the
base amplitude can be seen as a free scaling parameter for equa-
tions (38a) and (38b). The relative deviation of the non-WKB
fromWKB results is independent from this choice, even though
the absolute magnitudes are affected.

Figure 2 presents the radial profiles of the real (solid lines) and
imaginary (dashed lines) parts of the Fourier amplitudes with
three different angular frequencies, ! ¼ 10�3 (left), 10�4 (center)
and 10�5 rad s�1 (right). Since the modulus of the magnetic fluc-
tuation jb̃j spans several orders of magnitude, b̃/Bl is plotted in-
stead of b̃ in Figures 2a, 2d, and 2g. Note that Figure 2g uses a scale
different from Figures 2a and 2d. Figures 2b, 2e, and 2h de-
pict the proton velocity fluctuation ũp, while Figures 2c, 2f, and
2i give the alpha-particle one ũ�.

The most prominent feature of Figures 2aY2c for ! ¼
10�3 rad s�1 is that the radial dependence of the real and imagi-
nary parts of fluctuations exhibits a clear oscillatory behavior. This
is particularly true beyond �10 R�. Further inspection of the re-
gion rk 10 R� indicates that the magnetic and fluid velocity fluc-

tuations are well correlated, as would be expected from the eigen-
relation (25) obtained in the WKB limit. The WKB nature is
further revealed by examining the phase relation, i.e., the dis-
placement between the real and imaginary parts, for any of the
three Fourier amplitudes. For instance, for the ũp profile the nodes
in the real part correspond well to the troughs or crests in the im-
aginary part. Now if examining the envelopes of the Fourier am-
plitude profiles, one can see that jb̃j/Bl (Fig. 2a) tends to increase
with r while jũpj tends to decrease beyond, say, 10 R�. On the
other hand, jũ�j exhibits a nonmonotonic behavior and possesses
a localminimumat�68R�.Moreover, themagnitude of ũ� is con-
siderably smaller than that of ũp beyond 0.3 AU. This is under-
standable in light of equation (25) since the local phase speed of
Alfvén waves Uph is close to the alpha-particle flow speed U�

(see Fig. 1b).
The Fourier amplitudes for ! ¼ 10�4 rad s�1 (center) also

possess an oscillatory behavior; however, the exact correlation
between the magnetic (Fig. 2d) and ion velocity (Figs. 2e and
2f ) fluctuations is gone, as is the exact phase relation between
the real and imaginary parts. Furthermore, one can see that the
magnitude of the alpha-particle velocity fluctuations (Fig. 2f ) in
interplanetary space is substantially larger than that for ! ¼
10�3 rad s�1. Now let us move on to the right column for which
! ¼ 10�5 rad s�1. Unlike the preceding two columns, the oscil-
latory feature disappears altogether. Instead, the real and imag-
inary parts of the Fourier amplitudes evolve slowly with radial
distance r. We note that such a transition from wavelike to quasi-
steady dependence on rwith decreasing !was explored in detail
by Heinemann & Olbert (1980; see also Lou 1993; MacGregor
& Charbonneau 1994). That there exists a critical frequency
below which the transition occurs was interpreted in terms of the
coupling between inwardly and outwardly propagating waves.
Although in the present study, the propagation in opposite di-
rections has not been explicitly separated, one can see that for a

Fig. 2.—Radial profiles of the Fourier amplitudes. Results are shown for the real (solid curves) and imaginary parts (dashed curves) for three angular frequencies
! ¼ 10�3 (left), 10�4 (center), and 10�5 rad s�1 (right). (a), (d ), and (g) Magnetic fluctuation given in terms of b̃/Bl , Bl being the background magnetic field strength. (b),
(e), and (h) Proton velocity fluctuation ũp. (c), ( f ), and (i) Alpha-particle velocity fluctuation ũ�. Note that (g) uses a scale different from (a) and (d ).
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realistic three-fluid solar wind, there also exists a similar critical
frequency, which may be approximated by

!c � UmA=(2rA) ð44Þ

(cf. eq. [55] of Heinemann & Olbert 1980). For the chosen back-
ground flow, we find !c � 3:8 ; 10�5 rad s�1. The numerical
experiments have confirmed the validity of this approximation.

Figure 3 shows the radial evolution of the time averages of the
magnetic hb2i1/2, as well as the fluid velocity fluctuations hu2

k i
1/2

(k ¼ p; �) for the three angular frequencies ! ¼ 10�3 (solid
lines), 10�4 (dashed lines), and 10�5 rad s�1 (dash-dotted lines),
and for theWKB case (dotted lines) as well. TheWKB results are
evaluated from equations (25) and (30) by using the same value
for hu2

e i
1/2

at 1 R� as in the numerical solutions. It is obvious
that for all the frequencies considered, the profiles demonstrate
substantial deviations from the WKB one, not only in the abso-
lute values but also in spatial dependence. AWKB-like spatial de-

pendence is recovered only in profiles with ! ¼ 10�3 rad s�1 and
rk 10 R� or those with ! ¼ 10�4 rad s�1 in regions rk 120 R�.
It is interesting to see that, the hb2i1/2 profiles are strikingly

similar in the region rP10 R� for all three frequencies. This be-
havior can be understood as follows. First of all, it can be readily
shown from equations (38a) and (38b) that

M 2
T � 1

� �
j
j2
� �0

¼ 2Re F11ð Þj
j2 þ 2Re F12�

�ð Þ:

For the solutions with all three frequencies, it turns out that the
first term on the RHS always dominates the second one in the
inner corona. In addition, in the first several solar radii, the flow
is very sub-Alfvénic, i.e., M 2

T T1, XmeT1, and Z � �1. It
follows that Re(F11) is dominated by �Z( ln RBl)

0 � ( ln RBl)
0.

Therefore, |
|2 is approximately proportional to 1/(R2B2
l ). From

the definition of 
 (eq. [39]), one can see that hb2i1/2 � 1/R. That
is, hb2i1/2 shows little frequency dependence. On the other hand,
from equation (30) it follows that in theWKB limit hb2i1/2 � �1/4

for M 2
T T1 since Uph � UA. Hence, the difference between the

profiles for the three frequencies and the WKB one in the region
rP 1:7 R� reflects the fact that the mass density has a scale
height less than R /4. Now consider the portion rk 50 R� where
M 2

T 31. One may see that the slope of the hb2i1/2 profile for
! ¼ 10�4 rad s�1 becomes similar to that for ! ¼ 10�3 rad s�1 (or
equivalently theWKBone) asymptotically. On the other hand, the
profile with ! ¼ 10�5 rad s�1 has a flatter slope than the WKB
one. This is understandable by noting that the hb2i1/2 profile for
! ¼ 10�5 rad s�1 can be rather accurately represented by the zero-
frequency solution (35a). By noting that �Um/Bl is a constant and
M 2

T � r�2 for rk 50 R�, one can see that jb̃j and therefore
hb2i1/2 � r�1. On the other hand, for theWKB profile one can see
from equation (30) that asymptotically hb2i1/2 � �3/4 � r�3/2 since
Uph � Um þ UA.
Moving on to Figures 3b and 3c, one may notice that the mag-

nitude of the ion velocity fluctuations hu2
k i

1/2
(k ¼ p, �) have

nearly the same values at 1 R�, as assumed for hu2
e i

1/2
, which can

be expected from equation (7) together with the fact that hb2i1/2T
Bl for r � R�. Let us examine Figure 3b in some detail. One can
see that between 1 R� and 1 AU, the WKB estimate always ex-
ceeds the computed hu2

p i
1/2

value. Furthermore, for rP 5 R�, the
hu2

p i1/2 profile for ! ¼ 10�3 rad s�1 differs little from that for ! ¼
10�4 rad s�1; however, they are significantly larger than that for
! ¼ 10�5 rad s�1. Take values at 5 R�, for instance. One finds
that hu2

p i
1/2

is 83.9 km s�1 for the WKB estimate, but 44.6 and
41.9 km s�1 for ! ¼ 10�3 and 10�4 rad s�1, respectively. As to
the case ! ¼ 10�5 rad s�1, hu2

p i
1/2

is 17.2 km s�1. In other words,
theWKB estimate yields a value that is 1.88, 2, and 4.88 times the
computed values for ! ¼ 10�3, 10�4, and 10�5 rad s�1, respec-
tively. At 1 AU, the difference between the WKB estimate and
computed results is also substantial. One finds for ! ¼ 10�3,
10�4, and 10�5 rad s�1, the WKB estimate is 1.83, 1.18, and
1.32 times the values obtained numerically. An interesting fea-
ture of the hu2

p i
1/2

profile for! ¼ 10�5 rad s�1 is that it approaches
a constant asymptotically. This can be explained by noting that the
magnitudes of ion velocity fluctuations for ! ¼ 10�5 rad s�1 can
also be roughly represented by the zero-frequency solution (35b).
(The zero-frequency solutions [35a] and [35b] can be accurately
reproduced if ! is further reduced.) At distances R3RA where
M 2

T 31, equation (35b) can be written as

up � A�R
�U�p

Up þ �U�
� UmUp

U 2
j

1

M 2
T

� R2
A

R2

� �" #
; ð45Þ

Fig. 3.—Time average of the wave-related fluctuations. (a) Magnetic fluc-
tuation hb2i1/2; (b) and (c) proton and alpha-particle velocity fluctuations hu2

p i
1/2

and hu2�i
1/2
, respectively. Numerical results for three angular frequencies as well

as for the WKB estimates are given in different line styles as indicated in (a).
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where the constant � ¼ (��U�)/(�pUp) is the ion mass flux ra-
tio and is 0.19 for the supposed background solution. In the region
considered, the first term is found to dominate the second in
the brackets. As a result, up � RU�p � rUA. SinceUA � r�1, one
finds that jũpj, and therefore, hu2

p i
1/2

approaches a constant
asymptotically.

Let us proceed to Figure 3c, from which one can see that the
hu2

�i
1/2

profiles also deviate considerably from theWKB estimate.
In particular, below �5 R�, the hu2

�i
1/2

profiles behave in a fash-
ion similar to hu2

p i
1/2
; however, the difference between the case for

! ¼ 10�5 rad s�1 and the WKB estimate is even larger. For in-
stance, at 5R�, theWKB estimate is about 10 times the valuewith
! ¼ 10�5 rad s�1. On the other hand, for ! ¼ 10�3 (10�4) rad s�1,
one finds the ratio of the WKB value to that numerically derived
is 1.89 (2.1). At larger distances, one may note the local mini-
mum in the profile with ! ¼ 10�3 rad s�1 at 0.3 AU, consistent
with Figure 2c. Furthermore, one can see that the values for ! ¼
10�5 rad s�1 become an order of magnitude larger than theWKB
one. At 1 AU, for ! ¼ 10�3, 10�4, and 10�5 rad s�1, the values
obtained numerically are 0.55, 1.44, and 11.9 times theWKBone,
respectively. In addition, for ! ¼ 10�5 rad s�1 similar to hu2

p i1/2,
hu2

�i
1/2

also approaches a constant value asymptotically. This is
understandable since in the region R3RA where M 2

T 3 1, one
finds from equation (35b) that

u� � A�R
�U�p

Up þ �U�
� UmU�

U 2
j

1

M 2
T

� R2
A

R2

� �" #
; ð46Þ

where the first term in the brackets, as in the case for hu2
p i1/2, is

found to dominate the second. Therefore, hu2
�i

1/2 � �hupi1/2
asymptotically. As a result, hu2

�i
1/2

should show little spatial
dependence.

Figure 4 presents the radial distribution of (a) the wave energy
density Ew and (b) the energy flux density Fw for the three an-
gular frequencies andWKB expectations. In both Figures 4a and
4b, the profiles for ! ¼ 10�3 rad s�1 approach a WKB-like be-
havior when rk 10 R�. When ! ¼ 10�4 rad s�1, a WKB-like
spatial dependence of Ew and Fw can be seen for rk 80 R�. Now
let us consider Figure 4a first. At 1 R�, for ! ¼ 10�5 rad s�1, Ew

is larger than theWKB result, but for! ¼ 10�3 or 10�4 rad s�1, it
is smaller. This behavior is determined by the magnetic com-
ponent in Ew (eq. [20a]) since the particle part is nearly frequency
independent. Note that in the WKB limit, the wave energy is
equally distributed between the kinetic and magnetic energies,P

k �khu2
k i/2 ¼ hb2i/(8�). Hence at the coronal base, for ! ¼

10�3 and 10�4 rad s�1, the kinetic energy is larger than the mag-
netic one, whereas for ! ¼ 10�5 rad s�1, the tendency is reversed.
It is interesting to note that among the profiles for the three fre-
quencies the highest ! corresponds to a profile that deviates the
most from the WKB profile in the region rP 2 R�.

In the region rk 30 R�, one can see that for ! ¼ 10�4 rad s�1

the Ew profile becomes WKB-like asymptotically. However, for
! ¼ 10�5 rad s�1 the slope of the Ew profile is flatter than the
WKB one. This can be understood since for R3RA, the WKB
limit yields Ew / jbj 2 / �3/2 � r�3. On the other hand, for R3
RA, the zero-frequency result yields Ew that is largely determined
by the magnetic energy, which leads to Ew � jbj2 � r�2.

Inspection of Figure 4b reveals that the spatial dependence of
the profiles of the energy flux density Fw is remarkably similar in
the region rP 2 R�. In contrast, in the same region, Figure 4a
shows that the Ew profiles with different ! have rather different r
dependence. This behavior of Fw stems from the fact that the loss
of thewave energy flux in the formof thework done on the plasma

is negligible. In other words, Fw is diluted only by the flux
tube expansion below 2 R� (cf. eq. [15]). For instance, for ! ¼
10�4 rad s�1 at 2 R�,

P
k �kUkaw;k is 43 ergs cm�2 s�1 R�1

� ,
amounting to only 3.5% of Fw/r. As a result, (Fw/Bl)

0 � 0, or
Fw / Bl. That is, in this region the spatial profile of Fw should
show little frequency dependence. This is found to be true for
all the frequencies considered, and for theWKB result as well. On
the other hand, in the region R3RA, one can see that for ! ¼
10�4 rad s�1 the Fw profile becomes WKB-like asymptotically,
whereas the profile for ! ¼ 10�5 rad s�1 decreases more slowly
than the WKB one. It turns out that asymptotically for the low-
frequency waves Fw is dominated by the Poynting vector, which
evolves like ��UmR

2M 2
T �M 2

T � r�2. In the WKB limit, how-
ever, the ratio of the contributions of particles to the Poynting vec-
tor is roughly 1/2. As a result, Fw � Uphjbj 2 � jbj 2 � r�3.

From the perspective of solar windmodeling, one may bemore
curious about the feedback from the waves to the background
flow. To this end, Figure 5 presents the radial distribution of the
acceleration exerted on (a) the protons aw;p and (b) the alpha par-
ticles aw;�. One can see that for ! ¼ 10�3 and 10�4 rad s�1, the
wave acceleration is less effective than that in the WKB limit
throughout the computational domain. However, in the-low fre-
quency case ! ¼ 10�5 rad s�1, aw;p exceeds the WKB expecta-
tion considerably beyond 22.8 R�. Nevertheless, in all cases the
wave force tends to accelerate the protons, i.e., aw;p > 0 every-
where between the coronal base and 1AU.However, this is not the
case when the alpha particles are concerned. It can be seen from
Figure 5b that thewave acceleration aw;� is negative in the interval
between 22.7 and 66.1 R� in the WKB limit, as well in the case
! ¼ 10�3 rad s�1. This coincidence of the positions where aw;�
changes sign stems from the fact that beyond�10R�, the wave is

Fig. 4.—Time average of (a) the wave energy density Ew and (b) wave en-
ergy flux density Fw, as evaluated from eqs. (20a) and (20b). Numerical results
for three angular frequencies as well as for the WKB estimates are given in
different line styles as indicated in (a).
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WKB-like. On the other hand, the aw;� profile for! ¼ 10�4 rad s�1

changes sign at 21.8 and 61.8 R�. These locations are slightly
different from their counterparts in theWKB limit.When it comes
to ! ¼ 10�5 rad s�1, the aw;� profile does not show any resem-
blance to the WKB expectation. In particular, the waves start to
decelerate the alpha particles even in the inner corona: aw;� is
negative everywhere beyond 3.4 R�. An interesting aspect of the
wave-induced acceleration is that asymptotically both aw;p and
aw;� approach constant values. This is understandable since in the
zero-frequency limit, in the region where R3RA, both up and
uk show little radial dependence. It then follows from the ex-
pressions (45) and (46) that for ion species k (k ¼ p, �), aw; k �
u2
k (ln R)

0 � Ukuk ln Rð Þ0b/Bl / R0uk . Since in the region con-
sidered, the line of force is nearly perfectly radial, one can see
that R0 is a constant. As a result, aw;k should approach a constant
asymptotically.

The extent to which the wave forces may alter the ion flows
can be obtained only through a self-consistent modeling by using,
e.g., the iterative approach adopted byMacGregor&Charbonneau
(1994). The wave equations (38a) and (38b) and the solar wind
equations (8)Y(10) incorporating thewave contribution are solved
alternately until a convergence is met. As a first step, however, we
may simply evaluate the ion speeds Uk;corr (k ¼ p; �) corrected
for the wave force, i.e.,

U 2
k;corr � U 2

k ¼ 2

Z r

R�

aw;k dl: ð47Þ

Figure 6 presents the radial distribution of both Up;corr and
U�;corr for all the frequencies considered. The background flow
speed profiles are also plotted for comparison. One may see

that, with the present choice of the wave amplitude, the waves
have negligible effects on the ion acceleration below the Alfvén
point. Beyond the Alfvén point, the effects introduced by the
waves on the speed profiles becomemore important, especially in
the low-frequency case. As a matter of fact, for ! ¼ 10�5 rad s�1

the corrected proton speed Up;corr reaches 785 km s�1 at 1 AU
where the background value is 648 km s�1. As for the alpha-
particle speed, U�;corr becomes negative beyond 100 R� due to
the significant deceleration exerted on the alpha particles by the
waves. Of course, such a situation will not appear in reality. What
will happen is that the protons are accelerated, whereas alpha par-
ticles are decelerated by the low-frequency waves until the ions
move at nearly identical speeds. The net effect of low-frequency
waves is thus to limit the speed difference between the protons and
alpha particles at large distances. However, it should be pointed
out that in these regions the net work done by the low-frequency
wave on the solar wind as awhole is negligible:

P
k �kUkaw; k � 0

and Fw is nearly divergence free, as discussed in reference to
Figure 4.

6. SUMMARY AND CONCLUDING REMARKS

This study has been motivated by the apparent lack of a non-
WKB analysis of Alfvén waves in a multifluid solar wind with
differentially flowing ions. To bemore specific, this study is con-
cerned with the propagation of dissipationless, hydromagnetic
(angular frequency ! well below ion gyrofrequencies), purely
toroidal Alfvén waves that propagate in a background three-fluid
solar wind comprised of electrons, protons, and alpha particles.
Azimuthal symmetry is assumed throughout. No assumption has
been made that the wavelength is small compared with the
spatial scales at which the background flow parameters vary. The
wave behavior at a given ! is governed by equations (38a) and
(38b), which is derived from the general transport equations in
the five-moment approximation. The Alfvénic point, where the
combined AlfvénMach numberMT ¼ 1 (cf. eq. [34]), is a singu-
lar point of equations (38a) and (38b), and a regularity condition
has to be imposed. For the other boundary condition, we impose
a velocity amplitude of 10 km s�1 at the coronal base (1 R�). For
the given background model of a realistic low-latitude fast solar
wind, equations (38a) and (38b) are integrated numerically for
three representative angular frequencies ! ¼ 10�3, 10�4, and
10�5 rad s�1 to yield the radial distribution of the wave energy

Fig. 6.—Possible modification of ion flow speeds due to the wave acceler-
ation. Although the speeds Up;corr and U�;corr , evaluated from eq. (47), are not
computed self-consistently, their deviation from the background flow parame-
ters represents the significance of the wave acceleration in the force balance for
the two ion species. Numerical results for three angular frequencies as well as
for the WKB estimates are given in different line styles as indicated.

Fig. 5.—Time average of the wave acceleration exerted on (a) protons aw;p
and (b) alpha particles aw;� as evaluated from eq. (11). Numerical results for
three angular frequencies as well as for theWKB estimates are given in different
line styles as indicated in (a). In (b), the wave acceleration changes sign when
the profile crosses the horizontal line.
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and energy flux densities, as well as the wave-induced acceler-
ation exerted on ion species.

The first conclusion concerns the applicability of the WKB
approximation. Between 1R� and 1AU, the numerical solutions
show substantial deviation from the WKB expectations. Even
for the relatively high frequency ! ¼ 10�3 rad s�1, a WKB-like
behavior can be seen only in regions where rk 10 R�. In the
low-frequency case ! ¼ 10�5 rad s�1, the computed profiles of
wave-related parameters show a spatial dependence that is dis-
tinct from the WKB one, the deviation being particularly pro-
nounced in interplanetary space. In the inner corona rP 4 R�,
the computed ion velocity fluctuations are considerably smaller
than the WKB expectations in all cases, as is the computed wave-
induced acceleration exerted on protons or alpha particles. As for
the wave energy and energy flux densities, they can be enhanced
or depleted compared with the WKB results, depending on !.

The second conclusion is concerned with how the wave accel-
eration may alter the background flow parameters. In reference
to Figure 6, it is found that with the current choice of base wave
amplitude, the wave acceleration has little effect on the force
balance for protons or alpha particles in the corona. That is, one
has to invoke processes other than the non-WKB wave acceler-
ation to accelerate the ions out of the gravitational potential well
of the Sun. However, at large distances beyond theAlfvénic point,
low-frequency waves may play an important role in the ion dy-
namics, with the net effect being to equalize the speeds of the two
ion species considered.

Strictly speaking, the separation of the flow into fluctuations
and a time-independent background implies that the waves are
linear. However, one may have noticed that the wave amplitude
hb2i1/2 at 1 AU for ! ¼ 10�5 rad s�1 is substantially larger than
the background poloidal magnetic field strength (cf. Fig. 3a).
That the transverse magnetic field dominates the poloidal one
demands a careful examination of the nonlinear effects other
than the wave-induced acceleration. In particular, one needs to
look at the generation of secondary waves and structures by the
primary Alfvén waves through the source terms in the momen-

tum equation. As discussed by Lou (1993) for the case of ideal
MHD, these source terms decrease sufficiently fast with radial
distance asymptotically. Consequently, the first-order wave am-
plitudes are valid provided that the amplitude imposed at the
coronal base is sufficiently small. The basic picture is expected to
be the same even if a second ion species is included, although a
similar discussion in the three-fluid framework will be compli-
cated by the richness ofwavemodes due to the differential protonY
alpha-particle streaming (e.g., McKenzie et al. 1993).

As has been mentioned in x 1, Alfvén waves are dissipated in
some way, and this dissipation of the primary waves should be
described self-consistently. A possibility for doing this is to per-
form a full Elsässer analysis extended to the multifluid case and
to express the dissipation in terms of the amplitudes of counter-
propagating waves. We note that this already complicated issue
will become even trickier considering the need to apportion the
dissipated wave energy among different species.

In closing, we note that the low-frequency waves may also be
important for outflows from stars other than the Sun. For instance,
in the radiatively driven stellar winds, these waves will provide a
further channel of momentum exchange between passive ions and
line-absorbing ions in addition to the Coulomb friction. This pos-
sibility was first pointed out by Pizzo et al. (1983) in connection
with the effects of stellar rotation. Due to the clear resemblance
between the low-frequency Alfvén waves and stellar rotation (cf.
x 3.2), their discussion also applies to the case where the star per-
sistently emits Alfvén waves with frequencies lower than the crit-
ical one defined by equation (44). Consequently, the mass-loss
ratemay be significantly altered. A quantitative study of this effect
is beyond the scope of the present paper, however.
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