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ABSTRACT
We report the observation of an X-class long-duration flare which is clearly confined. It appears as a compact-

loop flare in the traditional EUV passbands (171 and 195 Å), but in the passbands sensitive to flare plasmas
(94 and 131 Å), it exhibits a cusp-shaped structure above an arcade of loops like other long-duration events.
Inspecting images in a running difference approach, we find that the seemingly diffuse, quasi-static cusp-shaped
structure consists of multiple nested loops that repeatedly rise upward and disappear approaching the cusp
edge. Over the gradual phase, we detect numerous episodes ofloop rising, each lasting minutes. A differential
emission measure analysis reveals that the temperature is highest at the top of the arcade and becomes cooler
at higher altitudes within the cusp-shaped structure, contrary to typical long-duration flares. With a nonlinear
force-free model, our analysis shows that the event mainly involves two adjacent sheared arcades separated by
a T-type hyperbolic flux tube (HFT). One of the arcades harbors a magnetic flux rope, which is identified with
a filament that survives the flare owing to the strong confiningfield. We conclude that a new emergence of
magnetic flux in the other arcade triggers the flare, while thepreexisting HFT and flux rope dictate the structure
and dynamics of the flare loops and ribbons during the long-lasting decay phase, and that a quasi-separatrix
layer high above the HFT could account for the cusp-shaped structure.
Subject headings:Sun: flares—Sun: corona

1. INTRODUCTION

Solar flares are explosive manifestation of energy release in
the solar atmosphere. Some have a strong link to coronal mass
ejections (CMEs). Although sucheruptive flaresare among
the most important space weather-relevant events on the Sun,
there are as manyconfined flares, e.g., Andrews (2003) re-
ported that approximately 40% of M-class flares between
1996 and 1999 are not associated with CMEs. In some rare
occasions, even the most energetic, X-class flares (up to X3 in
the literature) proceed without CMEs (e.g., Gaizauskas et al.
1998; Wang & Zhang 2007). Hence, we cannot ignore con-
fined flares, which span a wide energy range and represent a
large population, if we are to understand the physical mecha-
nism of flares and their relationship with CMEs.

From an observational point of view, confined flares are
often characterized by an impulsive light curve in soft X-
rays (SXRs), indicating that cooling dominates after the ini-
tial impulsive energy release, whereas eruptive flares have
a gradual decay phase which lasts for hours, also known
as long-duration-event (LDE) flares (Sheeley et al. 1983;
Webb & Hundhausen 1987), suggesting that energy release
continues after the impulsive phase. A further morpholog-
ical distinction is that confined flares usually exhibit a sim-
ple, compact loop in SXRs, and do not have a cusp-shaped
structure as often seen in LDE flares (Shibata & Magara
2011), in which the temperature is higher near the edge of
the cusp-shaped structure (Tsuneta et al. 1992; Tsuneta 1996,
1997). However, some impulsive flares can be eruptive (e.g.,
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Nitta & Hudson 2001), and in a rare case when impulsive
and LDE flares are ‘lumped’ together, it is impossible to pin-
point with certainty which flare is responsible for the CME
(Goff et al. 2007).

Studies of eruptive flares have converged to a stan-
dard model, which evolved from the concepts of
Carmichael (1964), Sturrock (1966), Hirayama (1974),
and Kopp & Pneuman (1976). In this model, a rising
flux rope above the polarity inversion line (PIL) stretches
the overlying field lines, resulting in the formation of a
current sheet underneath, where magnetic reconnection
heats the local coronal plasma and accelerates particles.
These two processes produce thermal conduction fronts and
precipitating nonthermal particles to heat the chromospheric
footpoints of the newly reconnected field lines. Owing to
this impulsive heating, chromospheric plasma evaporates (or
ablates) and fills the reconnected flux tubes with over-dense
heated plasma, which forms SXR flare loops in excess of 10
MK. Once the flare loops cool down via thermal conduction
and radiation, they become visible successively in cooler
EUV passbands and eventually in Hα. Kopp & Pneuman
(1976) further predicted a continuous rise of the reconnection
site, due to the rising flux rope. Consequently, the newly
reconnected field lines beneath the reconnection site have
an increasingly larger height and wider footpoint separation.
More recent observations confirm the overall picture of the
standard model but also demonstrate its insufficiency (see the
review by Benz 2008).

This standard model was further elaborated by Tsuneta
(1996, 1997) and Shibata et al. (1995) based onYohkohob-
servations. In Tsuneta (1997), a distinct X-shaped structure is
observed beneath a rising plasmoid and above a bright SXR
flare loop. Inverse V-shaped hot ridges (15–20 MK) are lo-
cated above the SXR loop and below the X-point, supposedly
heated by a pair of slow shocks. A compact hot source at the
SXR loop top is seen in hard X-rays (HXRs), and its counter-
part associated with the plasmoid is seen in SXRs (15 MK).
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Both sources are assumed to be heated by fast (perpendic-
ular) shocks, which form as the downward and upward re-
connection outflows collide with the SXR loop and the plas-
moid, respectively. This depicts a ‘complete’ X-type recon-
nection geometry (Petschek 1964). In particular, the HXR
loop-top source is observed in several impulsive compact-
loop flares (Masuda et al. 1994, 1995), in which SXR plas-
moid ejections are also detected high above the SXR loop
(Shibata et al. 1995). This suggests that the main energy re-
lease takes place not inside the compact flare loop, as pre-
viously thought (e.g., Uchida & Shibata 1988), but above it,
like the LDE flares. Hence, it has been argued that both erup-
tive and confined flares can be explained by fast reconnection
induced by plasmoid ejection (Shibata et al. 1995; Shibata
1999; Shibata & Magara 2011).

Several mechanisms have been proposed to trigger the
eruption, including tether cutting (Moore et al. 2001), break-
out (Antiochos et al. 1999), flux emergence (Chen & Shibata
2000), and ideal MHD instabilities (e.g., Forbes & Isenberg
1991; Török & Kliem 2005, 2007). Magnetic reconnection at
current sheets forming at magnetic separatrices plays a cru-
cial role in almost all mechanisms except ideal instabilities.
On the other hand, it has been demonstrated numerically that
current sheets also prone to develop at quasi-separatrix lay-
ers (QSLs; e.g., Aulanier et al. 2005), where field line linkage
displays a rapid change but is not necessarily discontinuous
as in separatrices. Observationally, flare brightenings inchro-
mosphere are indeed closely associated with the footprint of
QSLs (e.g., Demoulin et al. 1997), suggesting that QSLs are
important locations for the buildup and release of free mag-
netic energy in corona.

The detailed configuration of the coronal field significantly
influences how the flare process proceeds. A confined flare
ensues when reconnection occurs between two groups of
loops (e.g., Hanaoka 1997; Nishio et al. 1997; Melrose 1997;
Aschwanden et al. 1999; Su et al. 2013) or at a coronal null
point with a single spine that emerges away from the fan sur-
face anchored in a remote region (e.g., Masson et al. 2009).
The strength of the overlying field may also play an impor-
tant role in regulating the behavior of solar eruptions. It is
found that a toroidal flux ring is unstable to lateral expan-
sion if the external poloidal fieldBex decreases rapidly with
height such that the decay indexn = −d lnBex/d lnh exceeds
3/2 (Bateman 1978; Kliem & Török 2006; Török & Kliem
2007; Olmedo & Zhang 2010). Confined flares associated
with the failed eruption of a flux rope could be attributed to
this effect (e.g., Török & Kliem 2005; Alexander et al. 2006;
Wang & Zhang 2007; Guo et al. 2010).

In this paper, we present an LDE flare that is confined. This
flare also exhibits a cusp-shaped structure above a post-flare
loop (PFL) system, but the dynamical processes and the tem-
perature structure within the cusp-shaped structure are oppo-
site to what the standard flare model predicts. In the sections
that follows, we analyze the observations of the flare (Sec-
tion 2), investigate the relevant magnetic configuration (Sec-
tion 3), and offer a possible interpretation for this unorthodox
flare (Section 4).

1.1. Validation of the Confinedness
2. OBSERVATIONS OF THE FLARE

The GOES5-class X1.9 flare occurs at N22E63 in the
NOAA6 active region 11339 on 2011 November 3. Accord-
ing to theGOES1–8 Å light curve, the flare starts at 20:16
UT, peaks at 20:27 UT and gradually decays to the pre-
flare level at about 22:00 UT. Normally such an energetic,
long-duration event is associated with a CME, but this one
fails to produce a successful eruption. The flaring process is
well recorded by the Atmospheric Imaging Assembly (AIA;
Lemen et al. 2012) onboard the Solar Dynamic Observatory
(SDO; Pesnell et al. 2012). Among the six EUV channels of
AIA, we concentrate on the 131 Å passband, which mainly
contains hot FeXX (logT = 7.0) and FeXXIII (logT = 7.2)
lines as well as a cool FeVIII (logT = 5.6) component. Simi-
lar features and processes are also observed in the 94 Å pass-
band, which is dominated by hot FeXVIII lines (logT = 6.8)
despite a cool FeX (logT = 6.1) component, but its signal-to-
noise ratio is inferior to 131 Å. In the following subsections,
we verify that the flare is confined (§1.1), explore the structure
and dynamic evolution of its PFL system (§2.1).

The confinedness of this LDE flare is verified by multi-
satellite observations without ambiguity. Figure 1 shows the
PFL system observed fromSDO’s viewpoint in 131 and 171 Å
and from the viewpoint of the “Behind” satellite (hereafter
STB) of STEREO7 in 171 Å. It is obvious that the PFL is seen
in a “face-on” view bySTBand “edge-on” bySDO. In the
cold passbands (e.g., 171 Å), a compact loop (∼ 50 Mm high
in projection) is observed as expected from a confined flare;
in the hot passbands (131 and 94 Å), however, one can see
a higher arch with an overlying cusp-shaped structure, which
is a distinct feature of LDE flares (Shibata & Magara 2011).
The arch is about 100 Mm high in projection, spanning about
60 Mm on top. Initially the cusp point is about 150 Mm high
in projection and later the height increases up to about 200
Mm. In the corresponding difference images (bottom panels
of Figure 1), no obvious coronal dimming can be seen in the
neighborhood of the flaring region.

We further examine the white-light images taken by coro-
nagraphs onboardSOHO8 (12-min cadence) and the two
STEREOsatellites (5-min cadence), “Ahead” (hereafterSTA)
and “Behind” (STB). The satellite positions are plotted in the
inset of Figure 2(b). Note that bothSDOandSOHOare in
orbit near the Earth. Since AR 11339 is located away from
the disk center from bothSOHO’s andSTB’s viewpoint, the
chance that a CME originating from it is missed in corona-
graph observations is minimal, despite a data gap inSOHO’s
Large Angle and Spectrometric Coronagraph (LASCO/C2;
2–6R⊙) during 22:00–23:12 UT. Within the 3-hr time win-
dow after the onset of the X1.9 flare, we find only one CME
and a CME-like disturbance, neither of which originates from
the target active region. The CME can be seen by all three
satellites (seeSOHOandSTBobservations in the bottom pan-
els of Figure 2). Its source region is located behind the limb
from SOHO’s viewpoint and close to the east limb fromSTB’s
viewpoint (Figure 2(e)). The CME-like disturbance is only
briefly captured by the COR1 coronagraph onboardSTBfrom
21:06 till 22:06 UT (Figure 2(c)). It originates from an ex-
panding loop system located in AR 11336 (N12E12), to the
west of the flaring region. FromSDO’s viewpoint, the ex-

5 Geostationary Operational Environmental Satellite
6 National Oceanic and Atmospheric Administration
7 Solar Terrestrial Relations Observatory
8 Solar and Heliospheric Observatory
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FIG. 1.— Post-flare loop system of the X1.9 flare as seen bySDO(a–d) andSTB(e–f). In Panels (c) and (e) the arrows indicateSTB’s andSDO’s line of sight,
respectively. Bottom panels show difference images, which are obtained by subtracting ‘base’ images taken at 20:18 UT from the corresponding images in the
top panels.

panding loops are apparently anchored at a flare-like bright-
ening as enclosed by a white box in Figure 2(a); fromSTB’s
viewpoint, the expanding loops can be seen in 195 Å above
the west limb (Figure 2(b)). The mean brightness within the
white box peaks successively in AIA 131 Å (10 MK), 94 Å
(6.3 MK), 335 Å (2.5 MK), 211 Å (2.0 MK) and 193 Å (1.6
MK) at 20:59:10, 21:03:50, 21:10:40, 21:15:37 and 21:16:33
UT, respectively (Figure 3(b)), in a decrease order of the peak-
response temperature of the individual channel, indicating an
on-going cooling process. A strong dimming in AIA 171 Å
(Figure 3(c)) exists during the time period when the CME-
like disturbance is seen bySTB/COR1, indicating that there
is indeed mass ejection into higher corona. This localized
dimming also corresponds to the reduced irradiance of FeIX
(171 Å; Figure 3(a)) during the flare gradual phase, from
the EUV Variability Experiment (EVE; Woods et al. 2012)
onboardSDO. On the other hand, the enhanced irradiance
of FeXVI (335 Å; Figure 3(a)), known as EUV late phase
(Woods et al. 2011; Liu et al. 2013a), is dominated by the
flare brightening (Figure 3(b)), as can be seen from the simi-
larity between the EVE and AIA 335 Å light curve, the latter
of which represents the mean brightness within the black box
enclosing the flare region in Figure 2(a). It is noteworthy that

the 335 Å late-phase peak is significantly higher than its coun-
terpart during the impulsive phase, signaling that additional
heating may be required.

Furthermore, we find no clear association of the X1.9 flare
with any radio Type II/III bursts based on dynamic spectra ob-
tained by the WAVES instruments (10 kHz–16 MHz) onboard
bothSTEREOsatellites and those by the ground-based Green
Bank Solar Radio Burst Spectrometer (5–1100 MHz). This
indicates that this flare does not involve any opening of field
lines or interplanetary shocks.

2.1. Structure & Dynamics

At the onset of the flare, one can see a small surge-like ejec-
tion (marked by an arrow in Figure 4(a)), apparently confined
by the overlying loops. Kumar & Cho (2013) made a con-
nection of this ejection, which is composed of multiple plas-
moids, with drifting pulsating structures detected at 500-1200
MHz during 20:21:24–20:22:36 UT. The PFL formed after
the flare peak is quite stable: its height does not increase with
time, as can be seen from the stack plots (Figure 3(d) and (e))
made from a slit (Figure 4(d)) cutting across it. The cusp-
shaped structure overlying the PFL appears to be diffuse and
absent of fine structures. However, the running difference im-
ages (Figure 4(c) and (e)) reveal that it consists of multiple
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a) SDO/AIA 193 21:01:07 b) STB/EUVI 195 20:51:30−20:46:30
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c) STB/COR1 21:30:59−21:00:59

d) SOHO/LASCO/C2 23:12:05 e) STB/EUVI 171 22:21:59−22:19:29 f) STB/COR1 22:40:59−22:20:59

FIG. 2.— Two coronal disturbances detected within three hours after the onset of the X1.9 flare. Top panels show a CME-like disturbance observed by SDO
(a) and STB (b and c) at around 21:00 UT, whereas bottom panelsa CME observed by SOHO (d) and STB (e and f) at around 22:00 UT. In Panel (a), the black
rectangle encloses the flare region and the white rectangle marks a flare-like brightening. In Panel (b), the green curve denotes the solar limb as seen bySDO.
The inset plots the positions of STA (red) and STB (blue) relative to the Sun (yellow) and Earth (green) in the plane of the Earth’s orbit (dashed circle) at 22:00
UT on 2011 November 3. The dotted lines show the angular displacements from the Sun.

nested loops which are undergoing upward as well as down-
ward motions all the time (see the animation accompanying
Figure 4).

One can see that the cusp-shaped structure initially give a
slightly tilted “face-on” view (Figure 4(b) and (c)), but later
on it tilts further toward the line of sight to appear almost
“edge-on”(Figure 4(d) and (e)) as the PFL. Meanwhile, the
cusp point gradually increases in height and slowly moves
westward. We place a virtual slit intersecting the cusp-shaped
structure and perpendicular to the top of the PFL, and make it
slide slowly westward to pass the cusp point all the time (see
the animation accompanying Figure 4). The resultant stack
plot is shown in a logarithm scale in Figure 3(d), and that ob-
tained in a running difference approach in Figure 3(e). In our
case, each image is subtracted by the image acquired at 60 s
earlier, which gives a satisfying contrast. We have tried var-
ious time differences, from 12 to 84 s, which yield similar
results but different contrast. Unlike the recent AIA obser-
vations of loop contraction below the cusp point (Liu et al.
2013b; Liu 2013), multiple loops above the PFL rise toward
the cusp point at tens of km s−1 and disappear approaching the
cusp point, which results in numerous positively-sloped strips
above the PFL in the stack plot (Figure 3(e)), typically last-

ing several minutes. A few loops shrinking toward the PFL at
a few kilometers per second constitute the negatively-sloped
strips in the stack plot, which last tens of minutes, presum-
ably representing a relaxation process. The rising proceeds in
a more or less meandering fashion, such that the positively-
sloped strips look diffuse and not exactly straight. The fact
that numerous episodes of loop rising are detected over the
whole gradual phase corroborates the irrelevance of the re-
mote brightening detected in AR 11336, which is impulsive
and dominated by cooling (Figure 3(b)).

We usexrt_dem_iterative2 in SolarSoft to compute
the differential emission measure (DEM) in four selected re-
gions (black rectangles in Figure 4(b)). This code was origi-
nally designed for Hinode/X-ray Telescope data (Golub et al.
2004; Weber et al. 2004), and recently modified to accom-
modate the AIA temperature response (e.g., Winebarger et al.
2011; Cheng et al. 2012). We select a nearby quiet-Sun re-
gion as the background (white rectangle labeled ‘B’ in Fig-
ure 4(b)), which is free of coronal structures in any pass-
band. The best-fit DEM solutions to the mean fluxes ac-
quired by six AIA EUV channels are shown in the bottom
panels of Figure 4 (red histogram-style solid curves). To give
a sense of uncertainty, 250 Monte Carlo (MC) simulations
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FIG. 3.— Temporal evolution of the flare. (a)GOES1–8 Å flux (black; scaled by the left y-axis) and EVE irradiances at 131 Å (FeXX ; red), 335 Å (FeXVI ;
green) and 171 Å (FeIX ; blue), which are normalized and scaled by the right y-axis. Dotted lines mark the time instants when the three 1600 Å images in
Fig. 7(a–c) are taken. (b) and (c) show the mean brightness (normalized) within the black and white boxes in Figure 2(a), respectively, at six EUV wavelengths.
After about 21:25 UT, a dimming in 171 Å below the pre-brightening background (zero) can be seen in (c). (d) and (e) show the evolution seen through the slit
in Figure 4(d), with the former displayer in a logarithm scaleand the latter made in a running difference approach. Linear fitting speeds along two representative
strips (‘x’ symbols) are denoted in km s−1.
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FIG. 4.— Cusp-shaped structure overlying the post-flare loop system. In Panel (a), the arrow indicates a small ejection at the onset of the flare. In Panel (b),
black rectangles mark four regions where a DEM analysis is performed, and the white rectangle marks the background region for the DEM analysis. The resultant
DEMs are shown in the bottom panels ((f)–(i); see the text fordetails). In Panel (d), the dashed line indicates the slit from which the stack plots in Figure 3(d)
and (e) are made. Panels (c) and (e) show the difference images corresponding to Panels (b) and (d) subtracted by images takena minute earlier, respectively.
Nested loops within the cusp-shaped structure are visible in difference images. An animation of AIA 131 Å images is available online.
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FIG. 5.— Sequence of HMI vector magnetograms across the time periodof the flare. Red (blue) arrows indicate the horizontal component of the photospheric
field originating from positive (negative) polarities of the vertical component. The rectangle in (a) denotes the regionin which theQ-factor is calculated. Panel
(b) shows the decay indexn = −d log(Bh)d log(h) with height, which is averaged over the hand-picked pointsalong the PIL of interest (‘+’ symbols in (a)). The
yellow circles in (c) and (d) mark the location of new flux emergence.
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(black dashed curves) are performed for each best-fit DEM,
by randomly varying the observed fluxes up to the uncer-
tainties estimated byaia_bp_estimate_error in Solar-
Soft. An average temperature is given, weighted by the best-
fit DEM (Cheng et al. 2012). Its uncertainty is approximated
with the standard deviation of the DEM-weighted tempera-
tures of the 250 MC simulations. It can be seen that the top of
the PFL has the highest temperature (∼ 10 MK; Figure 4(g)),
while the cusp-shaped structure overlying the PFL is signifi-
cantly cooler (Figure 4(h) and (i)). Furthermore, it is cooler at
higher altitudes above the PFL. Thus, this cusp-shaped struc-
ture must not be the locus of main energy release as in the
standard model.

3. MAGNETIC CONFIGURATION

To understand the actual scenario of this event, we inves-
tigate its magnetic configuration by utilizing a sequence of
HMI vector magnetograms (Fig. 5) obtained from 19:58 UT
till 20:46 UT on 2011 November 3 at 12-min cadence, which
span a time period across the flare. These disambiguated vec-
tor magnetograms have been remapped using a cylindrical
equal area projection (CEA), sampling at 0.03 deg, and pre-
sented as (Br ,Bθ,Bφ) in a heliocentric spherical coordinate,
corresponding to (Bz,−By,Bx) in the heliographic coordinates
(Sun 2013). The vector magnetograms are “pre-processed”
to best suit the force-free condition (Wiegelmann et al. 2006)
before being taken as the photospheric boundary to extrapo-
late a nonlinear force-free field (NLFFF) using the “weighted
optimization” method (Wiegelmann 2004). This code has
been optimized recently for HMI data by taking into account
measurement errors in photospheric field (Wiegelmann et al.
2012). Our calculation is performed using 2 by 2 rebinned
magnetograms within a box of 420×320×320 uniform grid
points, whose FOV is slightly larger than what is shown in
Fig. 5. Using a 10×10 smaller cell size, we refine the pho-
tospheric computational grid and map it along magnetic field
lines to counterpart photospheric polarity regions. The co-
ordinates of the mapped grid points are used then to calcu-
late the squashing factorQ of elemental magnetic flux tubes
rooted at these polarities (Fig. 6; Titov et al. 2002; Titov
2007).

It is found that the photospheric magnetic field in the
flaring region has locally a tripolar structure in which an
elephant-trunk-like area of negative polarity (labeled ‘N’ in
Fig. 5(a)) deeply intrudes into positive polarities (labeled ‘P’
in Fig. 5(a)). The important structural features are revealed in
the photospheric slogQ maps (e.g., bottom panel of Fig. 6),
where slogQ ≈ sign(Bz) logQ at Q ≫ 2 (Titov et al. 2011).
The high-Q lines designate in such maps the footprints of sep-
aratrix surfaces and quasi-separatrix layers (QSLs). In partic-
ular, the elephant-trunk-like area of negative polarity isdi-
vided in half by such a high-Q line, with the respective halves
belonging to two adjacent sheared arcades (purple lines in the
top panel of Fig. 6). The torsion parameterα = (j ·B)/B2 has
opposite signs in these arcades (top panel of Fig. 6), implying
that their axial currents are oppositely directed. A hyperbolic
flux tube (HFT; Titov et al. 2002) that consists of two QSLs
adjoining each other separates the two sheared arcades. The
HFT has a T-type junction passing through the joint arcades’
apex. The footprint of this junction corresponds to the above-
mentioned high-Q line.

Within these arcades, only the southern one contains a flux
rope, which consists of multiple braided strands (yellow lines
in the top panel of Fig. 6). This element of the configuration

is revealed by an extended segment of the PIL that is char-
acterized by a localized saturation of the red and blue colors
(bottom panel of Fig. 6). This segment is a topological feature
(Seehafer 1986) called “bald patch" (BP; Titov et al. 1993),
where coronal field lines are tangent to the photosphere and
directed from negative to positive polarity of the photospheric
Bz distribution. These magnetic field lines form the separa-
trix surface (BPSS; orange, olive and cyan lines in the top
panel of Fig. 6), which wraps around the flux rope, as previ-
ously demonstrated for different models of flux-rope configu-
rations by Démoulin et al. (1996), Titov & Démoulin (1999),
and Titov et al. (2008). Furthermore, the indicated BP bifur-
cates into a pair of high-Q lines in two occasions by forming
two husk-like shapes (marked by arrows in the bottom panel
of Fig. 6). Such features imply the presence of two BP sep-
arator field lines touching the tips of the “husks" (deep green
and magenta lines in the bottom panel of Fig. 6). Each of the
separators rises above the bifurcated BP gap and lies at the X-
type intersection of two pieces of the BPSS, which originateat
two BP subsegments adjacent to the gap. Similar structure but
with a single BP gap was first described by Titov & Démoulin
(1999) for an analytical model of the configuration with one
flux rope of a circular shape. Such a complex structure of the
BPSS in our case is due to upward bending of the flux rope at
the BP gaps. The indicated separators are those sites where a
local current concentration and subsequent tether-cutting re-
connection have to occur in response to displacements of the
flux rope. It is clear that the location and the number of such
separators must vary as the flux rope changes its shape and
height. It further comes to our notice that the average decay
index (Fig. 5(b)),n = −d log(Bh)d log(h)9, along this flux rope
only exceeds the threshold value of 1.5 above∼70 Mm for
the torus instability to function (Kliem & Török 2006). This
may account for the confinement of the flux rope, which lies
below∼25 Mm.

The evolution of the photospheric field towards the flare
can be highlighted by the emergence of two parasitic polar-
ity elements, as marked by yellow circles in Fig. 5. The neg-
ative parasitic element that appears at the onset of the flare
(Fig. 5(d)) is closely associated with the most intense flare
brightening in UV 1600 Å at that time (marked by an arrow
Fig. 7(a) and (d)). Hence, we suggest that the flare is triggered
by this emergence of new magnetic flux within the northern
arcade. The flare brightening then quickly extends along two
different paths (Fig. 7(b)), roughly following the high-Q lines
(Fig. 7(b) and (e)). No ribbon separation movement is ob-
served, distinct from typical eruptive flares. The flare ribbon
that follows the high-Q line dividing the elephant-trunk-like
area of negative polarity develops later a ‘hook’ that half cir-
cles the positive parasitic element (Fig. 7(c) and (e)). Field
lines anchored at this hook form a QSL (cyan lines in Fig. 8(j))
high above the T-type HFT (pink and yellow lines in Fig. 8(j)).

Guided by the photospheric slogQ maps, we are able
to identify the flux rope with a arc-shaped dark filament
(Fig. 8(e)) aligned along the PIL that harbors the BPs
(Fig. 8(i)). The filament survives the X-class flare, which is
consistent with the persistent existence of the BPs. The dark
filament takes on a reverse S-shape after the flare (Fig. 8(g)
and (h)), enclosed by bright emissions in AIA hot filters
(Fig. 8(c) and (d)). In its later evolution, the flux rope be-
comes brightened repeatedly with a series of confined flares

9 Bh indicates the horizontal component of a potential field obtained with
the Green’s function method.
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FIG. 6.— Magnetic structures as revealed by the Q-map. Top panel:a pre-flare logQ-map (black and white) blended with the correspondingα-map (red and
blue). BPSS field lines tangent to the three BP subsegments arein three different colors, orange, olive and cyan, respectively; representative field lines of the
flux rope are shown in yellow; purple lines indicate two sheared arcades. Bottom panel: slogQ map superimposed with the BPSS separators (green and magneta
lines). The rectangular region as indicated by dotted linesis reproduced in the bottom-left corner, in which two BP separations are marked with arrows.

in this active region, e.g., the GOES C5.8 flare peaking at
22:35 UT (Fig. 8(d)). This hot layer of plasma appears to be
associated with the BPSS structures (top panel of Fig. 6). One
can further see that the HFT lines (Fig. 8(j), pink and yellow)
compare favorably with the flaring loops during the impulsive
phase (Fig. 8(b) and (f)), and that the QSL lines (Fig. 8(j)),
cyan) originating from the western ‘hook’ of the flare ribbons
(Fig. 7(c) and (e)) share similarity with the post-flare arcade,
as well as the cusp-shaped structure above the arcade, during
the gradual phase (Fig. 8(b) and (c)).

It is worth mentioning that the potential field extrapolated

from the photosphericBz gives a similar large-scale HFT (not
shown here), suggesting that such structural skeletons are
quite robust. This robustness has been demonstrated by ear-
lier studies employing other coronal field models (Démoulin
2006, 2007). However, one should keep in mind that the
current analysis is based on a not-so-robust assumption that
force-free conditions are applicable to the photospheric field
that serves as the boundary for the field extrapolation.

4. CONCLUSION
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FIG. 7.— Comparison between flare ribbons and slogQ maps. (a-c) Evolution of the flare ribbons. (b) is superimposedwith contours of the localBr at±200
G, with red (blue) colors indicating positive (negative) polarities. In (c) the FOV of the slogQ maps is indicated by a warped rectangle. (d) A blend of a UV
1600 Å image taken at the onset of the flare (same as (a)) with the slogQ map calculated for the HMI vector magnetogram acquired at approximately the same
time; both are remapped with the CEA projection. The most intense brightening is marked by a white arrow in (a) and (d). (e) Similar to (d) but the image (same
as (c)) and slogQ map are obtained when the flare ribbons have been fully developed. The positive (negative) parasitic element is marked by a red (blue) arrow
in (d) and (e).
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i) AIA 211 (20:18:24) / slog Q (20:22:14)
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FIG. 8.— The flux rope. Panels (a–h) show a sequence of AIA 94 Å (FeXVIII ; logT = 6.8) and 211 Å (FeXIV ; logT = 6.3) ) images. The dark filament
associated with the flux rope is marked by green arrows in (e–h)and a red arrow in (d). In Panel (i) the 211 Å image at 20:18:24 UT(same as (e)) is remapped
with the CEA projection and blended with a slogQ map calculated for the HMI vector magnetogram at 20:22:14 UT. Panel (j) shows a three-dimensional view
of selected field lines of the HFT (pink and yellow), the QSL (cyan) originating from the hook of the flare ribbon half circling the positive parasitic element (see
Fig. 7), and the flux rope (light green).
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FIG. 9.— Two-dimensional schematic description of the magnetic configu-
ration in a cross section passing though the parasitic element of negative po-
larity (see the text for details). The gray bar denotes the filament associated
with the flux rope. Magnetic reconnection is denoted by explosion shapes at
the BPSS in the left arcade, the parasitic element in the rightarcade, and the
T-type junction above.

What is most intriguing about this confined LDE flare is
that the diffuse cusp-shaped structure above the PFL is actu-
ally composed of multiple rising loops, which disappear ap-
proaching the cusp point. Numerous episodes of loop rising
are detected, spanning the whole gradual phase. The tempera-
ture is highest at the top of PFL and becomes cooler at higher
altitudes. These features are contrary to a typical LDE flare.
Since these rising loops do not reappear in cooler passbands
later, one can safely exclude cooling processes: the typical
cooling time is∼ 103 s for conduction (Aschwanden 2006,
Eq. (7.5.1)) and∼ 105 s for radiation (Aschwanden 2006,
Eq. (7.5.3)), utilizing the loop length of (1− 2)×1010 cm and
temperature of 107 K, and taking a typical coronal density of
109 cm−3. The only plausible interpretation is that the cusp-
shaped structure represents a QSL, across which the connec-
tivity of field lines undergoes sudden changes, and that the ris-
ing loops within the cusp-shaped structure is a manifestation
of the on-going three-dimensional magnetic reconnection at
the QSL, where the field lines slip through the plasma. This
interpretation is substantiated by the analysis of the photo-
spheric Q-maps (Section 3).

The critical magnetic structures involved in this flare are
sketched in a two-dimensional diagram (Figure 9), which fea-
tures a cross section passing though the negative parasiticel-
ement. In this simplified diagram, two magnetic arcades are
separated from each other by a T-type HFT. A flux rope is
preexistent within the left arcade, with a filament embedded
at the concave-upward portion of the rope. At the onset of
the flare, the emergence of a parasitic element of negative po-
larity in the right arcade triggers at the HFT a fast magnetic
reconnection that subsequently releases the magnetic energy
and stress accumulated in the arcades, as evidenced by the
UV flare ribbons residing at the high Q-lines that delineate
the footprint of the HFT, with reference to Fig. 7. Magnetic
reconnection at the HFT is persistent over the flare, resulting
in the observed dynamics of the nested loops within the cusp-
shaped structure, which might correspond to the QSL high
above the T-type HFT, with reference to Fig. 8(j). Magnetic
reconnection at the BPSS also heats up plasmas surrounding
the filament, with reference to Fig. 8(d). The continuing en-
ergy release at the HFT and BPSS may account for the long-
lasting gradual phase of this confined flare.

We conclude that the preexisting T-type HFT and flux rope
dictate the structure and dynamics of the observed loops and
ribbons in this event. The flux rope fails to escape owing to
a strong confining field but succeeds in producing an LDE
flare with the continuing dissipation of currents concentrated
at separatrix surfaces and QSLs, which has not been consid-
ered as a significant energy source during the flare gradual
phase. Hence, our analysis may shed light on the so-called
EUV late phase.
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