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Standing Shocks in the Inner Slow Solar Wind *
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We examine whether the flow tube along the edge of a coronal streamer supports standing shocks in the inner
slow wind by solving an isothermal wind model in terms of the Lambert 𝑊 function. It is shown that solutions
with standing shocks do exist and they exist in a broad area in the parameter space characterizing the wind
temperature and flow tube. In particular, streamers with cusps located at a heliocentric distance & 3.2𝑅⊙ can
readily support discontinuous slow winds with temperatures barely higher than 1MK.
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It was proven that the quasi-steady solar wind
may not be continuous but involve standing shocks
in the near-Sun region.[1−7] As first pointed out 30
years ago,[1] existence of standing shocks depends crit-
ically on existence of multiple critical points (CPs).
These can arise due to either momentum addition
or rapid tube expansion near the base. Time-
dependent simulations have shown that whether or
not the system adopts a discontinuous solution de-
pends on the detailed manner by which the tube ge-
ometry is varied,[2,5] or how the momentum addition is
applied.[4,5] Existing studies on standing shocks were
exclusively on the flow rooted in the interior of coro-
nal holes. However, little is known about whether the
flow tubes bordering bright streamer helmets can sup-
port standing shocks as well. This region is important
since the slow wind likely originates in the region.[8]

Here the tube expansion is distinct from the coronal-
hole one, with the tube likely to experience a dramatic
expansion around the streamer cusp (see Fig. 4, the
current-sheet case in Ref. [9]). In this Letter, we are
interested in answering: Are standing shocks allowed
by this geometry?

To isolate the geometrical effect, we use a sim-
ple isothermal model. Let 𝑇 and 𝑣𝑟 denote the so-
lar wind temperature and radial speed, respectively.
The isothermal sound speed is then 𝑐𝑠 =

√︀
2𝑘𝐵𝑇/𝑚𝑝,

where 𝑘𝐵 is the Boltzmann constant and 𝑚𝑝 the pro-
ton mass. The Mach number 𝑀 = 𝑣𝑟/𝑐𝑠 is governed
by[12] (︂

𝑀 − 1

𝑀

)︂
𝑑𝑀

𝑑𝑦
=

𝑑 ln �̄�

𝑑𝑦
− ∆

𝑦2
, (1)

where 𝑦 = 𝑟/𝑅⊙ with 𝑅⊙ being the solar radius and 𝑟
the heliocentric distance. Moreover, �̄� = 𝑎/𝑅2

⊙ is the
non-dimensionalized tube cross-section 𝑎; 𝑎 is related

to the expansion factor 𝑓 by 𝑎(𝑟) = 𝑓(𝑟)𝑟2. Further-
more, ∆ = 𝑔⊙𝑅⊙/𝑐

2
𝑠, where 𝑔⊙ is the surface gravita-

tional acceleration. Evidently ∆ measures the relative
importance of the gravitational force and pressure gra-
dient force.
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Fig. 1. Expansion factor 𝑓 for the streamer geometry ver-
sus heliocentric distance 𝑟. Please see text for the meaning
of 𝑓∞, 𝑓𝑀 , 𝑟𝐶 and 𝛿 and what the diamonds refer to.

The streamer geometry is parameterized as

𝑓(𝑟) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + (𝑓𝑀 − 1) 𝐺(𝑟;𝑟𝐶 ,𝛿)−𝐺(𝑅⊙;𝑟𝐶 ,𝛿)

1−𝐺(𝑅⊙;𝑟𝐶 ,𝛿) ,

𝑟 ≤ 𝑟𝐶 ,

𝑓∞ + (𝑓𝑀 − 𝑓∞)𝐺(𝑟; 𝑟𝐶 , 𝛿),

𝑟 ≥ 𝑟𝐶 ,

(2)

where 𝐺(𝑥;𝑥0, 𝛿) = exp[− (𝑥− 𝑥0)
2
/𝛿2] is a Gaus-

sian. Figure 1 illustrates the 𝑟-distribution of 𝑓 . Ob-
viously 𝑓∞ represents the value at large distances and
𝑓𝑀 is the maximum attained at 𝑟𝐶 , the heliocentric
distance of the streamer cusp. Moreover, 𝛿 describes
how rapid 𝑓𝑀 is approached. For 𝑟𝐶 , we adopt values
between 2.4 and 3.6𝑅⊙, compatible with LASCO C2
images. The ranges for 𝑓∞, 𝑓𝑀 and 𝛿 are [2, 10], [6, 22]
and [0.4, 1]𝑅⊙, respectively. As direct measurements
of the coronal magnetic field remain largely unavail-
able, a model field is used to guide our choice. The
𝑓 profile with the base values (𝑓∞ = 6, 𝑓𝑀 = 14 and
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𝛿 = 0.7𝑅⊙) is close to the diamonds in Fig. 1, which
correspond to 𝑓 along the tube at the streamer edge
in a current sheet model, given in Fig. 4(b) of Ref. [9]
(the one labeled 27∘).

Given the temperature 𝑇 and an 𝑓(𝑟), the right
hand side (RHS) of Eq. (1) can be readily evaluated
and it determines whether solutions with standing
shocks are allowed. To explain this, we note that any
root of RHS = 0 corresponds to a critical point (CP),
which is either a local extreme (𝑑𝑀/𝑑𝑦 = 0,𝑀 ̸= 1)
or a sonic point (SP) (𝑑𝑀/𝑑𝑦 ̸= 0, 𝑀 = 1, denoted
by the subscript 𝑆). Shock solutions are known to
exist only when there are multiple CPs, and were usu-
ally constructed by carefully examining the solution
topology. Here we present a new method based on a
recent study which showed that a transonic solution
to Eq. (1) is expressible in terms of the Lambert 𝑊
function 𝑊 (𝑥) [10]

𝑀2 =

{︂ −𝑊0(−𝐷(𝑦)), 1 ≤ 𝑦 ≤ 𝑦𝑆 ,

−𝑊−1(−𝐷(𝑦)), 𝑦 ≥ 𝑦𝑆 ,
(3)

where

𝐷 (𝑦) =
�̄�2𝑆
�̄�2

exp

[︂
2∆

(︂
1

𝑦𝑆
− 1

𝑦

)︂
− 1

]︂
. (4)

Only two things about 𝑊 (𝑥) need to be known in
the present context: first, a real-valued 𝑊 (𝑥) can
be defined only for 𝑥 ≥ −1/𝑒 (note that 𝐷 is pos-
itive definite); second, 𝑊 (𝑥) has two branches for
−1/𝑒 < 𝑥 < 0 and they obey −1 ≤ 𝑊0 < 0 and
𝑊−1 ≤ −1. The mathematical details can be found
in Ref. [11]. In practice, we evaluate 𝑊0 and 𝑊−1 via
Eq. (5.9) there.

If only one CP exists, it is natural the SP and
Eq. (3) describes the only possible transonic solution
for which 𝑀 increases monotonically with 𝑟. This is
the case considered in Ref. [10], where 𝑓 ≡ 1 is as-
sumed. In our case there exist up to 3 CPs and hence
we must extend the Lambert 𝑊 function approach as
follows. First, when 3 CPs exist, only the innermost
and outermost ones turn out to be relevant. We evalu-
ate 𝐷 by choosing each of them, one after another, as
the SP. In some portion of the computational domain
(𝑦 ≥ 1), 𝐷 for one CP may exceed 1/𝑒, and hence the
solution is not defined. Call this solution the “broken
solution”, denoted by 𝑀𝑏. Choosing the other CP as
SP results in a continuous solution, denoted by 𝑀𝑐.
If standing shocks exist, they must appear at the two
positions where the Rankine-Hugoniot relations and
evolutionary condition are met. In the isothermal case
these translate into[4,12]

𝑀+𝑀− = 1 and 𝑀+ > 1, (5)

where + (−) represents the shock upstream (down-
stream). This suggests a simple graphical means to
construct solutions with shocks.[12] We plot 𝑀𝑏 and
examine whether it intersects the 1/𝑀𝑐 curve. Any
intersection represents a shock jump, however the so-
lution cannot jump from a lower to a higher curve.

Figure 2 illustrates our solution procedure, giving
the radial dependence of the Mach number 𝑀 ((a)
and (c)) and 𝐷 ((b) and (d)). In Figs. 2(b) and 2(d),
the light horizontal lines represent 1/𝑒. The solid and
dashed lines correspond to the continuous and broken
solutions, respectively. In addition to 𝑀 , Figs. 2(a)
and 2(c) also give 1/𝑀𝑐. Figures 2(a) and 2(b) are
for 𝑇 = 1.2 MK, while Figs. 2(c) and 2(d) are for
𝑇 = 1.3 MK. In both the cases the tube parameters are
𝑓∞ = 6, 𝑓𝑀 = 14, 𝑟𝐶 = 3𝑅⊙ and 𝛿 = 0.7𝑅⊙. In view
of Figs. 2(a) and 2(b), it is seen that both the curves
in Fig. 2(b) exhibit three local extrema, whose loca-
tions correspond to the CPs. This follows from that
𝑑𝐷/𝑑𝑦 = 0 at any CP (see Eq. (4)). Furthermore, the
global maximum of 𝐷 is attained at the outermost CP,
located at 4.89𝑅⊙. Therefore when the innermost CP
is chosen as the SP, 𝐷 > 1/𝑒 around the outermost
CP for 4.2 ≤ 𝑟 ≤ 6.51𝑅⊙. Recalling that 𝑊 (−𝐷) is
real-valued only when −𝐷 ≥ −1/𝑒, one readily under-
stands that in this interval choosing the innermost CP
as the SP does not result in a solution to Eq. (1). Fig-
ure 2(a) also shows that the curve 1/𝑀𝑐 does not in-
tersect 𝑀𝑏, indicating the solution to Eq. (1) is unique
and is the continuous one.

The situation changes when 𝑇 = 1.3 MK. Now
the global maximum of 𝐷 is attained at the inner-
most CP, located at 1.75𝑅⊙ (Fig. 2(d)). Choosing the
outermost CP as the SP leads to that 𝐷 > 1/𝑒 in
the interval [1.53,1.98]𝑅⊙, where there is no solution
(Fig. 2(c)). However, two standing shocks are now al-
lowed, since two crossings exist between the curves
1/𝑀𝑐 and 𝑀𝑏, located at 2.11 and 3.96𝑅⊙, respec-
tively. Hence in addition to the continuous one (𝑀𝑐

adopting the innermost CP as the SP), two additional
solutions exist to Eq. (1): both start with 𝑀𝑐 but one
connects to 𝑀𝑏 at the inner crossing, the other con-
nects to 𝑀𝑏 at the outer one.

Although Eq. (1) permits solutions with shocks
and time-dependent simulations suggest that these
steady-state solutions can be attained,[2,4,5,7] one may
still question whether the shock solutions can stand
the sensitivity test similar to Ref. [6] which has shown
that standing shocks in the solar wind from the center
of coronal holes are very unlikely, for the parameter
range allowing shock solutions is extremely limited.
To see whether the same happens with the streamer
geometry, we note that given 𝑓∞, 𝑓𝑀 and 𝛿, shock
solutions are allowed only in the area bounded by two
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curves in the [𝑇, 𝑟𝐶 ] space. Figure 3 presents a se-
ries of such curves obtained by varying (a) 𝑓∞, (b)
𝑓𝑀 , and (c) 𝛿 about the reference values 𝑓∞ = 6,
𝑓𝑀 = 14 and 𝛿 = 0.7𝑅⊙ (in what follows, the tem-
peratures are in units of MK, i.e. 106 K, 𝑟𝐶 and 𝛿 in
units of 𝑅⊙.) Let us first examine the cases with ref-
erence values (the black curves connecting asterisks).
Figure 3 shows that the area bounded by the two
curves is rather broad and with increasing 𝑟𝐶 , both
curves are shifted towards lower temperatures, indi-
cating that streamers whose cusps are located higher
in the corona are more likely associated with stand-
ing shocks. For instance, when the cusp is located
at 3.6𝑅⊙, the slow wind may possess standing shocks
as long as 0.91 ≤ 𝑇 ≤ 2.04, which actually tends to
be lower than the often-quoted values of coronal tem-
peratures. On the other hand, even for the lowest
cusp height examined (𝑟𝐶 = 2.4𝑅⊙), the temperature
range is [1.74, 2.80], still largely compatible with the
observational range.
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Fig. 2. Wind solutions with the streamer geometry for
𝑓∞ = 6, 𝑓𝑀 = 14, 𝑟𝐶 = 3𝑅⊙ and 𝛿 = 0.7𝑅⊙. In the
left and right columns, 𝑇 is 1.2 and 1.3 MK, respectively.
Panels (a) and (c) present the 𝑟-dependences of the Mach
number 𝑀 , while (b) and (d) give those of 𝐷. The solid
(dashed) lines represent the continuous (broken) solutions.
In (b) and (d), the horizontal lines give 1/𝑒 for compari-
son. Standing shocks are allowed only when the two curves
1/𝑀𝑐 and 𝑀𝑏 intersect.

Figure 3(a) examines the effects of varying 𝑓∞.
It is seen that with 𝑓∞ decreasing from its refer-
ence value to 2 (the red curves), the 𝑇 range allowing
shocks increases significantly. Actually for 𝑟𝐶 ≥ 2.5,
in the examined temperature range there virtually
exists no upper bound for shocks to occur. Take
𝑟𝐶 = 3.6 for instance. Shock solutions take place as
long as 𝑇 ≥ 1.35. On the contrary, increasing 𝑓∞ to
10 (the blue curves) makes shocks appear in a much
narrower 𝑇 range (the width is ∼ 0.3). The effects of
varying 𝑓𝑀 are shown in Fig. 3(b), which shows that
increasing 𝑓𝑀 considerably broadens the area allow-
ing standing shocks. For example, with 𝑓𝑀 increasing
from 6 to 14, the width along the 𝑇 -axis of the area in-
creases from ∼ 0.1 to 1.1. When 𝑓𝑀 further increases
to 22, this width increases dramatically from ∼ 0.88 at

𝑟𝑐 = 2.4 to & 2.9 for 𝑟𝑐 ≥ 2.6. Figure 3(c) shows what
happens when 𝛿 changes. It is seen that increasing 𝛿
reduces the range of 𝑇 where shocks are allowed. For
instance, with 𝑟𝐶 = 3.0, this range for 𝛿 = 0.4 (𝛿 = 1)
is [1.27, 3.21] ([1.55, 2.26]), while the range for the ref-
erence value 𝛿 = 0.7 lies in between. It is interesting
to note that for 𝛿 = 1, at 𝑟𝐶 ∼ 2.68 the upper bound
for 𝑇 (the right blue curve) changes its slope dramat-
ically and for 𝑟𝐶 ≤ 2.53 no shock solutions exist. For
2.53 ≤ 𝑟𝐶 ≤ 2.68, it turns out that on the right of the
right blue curve actually no solution exists, since now
only two critical points exist and neither of them cor-
responds to a 𝐷 ≤ 1/𝑒 throughout the computational
domain (see Eq. (3)). This is different from the portion
𝑟𝐶 ≥ 2.68, where on the right of the right blue curve
there does exist a solution which is the continuous one.
Putting the three panels together, one may see that for
most combinations of tube parameters, the area in the
𝑇–𝑟𝐶 space supporting standing shocks is substantial.
Hence with the streamer geometry, standing shocks in
the inner slow wind seem physically accessible.
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Fig. 3. Regions in the 𝑇−𝑟𝐶 space where standing shocks
are allowed, shown as the area bounded by the two curves
in same color. The results are obtained by varying 𝑓∞,
𝑓𝑀 and 𝛿 respectively, the rest of the parameters are fixed
at their reference values 𝑓∞ = 6, 𝑓𝑀 = 14, 𝛿 = 0.7𝑅⊙.

It is not easy to exhaust the possible tube param-
eters and the consequent changes in shock properties.
Instead, let us discuss only the shocks found, exam-
ining their detectability. First, 𝛿𝜌, the density jump
relative to the upstream value, is up to 8, a result
of the isothermal assumption exceeding the nominal
upper limit of 4 for adiabatic gases. As shown in
Ref. [13], a 𝛿𝜌 of ∼ 2.3 at a standing shock produces
an enhancement in the polarized brightness intensity
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that is only marginally detectable. A δ𝜌 of 8 cer-
tainly makes such detections easier, but one can not
say this surely without constructing detailed observ-
ables. Second, by conserving angular momentum a
coronal shock also produces a discontinuity in the az-
imuthal flow speed 𝑣𝜑, leading in principle to measur-
able Doppler shifts in H I Ly 𝛼. However, the jump
in 𝑣𝜑 turns out . 4 km/s, discerning which is way be-
yond the sensitivity of SOHO/UVCS, whose spectral
resolution of 0.23 Å translates into about 57 km/s.

The isothermal assumption needs some justifica-
tion. First, it is not far from reality. The UVCS
measurements of the H I Ly 𝛼 emission from an
equatorial streamer[14] showed that the proton kinetic
temperature 𝑇𝑝 in the stalk decreases only mildly
from 1.45MK at 3.6𝑅⊙ to 1.3MK at 5.1𝑅⊙ (their
Fig. 3(b)). If the stalk and one of streamer legs are on
the same flow tube, then Fig. 4(b) in Ref. [14] shows
that 1.41 ≤ 𝑇𝑝 ≤ 2.09 MK at 2.33𝑅⊙ (the leftmost
two open circles and rightmost two solid ones in their
Fig. 4(d)). As for 𝑇𝑒, the electron-scattered H I Ly 𝛼
measured by UVCS yielded a 𝑇𝑒 of 1.1 ± 0.3 MK at
2.7𝑅⊙.[15] Although for a streamer, this value may
serve to estimate 𝑇𝑒 in flowing regions at similar
heights. Direct 𝑇𝑒 measurements above the distance
are sparse. Nonetheless, multi-fluid MHD models in-
dicate that 𝑇𝑒 ranges from 0.8 MK at 3𝑅⊙ to 0.65MK
at 5𝑅⊙ (Fig. 3(d) in Ref. [17]). The mean of 𝑇𝑒 and
𝑇𝑝, i.e. the temperature 𝑇 in this study, is thus about
1.1–1.8 MK at 2.3𝑅⊙ and decreases to ∼ 1 MK at
5𝑅⊙. Furthermore, 𝑇 at the slow wind source re-
gion is about 0.8–1.2MK, be the source in a coro-

nal hole or in its neighboring quiet Sun.[16] Second,
introducing a more complete energy equation, as car-
ried out in Ref. [5] for a coronal-hole flow, will likely
strengthen rather than weaken our conclusion. The
study shows that introducing thermal conduction and
two-fluid effects allows for a much broader parame-
ter range supporting standing shocks, compared with
isothermal and polytropic computations.
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