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ABSTRACT

Context. Both remote-sensing measurements using the interplanetary scintillation (IPS) technique and in-situ measurements by the
Ulysses spacecraft show a bimodal structure for the solar wind at solar minimum conditions. At present it still remains to address why
the fast wind is fast and the slow wind is slow. While a robust empirical correlation exists between the coronal expansion rate fc of
the flow tubes and the speeds v measured in situ, a more detailed data analysis suggests that v depends on more than just fc.
Aims. We examine whether the non-radial shape of field lines, which naturally accompanies any non-radial expansion, could be an
additional geometrical factor.
Methods. We solved the transport equations incorporating the heating from turbulent Alfvén waves for an electron-proton solar wind
along curved field lines given by an analytical magnetic field model, which is representative of a solar minimum corona.
Results. The field line shape is found to influence the solar wind parameters substantially, reducing the asymptotic speed by up
to ∼130 km s−1 or by ∼28% in relative terms, compared with the case where the field line curvature is neglected. This effect was
interpreted in the general framework of energy addition in the solar wind: compared to the straight case, the field line curvature
enhances the effective energy deposition to the subsonic flow, which results in a higher proton flux and a lower terminal proton speed.
Conclusions. Our computations suggest that the field line curvature could be a geometrical factor which, in addition to the tube
expansion, substantially influences the solar wind speed. Furthermore, although the field line curvature is unlikely to affect the polar
fast solar wind at solar minima, it does help make the wind at low latitudes slow, which in turn helps better reproduce the Ulysses
measurements.
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1. Introduction

Around solar minima the global distribution of the solar wind
exhibits a simple bimodal structure: a band around the helioe-
quator with an angular width ∼50◦ of the slow wind (speed
v � 500 km s−1) is sandwiched between the high-latitude fast
winds (v � 650 km s−1) (e.g., Plate 1 in McComas et al. 2000).
This picture was established indirectly by interplanetary scin-
tillation (IPS) measurements in 1974 and 1985, corresponding
to the minimum of solar cycles (SC) 20 and 21, respectively
(Kojima & Kakinuma 1990). However, it became definitive only
when Ulysses finished the first polar orbit, which encompasses
the minimum of SC 22 (McComas et al. 2000). The bimodal
picture continued for the SC 23 minimum as shown by Ulysses
during its third polar orbit (McComas et al. 2008; Ebert et al.
2009).

What makes the fast solar wind fast and slow wind slow?
In the context of the Ulysses measurements, what produces the
pronounced latitudinal variation of v? Considering the well-
established empirical relation between v and the coronal expan-
sion rate fc of flow tubes (Wang & Sheeley 1990), one may
expect that the speed profile results from the differences in
fc of tubes reaching different latitudes in interplanetary space.
Models that incorporate heating rates closely related to the mag-
netic field B indeed suggest that varying the spatial distribu-
tion of B, or equivalently that of the expansion rate, can result
in considerable changes in wind parameters (for a summary of

geometrical models, see Cranmer 2005; for more recent mod-
els adopting empirical heating terms, see Wang 2011). For
instance, the most recent models based on the anisotropic turbu-
lence, which self-consistently accommodate the heating from in-
teractions of counter-propagating Alfvén waves, indicate that by
varying the B profile alone, the modeled latitudinal dependence
of wind speed at 1 AU can agree fairly well with the Ulysses
measurements (Fig. 12 in Cranmer et al. 2007).

While the fc − v relationship is strikingly robust, the signif-
icant spread in v in a given fc interval means that v is a func-
tion of more than fc, and the angular distance θb of the field
line footpoint to its nearest coronal hole boundary was proved a
good candidate for this additional factor (Arge et al. 2004). For
a given fc, the smaller θb, the lower is the speed. Because one
naturally expects that the open field line becomes increasingly
curved while its footpoint becomes closer to the coronal hole
boundary, a natural alternative to θb would be the shape of field
lines. Surprisingly, the possible effect of field line curvature has
not been examined yet. Instead, the available turbulent-heating-
based models tend to assume a radially directed flow tube, even
though the non-radial tube expansion has been examined in con-
siderable detail (e.g., Chen & Hu 2002; Cranmer et al. 2007;
Wang 2011).

The aim of this study is to examine how the field line shape
affects the solar wind parameters in general, and whether it helps
reproduce the Ulysses measurements in particular. It should be
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noted that while fully multi-dimensional models incorporating
turbulent or empirical heating rates (e.g., Usmanov et al. 2000;
Chen & Hu 2001; Li et al. 2004; Cohen et al. 2007; Lionello
et al. 2009; Feng et al. 2010; van der Holst et al. 2010) certainly
have taken account of both a non-radial expansion and the field
line curvature, the two effects cannot be separated. Therefore
we choose to solve the transport equations along field lines in a
prescribed magnetic field configuration typical of the solar min-
imum corona, thereby allowing us to switch on and off the ef-
fect of the field line shape. The solar wind model we employ
incorporates a physically motivated boundary condition, distin-
guishes between electrons and protons, adopts reasonably com-
plete energy equations including radiative losses, electron heat
conduction, and the solar wind heating from parallel propagat-
ing turbulent Alfvén waves.

The paper is organized as follows. In Sect. 2 we give a brief
overview of the model and describe how it is implemented. The
numerical solutions are then presented in Sect. 3. Finally, Sect. 4
summarizes the results, ending with some concluding remarks.

2. Model description and solution method

We consider a time-independent electron-proton solar wind
flowing in the meridional plane and incorporating turbulent heat-
ing from Alfvén waves. Since the equations are quite well-
known, we simply note that the mass or energy exchange
between neighboring flow tubes is prohibited, permitting the de-
composition of the vector equations (e.g., Eqs. (2) to (7) in Li
et al. 2005, and references therein) into a force balance condition
transverse to B and a set of conservation equations along it. For
mathematical details, please see the appendix of Li & Li (2006).
Here we replace the former with a prescribed magnetic field,
and treat only the conservation equations in detail. The Alfvén
waves are assumed to propagate along B and to be dissipated
at the Kolmogorov rate Qwav = ρδv

3/Lc, where ρ = nmp is the
mass density with n and mp being the number density and pro-
ton mass, respectively. Moreover, δv is the rms value of the wave
velocity fluctuations, and Lc the correlation length. By standard
treatment, the wave heating Qwav goes entirely to protons, and
Lc = Lc0(B0/B)1/2, where the subscript 0 denotes values at the
field line footpoint at the Sun. This form of dissipation and its
variants, first proposed by Hollweg (1986), have been a common
practice in solar wind modeling ever since (see e.g., the review
by Hollweg & Isenberg 2002).

The conservation equations along an arbitrary magnetic line
of force read

(nvA)′

A
= 0, (1)

vv′ +
p′p
ρ
+

p′e
ρ
−

(GM�
r

)′
=

F
ρ
, (2)

T ′s + (γ − 1)Ts[ln(vA)]′ =
γ − 1
nkBv

[
δEs

δt
+ Qs − L − (qsA)′

A

]
, (3)

(FwA)′

A
+ vF = −Qwav, (4)

where v is the wind speed, A ∝ 1/B is the cross-sectional area
of the flux tube, and the prime ′ denotes the derivative with re-
spect to the arc length l, measured from the footpoint of the field
line. The species pressures ps (s = e, p) are related to species
temperatures Ts via ps = nkBTs in which kB is the Boltzmann
constant. The gravitational constant is denoted by G, and M� is
the mass of the Sun. Note that the gravitational acceleration is

put in the form of a directional derivative. In addition, the force
density acting on the fluid is caused by Alfvén waves, F = −p′w
where pw = ρδv

2/2 is the wave pressure. The adiabatic index
γ = 5/3, and δEs/δt represents the energy exchange rates of
species s due to Coulomb collisions with the other species. To
evaluate them, we take the Coulomb logarithm to be 23. For sim-
plicity, the proton heat flux is neglected (qp = 0), whereas the
electron one is taken to be the Spitzer law qe = −κT 5/2

e T ′e where
κ = 7.8 × 10−7 erg K−7/2 cm−1 s−1. Moreover, the heating rates
applied to species s is denoted by Qs. For the protons, one has
Qp = Qwav. On the other hand, optically thin radiative losses
are accounted for by the term L, which is included in the elec-
tron version of Eq. (3) and is described by the parametrization
scheme of Rosner et al. (1978). Some electron heating is also
included, expressed by Qe = Q̄e exp(−l/ld) where Q̄e is the mag-
nitude and ld the scale length of this heating. For simplicity, here
we assume that this electron heating is associated with no mo-
mentum deposition. Equation (4) describes the wave evolution,
in which Fw = pw (3v + 2vA) is the wave energy flux density
with vA = B/

√
4πρ the Alfvén speed.

Given the governing equations, one may say a few words on
the effect of the magnetic field line shape before actually solving
them. Consider the case, referred to as Case S, where we put dl =
dr in ′ (note that ′ is also involved in qe) and l = r−R� in Qe. Here
r is the heliocentric distance and R� the solar radius. As such,
Case S differs from the original case, called Case C, only in that
the field lines are straight in the former, but allowed to be curved
in the latter. It then follows that if the wind energetics is not self-
consistently considered, say, if one prescribes an r-distribution
of the temperatures Te and Tp, then Eqs. (1) and (2) indicate that
no matter how curved the field line may be, the same r-profiles
for n and v result. This applies even if the waves are considered
as long as the wave dissipation is neglected. To understand this,
one may readily derive from Eq. (4) a conservation law which
reads (e.g. Hu et al. 1997)

(ωS A)′

A
= −(1 + MA)Qwav, (5)

where ωS = 2pwvA(1+MA) is the wave action flux density, and
MA = v/vA is the Alfvénic Mach number. If Qwav = 0, one finds
that ωS A is a constant, enabling the wave pressure pw to be ex-
pressed as a functional of flow parameters as well as B. As such
multiplying Eqs. (1) and (2) by a factor dl/dr does not invalidate
the equal signs. This means that any two field lines that have
identical radial distributions of B, Te and Tp will yield identical
radial distributions of n, v and pw, provided that the base val-
ues for n and δv are the same for the two lines. However, if the
energy equation is explicitly considered, as we will do, and the
adopted heating rates play a role in determining the solar wind
mass flux, then the field line shape will likely play a role (see
also the discussion section).

For the meridional magnetic field, we adopt the
Banaszkiewicz et al. (1998) model for which we use the
reference values [Q,K, a1] = [1.5, 1, 1.538]. This set of pa-
rameters is supported by images obtained with the instruments
on board the SOlar and Heliospheric Observatory (SOHO)
spacecraft at solar minimum (see e.g., Fig. 1 in Forsyth &
Marsch 1999), and has found extensive applications in solar
wind models (e.g., Hackenberg et al. 2000; Cranmer et al.
2007; Li & Li 2008). Another parameter M, which controls
the magnetic field strength, is chosen such that B at the Earth
orbit is 3.5γ, consistent with Ulysses measurements (Smith &
Balogh 1995; also Smith 2011).
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B. Li et al.: Solar winds along curved magnetic field lines

Fig. 1. Adopted meridional magnetic field configuration in the corona. a) A quadrant is shown where the magnetic axis points upward, and the
thick contours delineate the lines of force for which the expansion factors f = (A/A0)(R�/r)2 are plotted in b) as a function of heliocentric distance
r. The field lines are labeled with the colatitude at which they intersect the Earth orbit (1 AU). Here A denotes the cross-sectional area of the flow
tube, the subscript 0 represents values at the inner boundary R�.

The meridional magnetic field configuration is depicted in
Fig. 1a, where the thick contours indicate the lines of force along
which we compute the expansion factor f = (A/A0)(R�/r)2,
given in Fig. 1b. The field lines are labeled with the colati-
tude at which the lines are located at 1 AU. From Fig. 1a one
can see that the open field lines occupy only a minor fraction
of the solar surface, with colatitudes θ ≤ 30◦ to be specific.
If one identifies this area as the coronal hole (CH) (see e.g.,
Wang 2011), one can indeed see that when their footpoints ap-
proach the CH boundary, the open field lines become progres-
sively more curved. Furthermore, Fig. 1b shows that while in the
inner corona, say at r = 1.7 R�, the expansion factor f increases
when the field lines become closer to the CH edge, the opposite
is true at large distances, say r � 20 R�. As was first pointed out
by Wang & Sheeley (1990), this tendency is due to the inclusion
of the current sheet component in the magnetic field, and the low
densities in the fast wind in interplanetary space were attributed
to that flow tubes originating near the CH center experienced the
most significant net expansion.

Given a B profile along a field line, the governing equa-
tions are put in a time-dependent form, discretized onto a non-
uniformly spaced grid, and then advanced in time from an ar-
bitrary initial state by a fully implicit scheme (Hu et al. 1997)
until a steady state is reached, which is then taken as our so-
lution. For the solutions found, the mass, momentum, and en-
ergy are found to be conserved to better than 1%. At the top
boundary (1 AU), all flow parameters are linearly extrapolated
for simplicity. At the base (1 R�) the flow speed v is deter-
mined by mass conservation, whereas the species temperatures
are fixed at Te0 = Tp0 = T0 = 5 × 105 K, corresponding to
mid-transition region. Because the processes taking place be-
low this level should influence the mass supply to the solar
wind (e.g., Hansteen & Leer 1995; Lie-Svendsen et al. 2002),
they should be taken into account and can be well represented by

the radiation equilibrium boundary (REB) condition (Withbroe
1988; Lionello et al. 2001). The REB condition translates into
n0 = 4.8 × 103qe0 in cgs units for our chosen T0. As such,
the base density n0 is not fixed but allowed to adjust to the
downward heat flux, which in turn depends on how the fluid is
heated close to the base. Without the basal electron heating, the
Te gradient and hence the electron heat flux density qe0 at the
base are too low, leading to n0T0 	 1.6 × 1014 cm−3 K,
the value inferred from measurements with the Solar Ultraviolet
Measurements of Emitted Radiation (SUMER) on SOHO for
coronal holes (Warren & Hassler 1999). The values adopted for
Qe are Q̄e = 1.7 × 10−5 erg cm−3 s−1, and ld = 0.06 R�. With
such a short scale length, Qe rapidly gives way to the more grad-
ual proton heating Qwav, for which we use a base wave amplitude
δv0 = 27 km s−1 and a base value for the correlation length Lc0 of
1.5 × 104 km. (Note that even though this Lc0 translates into ap-
proximately 0.02 R�, it does not mean that the wave dissipation
is extremely concentrated at the base. A length scale comparable
to ld involved in Qe can be given by |Qwav/Q′wav|, for which one
finds a value ranging from 0.086 R� at the base to 0.59 R� at
2 R� for the solution labeled case C in Fig. 2.)

3. Numerical results

To examine the extent to which the wind parameters are affected
by the field line shape, we will compare solutions that incor-
porate the curvature effect (Case C) and those that neglect it
(Case S).

Figure 2 presents the radial profiles of (a) the wind speed v
and (b) the electron and proton temperatures Te and Tp for the
solutions computed along the tube labeled 88 in Fig. 1a. For this
field line the effect of the field line curvature is almost maximal.
The solid and dashed curves correspond to Cases C and S, re-
spectively. The asterisks in Fig. 2a refer to the sonic point where
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Fig. 2. Alfvén wave-turbulence-based solar wind models incorporating
effects of field line shape. Radial profiles are shown for a) the solar
wind speed v, and b) the electron and proton temperatures Te and Tp.
The curved (straight) case in which the field line shape is considered
(neglected) is given by the solid (dashed) lines. In a), the asterisks indi-
cate the sonic point where v equals the effective sonic speed cS defined
by Eq. (6), while the vertical bars represent wind speeds measured by
tracking small density inhomogeneities (blobs) in SOHO/LASCO im-
ages as given by Wang et al. (2000). The triangles in b) give the hy-
drogen kinetic temperatures derived from H I Lyα measurements with
SOHO/UVCS for a typical solar minimum streamer (Strachan et al.
2002).

v equals the effective sound speed cS given by (e.g., Eq. (36) in
Hackenberg et al. 2000)

c2
S =

kB

mp

(
Te + Tp

)
+

pw

ρ

1 + 3MA

2(1 + MA)
· (6)

Moreover, in Fig. 2a the vertical bars give the range of wind
speeds derived by tracking a collection of small inhomo-
geneities (the blobs) in images obtained with the Large Angle
Spectrometric COronagraph (LASCO) on board SOHO (Wang
et al. 2000). The triangles in Fig. 2b represent the hydrogen
kinetic temperatures derived from the H I Lyα profiles mea-
sured with the UltraViolet Coronagraph Spectrometer (UVCS)
on SOHO for a typical solar minimum streamer (Strachan et al.
2002).

The solution for Case C (solid curves) agrees well with avail-
able measurements. For instance, the model yields the following
parameters at 1 AU: vE = 333 km s−1, (nv)E = 3.65×108 cm2 s−1,
Te = 1.4 × 105 K and Tp = 2.7 × 104 K, all of which match
the in-situ measurements by both Helios (Schwenn 1990) and
Ulysses (McComas et al. 2000, 2008; Ebert et al. 2009) of
the low latitude slow winds. Here the subscript E denotes the
Earth orbit. Figure 2a indicates that the wind speed starts with
6.4 km s−1 at the base, which is in line with the Doppler speed

measured with Ne VIII (e.g., Xia et al. 2003), whose formation
temperature is close to our base temperature. The speed profile is
not monotonic but possesses a local minimum at 1.63 R� where
v = 25.1 km s−1. The sonic point, denoted by rC, is located at
4.15 R�. Between 3 and 20 R� the computed speeds are in line
with the blob measurements. Moreover, for r � 3 R� the mod-
eled v is no higher than 98.8 km s−1, which would be below the
sensitivity of the Doppler dimming of H I Lyα (Kohl et al. 2006),
and in this sense is compatible with the fact that there is not much
empirical knowledge about the proton speed in the inner portion
of the slow wind. Moving to Fig. 2b one may see that because
of the applied electron heating both Te and Tp increase near the
base. At 1.19 R� the electron temperature Te attains its maxi-
mum of 9.8 × 105 K. Below this height, Te and Tp stay close
to each other owing to Coulomb coupling. However, while Te
decreases monotonically with distance above this height, Tp fur-
ther increases to 2.14×106 K at 1.6 R� beyond which Tp declines
with a slope steeper than Te and is overtaken by Te at 30.1 R�. In
the range from 1.75 to 5.11 R� the modeled proton temperature
reproduces the H I measurements fairly satisfactorily, which in-
dicates that the heating mechanism we employ performs well in
heating the inner solar wind.

Compared with Case C, at 1 AU Case S yields a significantly
higher proton speed and a substantially lower proton flux den-
sity. The parameters at 1 AU now read vE = 461 km s−1, (nv)E =
3.14 × 108 cm2 s−1, Te = 7.5 × 104 K, and Tp = 4.65 × 104 K.
In addition, Case S yields a sonic point at rC = 3.24 R�, closer
to the Sun than in Case C. The differences between the temper-
atures in the two cases can be readily understood by examining
Eq. (3). A higher speed in Case S leads to a more prominent
adiabatic cooling (the second term on the left-hand side), which
accounts for a steeper, negative Te gradient and hence a lower
asymptotic Te; on the other hand, while the same also happens
to protons, the reduced proton flux results in a higher Qwav/(nv),
which leads to a steeper, positive Tp gradient and eventually a
higher asymptotic Tp. However, the question remains as to how
neglecting the curvature of the field line leads to the changes
in the proton speed and flux? This is understandable if one fol-
lows the comprehensive discussion by Leer & Holzer (1980): the
more energy is deposited in the subsonic region of the flow, the
higher the proton flux; and the larger the energy deposition per
particle, the higher the terminal speed. Let us first examine the
subsonic physics, from R� to the sonic point rC. The contribu-
tion from the electron heating, measured as an energy flux den-
sity scaled to 1 AU

∫ rC

R�
Qe(A/AE)dl, increases only slightly from

0.3 in Case C to 0.337 in Case S (here and hereafter the energy
flux densities are in erg cm−2 s−1). However, the effect of energy
addition to protons, which eventually derives from Alfvén waves
since

∫ rC

R�
(Qp + vF)(A/AE)dl = FwA/AE|rC

R� , reduces more signifi-
cantly from 1.089 in Case C to 0.931 in Case S. And this reduc-
tion is a direct consequence of the field line shape. To see this,
we note that the wave action Eq. (5) is a proper starting point, be-
cause its right-hand side (RHS) evaluates the consequence of the
“genuine” dissipation while its LHS involves the wave pondero-
motive force, which also contributes to the wave energy loss.
Without dissipation, we saw that the field line shape is unable
to make the radial distributions different in Case C from those
in Case S, even when the ponderomotive force is allowed for.
Expressing Eq. (5) in the integral form yields

(
ωS

A
AE

)∣∣∣∣∣∣
rC

R�

= −
∫ rC

R�
(1 + MA)

A
AE

Qwavdl. (7)
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Fig. 3. Distribution with colatitude θ of the computed solar wind speed
v at 1 AU and the coronal expansion factor fc of the flow tube inter-
secting the Earth orbit at θ. The model result incorporating (neglecting)
the field line shape, called Case C (S), is given by the solid (dashed)
line. They are obtained by varying the flow tube alone but keeping all
other parameters unchanged. Cases C and S both take the radial vari-
ation of the magnetic field strength into account, and differ from each
other only in that Case C considers the field line shape whereas Case S
neglects it. The blue continuous curve gives the daily averaged speed
measurements by Ulysses during the first half of its latitude scan from
Sep. 12, 1994 to Mar. 4, 1995. As for fc, it is taken to have the value of
f at a heliocentric distance of 1.7 R�.

Now that in general dl/dr > 1, which is particularly true in the
inner flow where MA 	 1, the RHS of Eq. (7) means that Qwav
of similar amount effectively contributes more to the wave en-
ergy reduction in the curved than in the straight case. Now let
us discuss the asymptotic speeds. The net energy added to the
solar wind, i.e., the electron heating plus wave dissipation plus
enthalpy flux subtracted by radiative losses and the net electron
heat flux flowing out of the computational domain, yields an en-
ergy flux scaled to 1 AU of 1.495 (1.553) in Case C (S). Divided
by the proton flux density, this gives 0.41 (0.495)× 10−8 erg per
particle in Case C (S), which explains the higher terminal speed
in Case S.

Now we return to the question what geometrical factor(s) be-
sides the tube expansion may also affect the solar wind speed v.
The comparison between the straight and curved cases shows
that the field line shape could be one. In this regard, the physical
basis for the empirical relation found by Arge et al. (2004) may
be simply that θb, which measures how far the open field line
footpoint is away from the coronal hole boundary, also charac-
terizes the field line shape.

What role does the shape of field lines play in shaping the
latitudinal profile of the solar wind speed at 1 AU? This is ex-
amined in Fig. 3, which compares the speed profile in Case C
(the solid curve) and in Case S (the dashed curve). The model
results are obtained by varying only the flow tube along which
the governing equations are solved, but keeping everything else
untouched. In addition to the speed v at 1 AU, Fig. 3 also dis-
plays as a function of colatitude θ the coronal expansion fac-
tor fc of the flow tube that reaches 1 AU at θ. Here fc is de-
fined as (A/A0)(R�/rcor)2, where rcor is taken to be 1.7 R� (see
Fig. 1b). For comparison, the solid curve in blue gives the daily
averages of the Ulysses measurements of the wind speed dur-
ing the first half of the fast latitude scan from Sep. 12, 1994 to
Mar. 4, 1995. From Fig. 3 one can see that while the speed v in
both models is inversely correlated with fc, the results in Case
C provide a stronger latitudinal variation. Indeed, the reduction
in the wind speed caused by the field line shape is larger than
10% throughout the latitudinal range θ � 70◦, with the largest

relative difference being 27.8%, which occurs close to the equa-
tor. Furthermore, without more tweaking of the heating parame-
ters, such as varying the base values of the wave amplitude δv0
and the correlation length Lc0 from tube to tube as was done
by e.g., Li et al. (2004), the modeled latitudinal dependence for
θ � 70◦ is too strong to reproduce the measured profile for the
fast wind. Despite this, the low-latitude portion of Fig. 3 indi-
cates that in addition to a more pronounced coronal expansion
rate, the field line curvature is also an important factor that makes
the slow wind there slow.

4. Summary and concluding remarks

Both remote-sensing measurements using the interplanetary
scintillation (IPS) technique and in-situ measurements by the
Ulysses spacecraft show a latitudinal gradient in the wind prop-
erties, the speed in particular, at solar minimum conditions
(Kojima & Kakinuma 1990; McComas et al. 2000, 2008). What
makes the fast wind fast and the slow wind slow still seems
elusive. While there exists a robust empirical correlation be-
tween the coronal expansion rate fc of the flow tubes and the
speeds v measured in situ (Wang & Sheeley 1990), a more de-
tailed data analysis suggests that v depends on more than just
fc (Arge et al. 2004). We examined whether the non-radial shape
of field lines, which naturally accompanies any non-radial ex-
pansion, could be an additional geometrical factor. To this end,
we solved the transport equations for an electron-proton so-
lar wind, which incorporate the heating from turbulent Alfvén
waves dissipated at the Kolmogorov rate, along curved field lines
given by the Banaszkiewicz et al. (1998) model, which is repre-
sentative of a solar minimum corona. The shape of field lines
was found to substantially influence the solar wind parameters,
reducing the terminal speed by as much as ∼130 km s−1 or up
to 28%, compared to the straight case where field line curva-
ture is neglected. And this effect was interpreted in the general
framework of energy addition in the solar wind by Leer & Holzer
(1980): compared with the straight case, even though the wave
dissipation rates may be similar, the field line curvature enhances
the effective wave energy deposition in the subsonic region of the
flow, which results in a higher proton flux and a lower terminal
proton speed. Our results suggest that the experimental finding
by Arge et al. (2004) may be interpreted in view of the fact that
flow tubes with identical coronal expansion rates may differ sub-
stantially in their curvature. On the other hand, even though the
field line curvature is unlikely to affect the polar fast solar wind
at solar minima, it does considerably help the wind at low lati-
tudes become slow, which in turn helps to better reproduce the
Ulysses measurements.

Could this effect have to do with the particular bound-
ary conditions or the energy deposition mechanism employed
here? This proves very unlikely. We tested cases where the in-
ner boundary is placed at the lower transition region where
T = 105 K, or the “coronal base” where T = 106 K. Adjusting
the heating parameters in a way that realistic values can be ob-
tained for the proton flux and asymptotic speed, and comparing
solutions with field line curvature switched on and off, the con-
clusion is the same. On the other hand, using a different heating
function where Qp is given by the dissipation of some unspeci-
fied mechanical energy flux at a constant scale length, the con-
clusion is the same. Moreover, this effect is not related to the heat
conduction, even though the effective electron heat conductivity
is reduced by a factor dr/dl in the curved case. Indeed, turn-
ing off the electron heat flux, in which case we have to fix the
base density though, we reach the same conclusion. All of these
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additional computations corroborate our interpretation that the
changes brought forth by the field line shape are simply related
to the differential arc-length dl involved in Eq. (7), whereby the
more curved the field lines are in the subsonic region, the greater
is the wave energy reduction there, hence the higher the proton
flux, and with the total input energy flux barely changing, the
lower the terminal proton speed. The effect of the field line shape
therefore should happen in quite general situations where the
wave dissipation rate Qwav is not directly proportional to the spa-
tial derivative of background parameters and the energy deposi-
tion in the subsonic region plays a significant role in determining
the solar wind flux. From this perspective one may expect that
the effect of field line curvature is not restricted to flow tubes
rooted at any particular latitude on the Sun. Instead, it should
play a role for any flow tube that is curved. Moreover, this effect
should also exhibit some influence on the flow if one employs
the anisotropic turbulence treatment of the Alfvén waves to in-
corporate the finite-wavelength non-WKB effects, as is actively
pursued at present (Cranmer et al. 2007; Verdini et al. 2010).
Compared with a radial one, a curved line of force is likely to
enhance the non-WKB effect (i.e., reflection) in the near-Sun
region (Fig. 16 in Heinemann & Olbert 1980). However, to pre-
dict what happens next is not as straightforward as what was
done here. Let us neglect the wave dissipation for the moment,
i.e., the waves interact with the flow only via their ponderomo-
tive force. The enhanced reflection then tends to lead to a reduc-
tion of this force, and hence to a reduced mass flux as well as a
lower terminal speed. Unlike the dissipationless case discussed
in Sect. 2, this tendency exists both when the wind temperatures
are prescribed (Fig. 10 in MacGregor & Charbonneau 1994) and
when the wind energetics is self-consistently treated (Fig. 4 in
Li & Li 2008). The case with turbulent dissipation is consider-
ably more complicated. The enhancement of wave reflection in
the subsonic flow means an enhancement of the ingoing com-
ponent of the waves. With the turbulent dissipation trying to di-
minish both outgoing and reflected components to similar ex-
tents, a substantial fraction of the reflected component may end
up in the supersonic portion of the flow, and its consequent dis-
sipation may lead to a higher terminal speed with the mass flux
barely altered. However, this is not the whole story because the
ponderomotive force is altered in a similar fashion to the dissi-
pationless case. As such, the net outcome has to be told by a de-
tailed numerical study, which is beyond the scope of this paper.
Nonetheless, it seems fair to say that if one tries to reproduce the
Ulysses measurements, especially those of the slow solar wind
at low latitudes, the field line shape has to be accounted for.

That said, let us say a few words on the situations where the
curvature effects are unlikely to be important. This may happen,
for instance, 1) in the spectral erosion scenario where the solar
wind is heated by high-frequency Alfvén waves (with frequen-
cies up to 10 kHz) that are directly launched by chromospheric
magnetic reconnections, since now the dissipation rate is propor-
tional to the directional derivative of the proton gyro-frequency
and therefore the background magnetic field strength (Marsch
& Tu 1997; Hackenberg et al. 2000); 2) in the scenario for the
solar wind generation where both the energy Fw0 and mass
injection Fm0 rates are fixed (e.g., Fisk 2003; Tu et al. 2005).
To illustrate this, consider the scenario by Fisk (2003) where
the energy and mass injection occurs at some level where the
temperature is on the order of 1 MK, which means, roughly
speaking, the contributions like enthalpy, heat flux and radiative
losses may be neglected when considering the overall energy
balance between the injection point and 1 AU. Evidently the

mass flux density at 1 AU is simply Fm0A0/AE, and from energy
conservation it follows that the terminal proton speed is approxi-
mately

√
2Fw0/Fm0 −GM�/R�. As such, the terminal mass flux

density is determined by the net expansion of the flow tube from
its footpoint to 1 AU, but the speed is related to neither the tube
expansion nor the field line shape.
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